Approximation of coherent lower probabilities by 2-monotone measures

Andrey G. Bronevich

Technological Institute of Southern Federal University, Taganrog, RUSSIA, brone@mail.ru

Thomas Augustin

Department of Statistics, Ludwig-Maximilians University (LMU), Munich, GERMANY thomas@stat.uni-muenchen.de

1. Personal Background: Andrey Bronevich

Associate Professor at the Technological Institute, Taganrog, Russia

- imprecise probabilities
- non-additive measure theory
- possibility theory
- multi-criteria decision-making under risk and uncertainty
- pattern recognition and image processing.

Personal Background: Thomas Augustin

- Department of Statistics, University of Munich, Germany
- Kurt Weichselberger
- Marco Cattaneo, Gero Walter; Andrea Wiencierz, Carolin Strobl; Robert Hable, Martin Gümbel
- IP in statistics and decision making; foundations of statistics (poster on handling unobserved data heterogeneity by credal maximum likelihood)
- Statistics in the social sciences; handling of deficient data (measurement error, misclassification) --?--> partial identification (poster)
- Nonparametric predictive inference
- Classification trees

2. Background of the paper

Why can approximation of coherent lower probabilities by 2-monotone measures be reasonable?

I do not "...know any 'rationality' argument for two-monotonicity, beyond its computational convenience."

Walley (1981, p. 51)

On the computational convenience of two-monotonicity:

"Lower and upper distribution functions fit":

For any underlying order of the elements of the sample space corresponding lower and upper distribution function are attained *simultaneously* by a certain element of the structure (core, creedal set)

- Closed form expressions for natural extension/expectation: Choquet integral
- Closed from expressions for conditional probabilities (c.p.)
- Closeness of GBR (intuitive concept of c.p.) and Dempster's rule of conditioning (maximum likelihood updating)
- Statistical hypotheses testing (Huber-Strassen theory)

Statistical hypotheses testing (Huber-Strassen theory)

- Which distribution governs the data?
- (Level-alpha-)Maximin testing to decide between two hypotheses
- Two-monotonicity of the underlying hypotheses is sufficient to guaranty the existence of a globally least favorable pair
 - à big sample sizes are no computational problem
 - à just use the product measure of the globally least favorable pair of sample size 1
 - à k-dimensional problem, instead of a k^n -dimensional problem

3. Find optimal outer approximation by two-monotone measure!

Not unique

uniformly

criterion-based

linear imprecision index or metric

set of Pareto optimal solutions

improve given approximation

optimal solution via linear programming

*

• characterization

• approximate calculation via linear programming *

measures

* methods also applicable for approximation by completely-monotone

Notation and Definitions

X is a measurable space with a σ -algebra A.

D1. μ : A \rightarrow [0,1] is a monotone measure if

1) $\mu(\emptyset) = 0, \ \mu(X) = 1;$

2) $\mu(A) \le \mu(B)$ if $A \subseteq B$ for $A, B \in A$.

Notation.

 M_{mon} is the set of all monotone measures on A.

$$\mu_1 \leq \mu_2$$
 for $\mu_1, \mu_2 \in M_{mon}$ if $\mu_1(A) \leq \mu_2(A)$ for all $A \in A$.

 M_{pr} is the set of all probability measures on A.

 $M_{low} = \left\{ \mu \in M_{mon} \mid \exists P \in M_{pr} : \mu \leq P \right\} \text{ is the set of all$ *lower probabilities* $on A.}$

 $M_{coh} = \left\{ \mu \in M_{mon} \mid \forall B \in A, \exists P \in M_{pr} : \mu \le P, \mu(B) = P(B) \right\} \text{ is the set of all } coherent lower probabilities on A.$

 $\mu \in M_{mon}$ is 2-monotone if $\mu(A) + \mu(B) \le \mu(A \cup B) + \mu(A \cap B)$ for all $A, B \in A$.

 M_{2-mon} is the set of all 2-monotone measures on A.

Description of Pareto optimal 2-monotone measures (finite case)

X is a finite set; $A = 2^{X}$. D2. $v \in M_{mon}$ is a *Pareto optimal approximation* of $\mu \in M_{low}$ if a) $v \leq \mu$; b) $v' \in M_{mon}$, $v \leq v' \leq \mu \Rightarrow v' = v$. $v \leq v' \leq \mu \ v' \in M_{mon}$ implies that v' = v. For any $\mu \in M_{low}$, we denote $M_{2-mon \leq \mu} = \{v \in M_{2-mon} | v \leq \mu\}$. **Notation.** $M_{2-mon \leq \mu} = \{v \in M_{2-mon} | v \leq \mu\}$ for $\mu \in M_{mon}$.

