Affinity and Continuity of Credal Set Operator

Tomáš Kroupa

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Prague, Czech Republic

Motivation

The study of **geometrical relations** between two classes of imprecise probability models of Walley:

- coherent lower previsions
- 2 credal sets of dominating linear previsions

Motivation

The study of **geometrical relations** between two classes of imprecise probability models of Walley:

- coherent lower previsions
- 2 credal sets of dominating linear previsions

Question: which operations on credal sets correspond to the

decomposition of a CLP by a convex combination of CLPs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• approximation of a CLP as a limit of CLPs

Motivation

The study of **geometrical relations** between two classes of imprecise probability models of Walley:

- coherent lower previsions
- 2 credal sets of dominating linear previsions

Question: which operations on credal sets correspond to the

- decomposition of a CLP by a convex combination of CLPs
- approximation of a CLP as a limit of CLPs

Application:

- any co-co set of CLPs is described by K-M theorem
- characterize the image of this set via credal set operator

Imprecise Probability Models

- \mathscr{L} Banach space of all gambles on Ω
- $\underline{P} \qquad \text{coherent lower prevision on } \mathcal{K} \subseteq \mathscr{L}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Imprecise Probability Models

- \mathscr{L} Banach space of all gambles on Ω
- $\underline{P} \qquad \text{coherent lower prevision on } \mathcal{K} \subseteq \mathscr{L}$
- P linear prevision on \mathscr{K}
- ${\mathcal P} \quad {\rm weak}^*{\rm -compact\ convex\ set\ in\ } {\mathcal L}^*$ of all linear previsions on ${\mathcal L}$

Imprecise Probability Models

- \mathscr{L} Banach space of all gambles on Ω
- $\underline{P} \qquad \text{coherent lower prevision on } \mathcal{K} \subseteq \mathcal{L}$
- P linear prevision on \mathscr{K}
- ${\mathcal P} \quad \mbox{ weak}^*\mbox{-compact convex set in } {\mathcal L}^* \mbox{ of all linear previsions on } {\mathcal L}$

(中) (종) (종) (종) (종) (종)

$$\begin{aligned} \mathfrak{M}(\underline{P}) & \text{credal set of } \underline{P} \\ &= \{ P \in \mathfrak{P} \mid P(f) \geq \underline{P}(f), f \in \mathscr{K} \} \end{aligned}$$

 $E_{\underline{P}}$ natural extension of \underline{P} to \mathscr{L}

$$= \inf_{P \in \mathcal{M}(\underline{P})} P$$

Credal Set Operator

- ${\mathscr K}$ a set of gambles
- $\underline{\mathcal{C}}_{\mathscr{K}}$ the convex set of all CLPs on \mathscr{K} S the set of all nonempty weak*-con
 - S the set of all nonempty weak*-compact convex subsets of ${\mathcal P}$

The credal set operator is the mapping

 $\mathfrak{M}:\underline{P}\in\underline{\mathfrak{C}}_{\mathscr{K}}\mapsto\mathfrak{M}(\underline{P})\in\mathsf{S}$

Credal Set Operator

- ${\mathscr K}$ a set of gambles
- $\underline{\mathcal{C}}_{\mathscr{K}}$ the convex set of all CLPs on \mathscr{K} S the set of all nonempty weak*-con
 - S the set of all nonempty weak*-compact convex subsets of $\mathcal P$

The credal set operator is the mapping

 $\mathcal{M}: \underline{P} \in \underline{\mathcal{C}}_{\mathscr{K}} \mapsto \mathcal{M}(\underline{P}) \in \mathsf{S}$

Does \mathcal{M} preserve the operations and the structure from $\underline{\mathcal{C}}_{\mathscr{K}}$ to S?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- algebraic structure
- topological structure

Algebraic Operations with Credal Sets

The set $2^{\mathscr{L}^*}$ endowed with the Minkowski sum \oplus and the scalar multiplication is a real semilinear space:

- $\left(2^{\mathscr{L}^*},\oplus,\{0\}\right)$ is a commutative monoid
- $\alpha(\beta \mathcal{A}) = (\alpha \beta) \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{R}, \ \forall \mathcal{A} \in 2^{\mathscr{L}^*}$

