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1 Noise : Statistical variations of the signal2 Noise quanti�ers : statistical variance or standard deviation3 A common problem : how to quantify the noise on a uniquesignal aquisition ?
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The local spatial or temporalvariations, i.e. the variations insidea neighborhood, are equal to thestatistical variations, i.e. to thenoise.
=⇒ usual noise level quanti�ers arethe local variance or standarddeviation
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De�nitionx : input signalh : impulse response of the �ltery : output (or �ltered) signalyk =

∑i∈Z

xihk−i = (x ∗ h)k =
∑i∈Z

xihki .Notation : hk
•

= hk−•.
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h

y=x*hxAim : It consists in selecting the low frequency part from the inputsignal.How to : A smoothing (or low-pass) �lter sets each location k tothe average value, or a weighted average, of itself and its nearbyneighbors.Kevin Loquin and Olivier Strauss Noise quantization via possibilistic �ltering 7 / 15
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The considered �lters, whose impulse responses are denoted by κare generally

κk ≥ 0,
∑i∈Z

κki = 1.They are called smoothing convolution kernels and can be seen asprobability distributions.Remark : they are generally symmetric.
Kevin Loquin and Olivier Strauss Noise quantization via possibilistic �ltering 8 / 15



AuthorsSignal and noiseLow-pass �ltering and probabilityImprecise low-pass �ltering and possibilityNoise quantization via possibilistic �lteringConclusion Linear �lteringLow-pass (or linear smoothing) �lteringLow-pass (or linear smoothing) �ltering and probability
A probability measure can thus be associated to a smoothingconvolution kernel :

∀A ⊆ Z, P
κ
k (A) =

∑i∈A κki .The �ltering of a signal can thus be written as an expectationoperator : yk =
∑i∈Z

xiκki = E
κ
k (x).
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πki = 1.Possibility measure (concave capacity) :
∀A ⊆ Z, Π

π
k (A) = supi∈A πki ,A possibilistic kernel πk can encode a special family of smoothingconvolution kernels, denoted by M(πk) and de�ned by

M(πk ) =
{

κk | ∀A ⊆ Z, N
π
k (A) ≤ P

κ
k (A) ≤ Π

π
k (A)

}
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AuthorsSignal and noiseLow-pass �ltering and probabilityImprecise low-pass �ltering and possibilityNoise quantization via possibilistic �lteringConclusion The Possibilistic kernelImprecise low-pass �lteringConsistency between precise and imprecise low-pass �lteringDe�nitionthe imprecise output of possibilistic low-pass �lter is given by :
[yk , y k ] = [Cc

π
k (x), C

π
k (x)].where

C
c
π
x (x) = (C )

∫

Ω

xdNπ ,

Cπ
x (x) = (C )

∫

Ω

xdΠπ.
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Theorem(Schmeidler and Denneberg)If πk is a possibilistic kernel on Z then ∀κk ∈ M(πk ),yk ∈ [yk , y k ].Besides, the bounds are reached.
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De�nitionUnder the local ergodicity assumption, we propose to estimate thenoise level on the input :

λk = y k − yk . (1)
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