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The study of geometrical relations between two classes of
imprecise probability models of Walley:

@ coherent lower previsions

@ credal sets of dominating linear previsions

Question: which operations on credal sets correspond to the
@ decomposition of a CLP by a convex combination of CLPs

@ approximation of a CLP as a limit of CLPs

Application:
@ any co-co set of CLPs is described by K-M theorem

@ characterize the image of this set via credal set operator
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Imprecise Probability Models

RS

Banach space of all gambles on 2
coherent lower prevision on 7 C .&

linear prevision on JZ
weak*-compact convex set in .Z* of all linear previsions on .

credal set of P
={Pe?P|P(f) > P(f),f € X}
natural extension of P to .&

= inf P
PeM(P)
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Credal Set Operator

J  a set of gambles
C, the convex set of all CLPs on ¢
S the set of all nonempty weak*-compact convex subsets of P

The credal set operator is the mapping

M:Pel,—MP)eS

Does M preserve the operations and the structure from €, to S?
o algebraic structure

o topological structure



Algebraic Operations with Credal Sets

The set 2" endowed with the Minkowski sum @ and the scalar
multiplication is a real semilinear space:

° (2”7*,@, {0}) is a commutative monoid

o a(fA) = (af)A Va,B €R, VA 2%

o 1A =4, 04 = {0}

o a(A; ®AL) = (aA) @ (ady), VA, A €27 a R



Algebraic Operations with Credal Sets

The set 2" endowed with the Minkowski sum @ and the scalar
multiplication is a real semilinear space:

° (2”7*,@, {0}) is a commutative monoid

o a(fA) = (af)A Va,B €R, VA 2%

o 1A =4, 04 = {0}

o a(A; ®AL) = (aA) @ (ady), VA, A €27 a R

The set S is convex in 2"

ad1®(1—a)Az €S, VA, Az €S, a€0,1]



Representation of Credal Sets by Superdifferentials

The superdifferential of a concave function £p at f € .Z is the
set
OEp(f) ={P" € 2" | P* = d"Ep(F)()},

where for g € &,

d+EP(f)(g) — lim EB(f + tg) — EB(f).

t—04 t




Representation of Credal Sets by Superdifferentials

The superdifferential of a concave function £p at f € .Z is the
set

OLp(f) ={P" €.2" | P* = d"Ep(f)(.)},
where for g € &,

Theorem
If P is a coherent lower prevision on a set of gambles J# and Ep is
the natural extension of P, then

M(P) = 9E p(1).



Affinity

A mapping I : €, — S is affine if for every P!,..., P" € €, and
a;j€[0,1],i=1,...,n, with > 7 o; =1,

r (Z a,-P"> = e]n}a,-r(g").
i=1 i=1
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Theorem
If the mapping
PeCy—Epely

is affine, then M : C,, — S is affine.

Theorem
The credal set operator M is affine on the convex set of all
supermodular coherent lower probabilities on 2.



Belief Functions

Theorem
Let Q be finite, P be a belief measure on 22 and ;£ its Mébius
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Belief Functions

Theorem
Let Q be finite, P be a belief measure on 22 and ;£ its Mébius
transform. Then

@M A)Sa,

ACQ
where 4 = {P € P | P(A) = 1}.

Example
Let Q ={1,2,3} and P be a belief measure whose Mobius
transform p2 is

02, A=Q,

03, A={12},
nE(A) = .2

05, A={23},

0, otherwise.



Belief Functions (ctnd.)




Continuity

Assumption [Q| = n

Theorem
If'S is endowed with the topology of Hausdorff metric, then
M: €y — S is an affine homeomorphism.



Continuity

Assumption [Q| = n

Theorem
If'S is endowed with the topology of Hausdorff metric, then
M: €y — S is an affine homeomorphism.

Theorem
If P € €,/ , then there exists a sequence (S,) of simple polytopes
in'S such that

e 8, — M(P) in the Hausdorff metric
o M~Y(8,) — P pointwise on #
o M~1(8,) — P uniformly on each compact subset of X