•
$$1\mathcal{A} = \mathcal{A}, \ 0\mathcal{A} = \{0\}$$

• $\alpha(\mathcal{A}_1 \oplus \mathcal{A}_2) = (\alpha \mathcal{A}_1) \oplus (\alpha \mathcal{A}_2), \quad \forall \mathcal{A}_1, \mathcal{A}_2 \in 2^{\mathscr{L}^*}, \alpha \in \mathbb{R}$

Algebraic Operations with Credal Sets

The set $2^{\mathscr{L}^*}$ endowed with the Minkowski sum \oplus and the scalar multiplication is a real semilinear space:

• $\left(2^{\mathscr{L}^*},\oplus,\{0\}\right)$ is a commutative monoid

•
$$\alpha(\beta \mathcal{A}) = (\alpha \beta) \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{R}, \ \forall \mathcal{A} \in 2^{\mathscr{L}^*}$$

•
$$1\mathcal{A} = \mathcal{A}, \ 0\mathcal{A} = \{0\}$$

•
$$\alpha(\mathcal{A}_1 \oplus \mathcal{A}_2) = (\alpha \mathcal{A}_1) \oplus (\alpha \mathcal{A}_2), \quad \forall \mathcal{A}_1, \mathcal{A}_2 \in 2^{\mathscr{L}^*}, \alpha \in \mathbb{R}$$

The set S is **convex** in $2^{\mathscr{L}^*}$:

$$\alpha \mathcal{A}_1 \oplus (1-\alpha) \mathcal{A}_2 \in \mathsf{S}, \quad \forall \mathcal{A}_1, \mathcal{A}_2 \in \mathsf{S}, \alpha \in [0,1]$$

Representation of Credal Sets by Superdifferentials

The **superdifferential** of a concave function $E_{\underline{P}}$ at $f \in \mathscr{L}$ is the set

$$\partial E_{\underline{P}}(f) = \{ P^* \in \mathscr{L}^* \mid P^* \ge \mathrm{d}^+ E_{\underline{P}}(f)(.) \},\$$

where for $g \in \mathscr{L}$,

$$\mathrm{d}^+ E_{\underline{P}}(f)(g) = \lim_{t \to 0_+} \frac{E_{\underline{P}}(f + tg) - E_{\underline{P}}(f)}{t}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Representation of Credal Sets by Superdifferentials

The **superdifferential** of a concave function $E_{\underline{P}}$ at $f \in \mathscr{L}$ is the set

$$\partial E_{\underline{P}}(f) = \{ P^* \in \mathscr{L}^* \mid P^* \ge \mathrm{d}^+ E_{\underline{P}}(f)(.) \},\$$

where for $g \in \mathscr{L}$,

$$\mathrm{d}^+ E_{\underline{P}}(f)(g) = \lim_{t \to 0_+} \frac{E_{\underline{P}}(f + tg) - E_{\underline{P}}(f)}{t}.$$

Theorem

If \underline{P} is a coherent lower prevision on a set of gambles \mathscr{K} and $\underline{E}_{\underline{P}}$ is the natural extension of \underline{P} , then

$$\mathcal{M}(\underline{P}) = \partial \underline{E}_{\underline{P}}(1).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Affinity

A mapping $\Gamma : \underline{\mathcal{C}}_{\mathscr{K}} \to S$ is **affine** if for every $\underline{P}^1, \ldots, \underline{P}^n \in \underline{\mathcal{C}}_{\mathscr{K}}$ and $\alpha_i \in [0, 1], i = 1, \ldots, n$, with $\sum_{i=1}^n \alpha_i = 1$,

$$\Gamma\left(\sum_{i=1}^{n}\alpha_{i}\underline{P}^{i}\right) = \bigoplus_{i=1}^{n}\alpha_{i}\Gamma(\underline{P}^{i}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Affinity

A mapping $\Gamma : \underline{\mathcal{C}}_{\mathscr{K}} \to S$ is affine if for every $\underline{P}^1, \ldots, \underline{P}^n \in \underline{\mathcal{C}}_{\mathscr{K}}$ and $\alpha_i \in [0, 1], i = 1, \ldots, n$, with $\sum_{i=1}^n \alpha_i = 1$,

$$\Gamma\left(\sum_{i=1}^{n} \alpha_i \underline{\underline{P}}^i\right) = \bigoplus_{i=1}^{n} \alpha_i \Gamma(\underline{\underline{P}}^i).$$

Theorem If the mapping

$$E_{\cdot}:\underline{P}\in\underline{\mathcal{C}}_{\mathscr{K}}\mapsto E_{\underline{P}}\in\underline{\mathcal{C}}_{\mathscr{L}}$$

(中) (문) (문) (문) (문)

is affine, then $\underline{\mathcal{M}}:\underline{\mathcal{C}}_{\mathscr{K}}\to S$ is affine.