Lemma 1. Any Pareto optimal 2-monotone measure for a $\mu \in M_{coh}$ can be represented as a convex linear combination of Pareto optimal extreme points of $M_{2-mon \le \mu}$.

D3. $\Lambda \subseteq A$ is a *lattice* if $A, B \in \Lambda \Rightarrow A \cap B, A \cup B \in \Lambda$. **D4.** $\mu \in M_{2-mon}$ is *additive* on L if $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$ for any $A, B \in \Lambda$.

core(
$$\mu$$
) = { $P \in M_{pr} | P \ge \mu$ }, where $\mu \in M_{low}$.
S _{μ} is the covering of A: $\Lambda \in S_{\mu}$ if Λ is a maximal lattice, on which $\mu \in M_{2-mon}$ is additive.

Proposition 1. There is the one-to-one correspondence between maximal lattices in S_{μ} and extreme points of $core(\mu)$ for every extreme point P defined by $\Lambda = \{A \in A \mid P(A) = \mu(A)\}.$

Proposition 1 is the generalization of the following result:

Let $X = \{x_1, x_2, ..., x_n\}$ and $\mu \in M_{2-mon}$, then every extreme point P_{γ} of $core(\mu)$ correspond to a maximal chain $\gamma = \{B_0, B_1, ..., B_n\}$ of $A = 2^X$, where $\gamma = \{B_0, B_1, ..., B_n\}$, $\emptyset = B_0 \subset B_1 \subset ... \subset B_n = X$, and $|B_k \setminus B_{k-1}| = 1$, k = 1, ..., n, by the rule $P_{\gamma}(B_k) = \mu(B_k)$, k = 1, ..., n.

Proposition 2. Let $\mu \in M_{coh}, \nu \in M_{2-mon \le \mu}, S_{\nu=0} = \{A \in A | \nu(A) = 0\},\$ $S_{\nu=\mu} = \{A \in A | \nu(A) = \mu(A)\}$. Then ν is an extreme point of $M_{2-mon \le \mu}$ iff its values are defined by the sets $S_{\nu=\mu}, S_{\nu=0}, S_{\nu}$ uniquely.

Necessary and sufficient condition of 2-monotonicity

$$\mu: 2^{X} \to [0,1] \text{ is in } M_{2-mon} \text{ iff}$$

$$1) \ \mu(\emptyset) = 0, \ \mu(X) = 1;$$

$$2) \ \mu(A) \le \mu(A \cup \{x_i\}) \text{ for all possible } A \in 2^{X} \text{ and } x_i \notin A;$$

$$3) \ \mu(A \cup \{x_i\}) + \mu(A \cup \{x_j\}) \le \mu(A) + \mu(A \cup \{x_i\} \cup \{x_j\}) \text{ for all possible } A \in 2^{X} \text{ and } x_i, x_j \notin A.$$

This result can be reformulated trough elementary lattices:

Type 1 elementary lattices: $\{A, A \cup \{x_i\}\}$, where $A \in 2^X$ and $x_i \notin A$,

Type 2 elementary lattices: $\{A, A \cup \{x_i\}, A \cup \{x_j\}, A \cup \{x_i\} \cup \{x_j\}\}$, where $A \in 2^X$, $x_i, x_j \notin A$. **Proposition 3.** $\mu: 2^X \to [0,1]$ is in M_{2-mon} iff 1) $\mu(\emptyset) = 0, \ \mu(X) = 1;$

2) μ is monotone on all lattices in 2^{x} of the first type;

3) μ is 2-monotone on all lattices in 2^{x} of the second type.

Proposition 4. Let $v \in M_{2-mon \le \mu}$, L_1 be the set of all elementary lattices of the first type on which v is constant, and L_2 be the set of all elementary lattices of the second type, on which v is additive. Then v is not Pareto optimal iff there is a non-identical zero, non-negative set function $\Delta v : 2^X \rightarrow j_{+}$ such that

1) $\Delta v(A) = 0$ if $A \in S_{v=\mu}$;

2) Δv is monotone on all lattices in L₁;

3) Δv is 2-monotone on all lattices in L₂.

Algorithms for finding Pareto optimal 2-monotone measures

Algorithm I.

Input data: coherent lower probability μ on 2^{x} .

First step. Searching a 2-monotone measure v_0 with $v_0 \le \mu$.

