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Motivation

The study of geometrical relations between two classes of
imprecise probability models of Walley:

...1 coherent lower previsions

...2 credal sets of dominating linear previsions

Question: which operations on credal sets correspond to the

decomposition of a CLP by a convex combination of CLPs

approximation of a CLP as a limit of CLPs

Application:

any co-co set of CLPs is described by K-M theorem

characterize the image of this set via credal set operator
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Imprecise Probability Models

L Banach space of all gambles on Ω
P coherent lower prevision on K ⊆ L

P linear prevision on K
P weak∗-compact convex set in L ∗ of all linear previsions on L

M(P) credal set of P
= {P ∈ P | P(f ) ≥ P(f ), f ∈ K }

EP natural extension of P to L
= inf

P∈M(P)
P
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Credal Set Operator

K a set of gambles
CK the convex set of all CLPs on K
S the set of all nonempty weak∗-compact convex subsets of P

The credal set operator is the mapping

M : P ∈ CK 7→ M(P) ∈ S

Does M preserve the operations and the structure from CK to S?

algebraic structure

topological structure
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Algebraic Operations with Credal Sets

The set 2L ∗
endowed with the Minkowski sum ⊕ and the scalar

multiplication is a real semilinear space:(
2L ∗

,⊕, {0}
)

is a commutative monoid

α(βA) = (αβ)A ∀α, β ∈ R, ∀A ∈ 2L ∗

1A = A, 0A = {0}
α(A1 ⊕ A2) = (αA1) ⊕ (αA2), ∀A1, A2 ∈ 2L ∗

, α ∈ R

The set S is convex in 2L ∗
:

αA1 ⊕ (1 − α)A2 ∈ S, ∀A1, A2 ∈ S, α ∈ [0, 1]
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Representation of Credal Sets by Superdifferentials

The superdifferential of a concave function EP at f ∈ L is the
set

∂EP(f ) = {P∗ ∈ L ∗ | P∗ ≥ d+EP(f )(.)},

where for g ∈ L ,

d+EP(f )(g) = lim
t→0+

EP(f + tg) − EP(f )

t
.

Theorem
If P is a coherent lower prevision on a set of gambles K and EP is
the natural extension of P, then

M(P) = ∂EP(1).
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Affinity

A mapping Γ : CK → S is affine if for every P1, . . . ,Pn ∈ CK and
αi ∈ [0, 1], i = 1, . . . , n, with

∑n
i=1 αi = 1,

Γ

(
n∑

i=1

αiP
i

)
=

n⊕
i=1

αiΓ(P i ).

Theorem
If the mapping

E . : P ∈ CK 7→ EP ∈ CL

is affine, then M : CK → S is affine.

Theorem
The credal set operator M is affine on the convex set of all
supermodular coherent lower probabilities on 2Ω.
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Belief Functions
Theorem
Let Ω be finite, P be a belief measure on 2Ω and µP its Möbius
transform. Then

M(P) =
⊕
A⊆Ω

µP(A)SA,

where SA = {P ∈ P | P(A) = 1}.

Example

Let Ω = {1, 2, 3} and P be a belief measure whose Möbius
transform µP is

µP(A) =


0.2, A = Ω,

0.3, A = {1, 2},
0.5, A = {2, 3},
0, otherwise.
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Belief Functions (ctnd.)
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Continuity

Assumption |Ω| = n

Theorem
If S is endowed with the topology of Hausdorff metric, then
M : CL → S is an affine homeomorphism.

Theorem
If P ∈ CK , then there exists a sequence (Sn) of simple polytopes
in S such that

Sn → M(P) in the Hausdorff metric

M−1(Sn) → P pointwise on K

M−1(Sn) → P uniformly on each compact subset of K
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