Affinity

A mapping $\Gamma : \underline{\mathcal{C}}_{\mathscr{K}} \to S$ is affine if for every $\underline{P}^1, \ldots, \underline{P}^n \in \underline{\mathcal{C}}_{\mathscr{K}}$ and $\alpha_i \in [0, 1], i = 1, \ldots, n$, with $\sum_{i=1}^n \alpha_i = 1$,

$$\Gamma\left(\sum_{i=1}^{n} \alpha_i \underline{\underline{P}}^i\right) = \bigoplus_{i=1}^{n} \alpha_i \Gamma(\underline{\underline{P}}^i).$$

Theorem If the mapping

$$E_{\cdot}: \underline{P} \in \underline{\mathcal{C}}_{\mathscr{K}} \mapsto E_{\underline{P}} \in \underline{\mathcal{C}}_{\mathscr{L}}$$

(日) (圖) (필) (필) (필) (필)

is affine, then $\underline{\mathcal{M}}:\underline{\mathcal{C}}_{\mathscr{K}}\to S$ is affine.

Theorem

The credal set operator \mathfrak{M} is affine on the convex set of all supermodular coherent lower probabilities on 2^{Ω} .

Belief Functions

Theorem

Let Ω be finite, <u>P</u> be a belief measure on 2^{Ω} and $\mu^{\underline{P}}$ its Möbius transform. Then

$$\mathfrak{M}(\underline{P}) = \bigoplus_{A \subseteq \Omega} \mu^{\underline{P}}(A) \mathfrak{S}_{A},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $S_A = \{P \in \mathcal{P} \mid P(A) = 1\}.$

Belief Functions

Theorem

Let Ω be finite, <u>P</u> be a belief measure on 2^{Ω} and $\mu^{\underline{P}}$ its Möbius transform. Then

$$\mathcal{M}(\underline{P}) = \bigoplus_{A \subseteq \Omega} \mu^{\underline{P}}(A) \mathbb{S}_A,$$

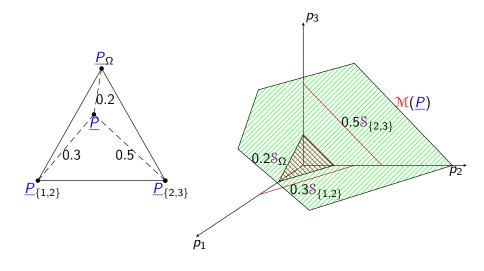
where $\mathbb{S}_{A} = \{ P \in \mathcal{P} \mid P(A) = 1 \}.$

Example

Let $\Omega = \{1, 2, 3\}$ and \underline{P} be a belief measure whose Möbius transform $\mu^{\underline{P}}$ is

$$\mu^{\underline{P}}(A) = \begin{cases} 0.2, & A = \Omega, \\ 0.3, & A = \{1, 2\}, \\ 0.5, & A = \{2, 3\}, \\ 0, & otherwise. \end{cases}$$

Belief Functions (ctnd.)



Continuity

Assumption $|\Omega| = n$

Theorem

If S is endowed with the topology of Hausdorff metric, then $\mathfrak{M} : \underline{\mathbb{C}}_{\mathscr{L}} \to S$ is an affine homeomorphism.

Continuity

Assumption $|\Omega| = n$

Theorem

If S is endowed with the topology of Hausdorff metric, then $\mathfrak{M} : \underline{\mathfrak{C}}_{\mathscr{L}} \to S$ is an affine homeomorphism.

Theorem

If $\underline{P} \in \underline{\mathbb{C}}_{\mathscr{K}}$, then there exists a sequence (S_n) of simple polytopes in S such that

- $S_n \to \mathcal{M}(\underline{P})$ in the Hausdorff metric
- $\mathfrak{M}^{-1}(\mathfrak{S}_n) \to \underline{P}$ pointwise on \mathscr{K}
- $\mathcal{M}^{-1}(\mathbb{S}_n) \to \underline{P}$ uniformly on each compact subset of \mathcal{K}