Dutch Books and Combinatorial Games

Peter Harremoës Centrum Wiskunde & Informatica Information theoretic learning and Quantum computing group Amsterdam

About myself

Bachelor in archaeology and Master in Mathematics from University of Copenhagen.

Thesis on minimizing information divergence. Worked as archaeologist.

PhD in natural sciences from University of Roskilde with a thesis entitled "Time and Conditional Independence". For 5 year full time mountaineer. Wrote 7 books. Member of the safety commision of the International Climbing and Mountaineering Federation. President of Danish Climbing Federation.

6 years at University of Copenhagen and research fellow in Bielefeld. Now researcher at CWI and editor-in-chief of the journal Entropy.

About Entro-Peter

Bachelor in archaeology and Master in Mathematics from University of Copenhagen.

Thesis on minimizing information divergence. Worked as archaeologist.

PhD in natural sciences from University of Roskilde with a thesis entitled "Time and Conditional Independence". For 5 year full time mountaineer. Wrote 7 books. Member of the safety commision of the International Climbing and Mountaineering Federation. President of Danish Climbing Federation.

6 years at University of Copenhagen and research fellow in Bielefeld. Now researcher at CWI and editor-in-chief of the journal Entropy.

Spassky

Fisher

Motivation

- Probability theory started as a theory of games.
- Kolmogorov gave probability theory a solid axiomatic foundation.
- At the same time subjective and frequential interpretations started forming two branches of interpretations.
- The Dutch book theorem was established by Ramsay and later independently by de Finetti.
- Their interpretations were subjective. Savage and others made more subjective versions of the Dutch book theorem.
- First the payoff was money, then value, then preferences were used, and now procedures.
- Here we shall go in a less subjective direction. The payoff will be a combinatorial game.

Combinatorial games

- Examples: Chess, nine-mens-morris, nim, go.
- The players alternate in making a move.
- Many legal moves is good, and few legal moves is bad. Convension: *losing* is the same as *no legal move*.
- We will call the players *Left* and *Right*.
- A game *G* is specified by the options of Left *G^L* and the options of Right *G^R*. We write

 $G = \langle G^L | G^R \rangle$.

Games are defined by *recursion* starting with the definition of the game

 $0 = < \emptyset \mid \emptyset >.$

The status and group structure of a games

- If G and H are games then G+H is the game where G and H are played in parallel.
- If G is a game then -G is the game where Left and Right swiches roles.
- Games have the structure of a partially ordered group.

<i>G</i> =0	if second player wins
G>0	if Left wins
	whoever plays first.
<i>G</i> <0	If Right wins
	whoever plays first.
$G \ 0$	if first player wins.

All real numbers are games

• There is a way of identifying real numbers with games.

rational numbers \rightarrow ordered field \rightarrow surreal numbers \rightarrow games.

- There are many infinitisimal surreal numbers and many that are infinite.
- Consider social games with surreal numbers as payoffs or with games as payoffs.

Surreal probabilities

Two-person zero-sum games

- Let *A* and *B* denote finite sets and let $(a,b) \rightarrow g(a,b)$ denote a payoff function with values in an totally ordered field *F*. Then the two-person zero-sum game with payoff function g has a Nash equilibrium where the mixed strategies are probability vectors with weights in the field *F*.
- **Dutch Book Theorem** Let *A* and *B* denote finite sets and let $(a,b) \rightarrow g(a,b)$ denote a surreal valued payoff function. Then either we have incoherence, i.e. there exist non-negative surreal numbers q_b such that $\sum q_b = 1$

$$\sum_{b\in B} q_b g(a,b) < 0 \text{ for all } a \in A.$$

or there exists non-negative surreal numbers p_a such

hat
$$\sum_{a \in A} p_a = 1$$
 and $\sum_{a \in A} p_a g(a, b) \ge 0$ for all $b \in B$.

Complications due to confused games

- Due to the existence of games confused with the game 0 the Dutch Book theorem becomes more complicated if we consider more general game-valued payoffs.
- Theorem If a payoff function $G(a,b), a \in A, b \in B$ with short games as values, is coherent then either exists a probability vector $a \rightarrow p_a$ and a natural number n such that $np_a \in \mathbb{N}$ and the game

$$\sum_{a} (np_a) \cdot G(a,b) > 0$$

for all $b \in B$, positive mean or there exist natural numbers n_1, n_2, \dots, n_k , a natural number n and a probability vector $a \rightarrow p_a$ such that (*) have mean value 0.

• Visit my poster if you want to understand this situation in more detail!

Conclusion

- Frequential probabilities are *real number* but the Dutch book argument may lead to *surreal probabilities*.
- The Dutch book argument does *not* favor a subjective interpretation of probabilities.
- If the payoffs are games then *coherence* does *not imply* the *existence of a distribution* such that the mean payoff is non-negative.