Multivariate Models and Confidence Intervals: A Local Random Set Approach

Thomas Fetz

Unit for Engineering Mathematics University of Innsbruck, Austria Thomas.Fetz@uibk.ac.at

6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

Unit of Engineering Mathematics, Faculty of Civil Engineering, University of Innsbruck, Austria

Research Team (imprecise probabilities):

- Michael Oberguggenberger (head of unit)
- Bernhard Schmelzer (next presentation)
- Thomas Fetz

My research area:

- Propagating uncertainty through a mapping.
- Imprecise probabilities and independence.
- Starting: Bayesian Networks linked with Geographic Information Systems (GIS) in collaboration with civil engineers of our faculty.

Starting point: Non-parametric models, Tchebycheff

Given: Variable *X* with $\mu = E(X)$ and $\sigma^2 = V(X)$ as sole information.

Generating a nested family $\mathbf{I} = \{I_{\alpha}\}_{\alpha \in (0,1]}$ of confidence intervals

$$\boxed{ \mathbf{I}_{\alpha} = \left[\mu - \frac{\sigma}{\sqrt{\alpha}}, \mu + \frac{\sigma}{\sqrt{\alpha}} \right], \quad \alpha \in (0, 1] }$$

using Tchebycheff's inequality $P(|X - \mu| > \frac{\sigma}{\sqrt{\alpha}}) \le \alpha$.

Questions

- What is it? Is it a random set or a fuzzy set?
- What is the upper probability $\overline{P}(A)$ of an event A? What is its interpretation with respect to confidence intervals?
- What happens in the multivariate case?

Looking at a single confidence interval

Equipping the two intervals I_{α} and I_{α}^{c} with weights

$$m(I_{\alpha}) = P(I_{\alpha})$$
 and $m(I_{\alpha}^{c}) = P(I_{\alpha}^{c})$

we get a local random set at level α .

Looking at a single confidence interval

Equipping the two sets I_{α} and I_{α}^{c} with weights

$$m(I_{\alpha}) = P(I_{\alpha})$$
 and $m(I_{\alpha}^{c}) = P(I_{\alpha}^{c})$

we get a local random set at level α .

The local upper probability $\overline{P}_{\alpha}(A)$ at level α for an event A is

$$\overline{P}_{\alpha}(A) = m(I_{\alpha}) \, \chi(A \cap I_{\alpha} \neq \varnothing) + m(I_{\alpha}^{c}) \, \chi(A \cap I_{\alpha}^{c} \neq \varnothing).$$
 (χ indicator function)

Three different cases for an event A

$$\begin{array}{ll} \text{(i)} & A \cap I_{\alpha} = \varnothing \\ \text{(ii)} & A \cap I_{\alpha}^{c} = \varnothing \\ \text{(iii)} & A \cap I_{\alpha} \neq \varnothing \text{ and } A \cap I_{\alpha}^{c} \neq \varnothing \end{array} \qquad \begin{array}{ll} \overline{P}_{\alpha}(A) \in [0,\alpha] \\ \overline{P}_{\alpha}(A) \in [1-\alpha,1] \\ \overline{P}_{\alpha}(A) = 1 \end{array}$$

$$\overline{P}_{\alpha}(A) = m(I_{\alpha}) \chi(A \cap I_{\alpha} \neq \emptyset) + m(I_{\alpha}^{c}) \chi(A \cap I_{\alpha}^{c} \neq \emptyset).$$

Three different cases for an event A

$$\begin{array}{ll} \text{(i)} & A \cap I_{\alpha} = \varnothing \\ \text{(ii)} & A \cap I_{\alpha}^{c} = \varnothing \\ \text{(iii)} & A \cap I_{\alpha} \neq \varnothing \text{ and } A \cap I_{\alpha}^{c} \neq \varnothing \end{array} \qquad \begin{array}{ll} \overline{P}_{\alpha}(A) \in [0,\alpha] \\ \overline{P}_{\alpha}(A) \in [1-\alpha,1] \\ \overline{P}_{\alpha}(A) = 1 \end{array}$$

$$\overline{P}_{\alpha}(A) = m(I_{\alpha}) \chi(A \cap I_{\alpha} \neq \varnothing) + m(I_{\alpha}^{c}) \chi(A \cap I_{\alpha}^{c} \neq \varnothing).$$

Three different cases for an event A

$$\begin{array}{lll} \textbf{(i)} & A \cap I_{\alpha} = \varnothing & & & \overline{P}_{\alpha}(A) \in [0,\alpha] \\ \textbf{(ii)} & A \cap I_{\alpha}^{c} = \varnothing & & & \overline{P}_{\alpha}(A) \in [1-\alpha,1] \\ \textbf{(iii)} & A \cap I_{\alpha} \neq \varnothing \text{ and } A \cap I_{\alpha}^{c} \neq \varnothing & & \overline{P}_{\alpha}(A) = 1 \\ \end{array}$$

$$\overline{P}_{\alpha}(A) = m(I_{\alpha}) \chi(A \cap I_{\alpha} \neq \emptyset) + m(I_{\alpha}^{c}) \chi(A \cap I_{\alpha}^{c} \neq \emptyset).$$

Three different cases for an event A

(i)	$A\cap I_lpha=arnothing$	$\overline{P}_{\alpha}(A) = \frac{\alpha}{\alpha}$
(ii)	$A\cap I^c_lpha=arnothing$	$\overline{P}_{\alpha}(A) = 1$
(iii)	$A\cap I_lpha eqarnothing$ and $A\cap I_lpha^c eqarnothing$	$\overline{P}_{\alpha}(A) = 1$

To avoid interval-valued $\overline{P}_{\alpha}(A)$ we take always the upper bounds.