- 1) Compute 2-monotone set function g on 2^{x} :
- a) $g(A) = \mu(A)$ for all $A \in 2^X$ with $|A| \le 1$;
- b) for sets A with cardinality |A| = k, k = 1, 2, ...:

$$g(A) = \max\left\{\mu(A), \max_{x_i, x_j \in A} g\left(A \setminus \{x_i\}\right) + g\left(A \setminus \{x_j\}\right) - g\left(A \setminus \{x_i, x_j\}\right)\right\}.$$

2) $v_0 = \varphi \circ g$, where $\varphi : [0, g(X)] \rightarrow [0, 1]$ is a convex distortion function such that:

(i) $\varphi(0) = 0, \ \varphi(g(X)) = 1;$ (ii) $\varphi(g(A)) \le \mu(A)$ for all $A \in 2^X$. Second step. Finding a Pareto optimal 2-monotone measure v with $v_0 \le v \le \mu$. Let $v_k \in M_{2-mon \le \mu}$. Let exist $A \in 2^X$ such that $\Delta_1 = \mu(A) - v_k(A) > 0$, $\Delta_2 = \min_{x_i \in X \setminus A} \left(v_k \left(A \cup \{x_i\} \right) - v_k(A) \right) > 0$, $\Delta_3 = \min_{x_i \in X \setminus A, x_j \in A} \left(v_k \left(A \cup \{x_i\} \right) - v_k(A) - v_k \left(\left(A \setminus \{x_j\} \right) \cup \{x_i\} \right) + v_k \left(A \setminus \{x_j\} \right) \right) > 0$.

Then

$$v_{k+1}(B) = \begin{cases} v_k(B) + d, & B = A, \\ v_k(B), & otherwise. \end{cases}$$

where $d = \min\{\Delta_1, \Delta_2, \Delta_3\}.$

Algorithm II.

Based on a linear imprecision index. D1. $f: M_{low} \rightarrow [0,1]$ is a linear imprecision index if 1) f(P) = 0 for any $P \in M_{pr}$; 2) $f(\eta_{\langle X \rangle}) = 1$, where $\eta_{\langle X \rangle}(A) = 1$ if A = X, $\eta_{\langle X \rangle}(A) = 0$ otherwise; 3) $f(v_1) \leq f(v_2)$ for any $v_1, v_2 \in M_{low}$ such that $v_1 \geq v_2$; 4) $f(av_1 + (1-a)v_2) = af(v_1) + (1-a)f(v_2)$ for arbitrary $a \in [0,1]$ and $v_1, v_2 \in M_{low}$.

A Pareto optimal $v \in M_{2-mon \le \mu}$, $\mu \in M_{coh}$, is the solution of the linear programming problem:

find $v \in M_{2-mon \le \mu}$ such that $f(v) \to \min$.

Examples of imprecision indices

a) the generalized Hartley measure: $GH(v) = \frac{1}{\ln|X|} \sum_{A \in 2^X} m(A) \ln|A|$, where *m* is the Möbius transform of $v \in M_{low}$;

b) the imprecision index based on L_1 distance:

 $f_{L_1}(v) = \frac{1}{2^{|X|} - 2} \sum_{A \in 2^X} \left| \overline{v}(A) - v(A) \right|$

Approximate the set of Pareto-optimal approximations by linear programming

A two-monotone set-function $\nu(\cdot)$ is <u>not</u> a Pareto-optimal approximation of $\mu(.)$ iff $\exists \nu'(\cdot)$ two-monotone, $\varepsilon > 0$:

$$L(\cdot) \leq L'(\cdot) \leq \mu(.)$$
 and $\sum_{A \subseteq \omega} L'(A) - L(A) \geq \varepsilon$

Therefore, for arbitrary small $\varepsilon > 0$, consider the following optimization problem:

1

 $\tilde{\varepsilon} \longrightarrow \min$

subject to the constraints

$$\begin{array}{llll} \nu'(A) - \nu(A) & \geq & 0 & \forall A \\ \mu(A) - \nu'(A) & \geq & 0 & \forall A \\ \sum_{A} \nu'(A) - \nu(A) & \geq & \tilde{\varepsilon} \geq \varepsilon \\ \nu(.) \mbox{ two-monotone } & \nu'(.) \mbox{ two-monotone } \end{array}$$

Then the set of optimal solutions has the form $\begin{pmatrix} L^*(.) \\ L'^*(.) \end{pmatrix}$, projection on the first part approximates the set of not-Pareto optimal approximations, subtracting it from the set of all 2-monotone measures dominated by $\mu(\cdot)$ gives an approximation of the set of all Pareto-optimal approximations.

1