Most interesting case (i)

- A has the role of the "bad and undesired" event.
- Meaning:

If A is outside the confidence interval I_{α} at confidence level $1-\alpha$, then we can say for sure that A occurs only with probability α , at most.

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \overline{P}_{\alpha}(A) = \inf_{\alpha \in (0,1]} \{\alpha : I_{\alpha} \cap A = \emptyset\}$$

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \overline{P}_{\alpha}(A) = \inf_{\alpha \in (0,1]} \{\alpha : I_{\alpha} \cap A = \emptyset\}$$

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \overline{P}_{\alpha}(A) = \inf_{\alpha \in (0,1]} \{\alpha : I_{\alpha} \cap A = \emptyset\}$$

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \overline{P}_{\alpha}(A) = \inf_{\alpha \in (0,1]} \{\alpha : I_{\alpha} \cap A = \emptyset\}$$

Formula for the upper probability $\overline{P}(A)$

$$\overline{\overline{P}}(A) = \inf_{\alpha \in (0,1]} \overline{P}_{\alpha}(A) = \inf_{\alpha \in (0,1]} \{\alpha : I_{\alpha} \cap A = \emptyset\}$$

Interpretation of I as random set or fuzzy set

$$\overline{P}(A)$$
 = Plausibility(A) = Possibility(A)

The Multivariate Case

Goal

A formula for the upper probability for given families I_1, \dots, I_n of confidence intervals similar to the univariate version.

The Multivariate Case

Goal

A formula for the upper probability for given families $I_1, ..., I_n$ of confidence intervals similar to the univariate version.

Short preview

univariate

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \{ \alpha : I_{\alpha} \cap A = \emptyset \}$$

multivariate

$$\overline{P}_{\ell}^{S}(A) = \inf_{\alpha \in S} \{ \ell(\alpha) : J_{\alpha} \cap A = \emptyset \}$$

The Multivariate Case

Goal

A formula for the upper probability for given families $I_1, ..., I_n$ of confidence intervals similar to the univariate version.

Short preview

univariate

$$\overline{P}(A) = \inf_{\alpha \in (0,1]} \{ \alpha : I_{\alpha} \cap A = \emptyset \}$$

multivariate

$$\overline{P}_{\ell}^{S}(A) = \inf_{\alpha \in S} \{ \ell(\alpha) : J_{\alpha} \cap A = \emptyset \}$$

Possibilities of choice

- For the set of confidence intervals considered to be combined.
- 2 For the weights used for the local joint random set.

Combination of marginal confidence intervals

 $\mathbf{J} = \{J_{\alpha}\}_{{\alpha} \in S}$ is the family of all joint confidence sets

$$J_{\alpha} = I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}, \quad I_{k,\alpha_k} \in \mathbf{I}_k$$

with $\alpha = (\alpha_1, \dots, \alpha_n)$ depending on the set *S* of indices α :

- **1** Random set independence like: $S = S_R = (0, 1]^n$.
- ② Fuzzy set independence like: $S = S_F = \{\alpha \in (0,1]^n : \alpha_1 = \cdots = \alpha_n\}$

Combination of marginal confidence intervals

 $\mathbf{J} = \{J_{\alpha}\}_{{\alpha} \in S}$ is the family of all joint confidence sets

$$J_{\alpha} = I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}, \quad I_{k,\alpha_k} \in \mathbf{I}_k$$

with $\alpha = (\alpha_1, \dots, \alpha_n)$ depending on the set *S* of indices α :

- Random set independence like: $S = S_R = (0, 1]^n$.
- **2** Fuzzy set independence like: $S = S_F = {\alpha \in (0,1]^n : \alpha_1 = \cdots = \alpha_n}$

Local upper probability

Event A with $J_{\alpha} \cap A = \emptyset$.

Combination of marginal confidence intervals

 $\mathbf{J} = \{J_{\alpha}\}_{{\alpha} \in S}$ is the family of all joint confidence sets

$$J_{\alpha} = I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}, \quad I_{k,\alpha_k} \in \mathbf{I}_k$$

with $\alpha = (\alpha_1, \dots, \alpha_n)$ depending on the set *S* of indices α :

- Random set independence like: $S = S_R = (0, 1]^n$.
- **2** Fuzzy set independence like: $S = S_F = {\alpha \in (0,1]^n : \alpha_1 = \cdots = \alpha_n}$

Local upper probability

Event A with $J_{\alpha} \cap A = \emptyset$.

$$\overline{P}_{\alpha}(A) \leq \overline{P}((I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n})^c) =$$

$$= 1 - m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}).$$

Combination of marginal confidence intervals

 $\mathbf{J} = \{J_{\alpha}\}_{{\alpha} \in S}$ is the family of all joint confidence sets

$$J_{\alpha} = I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}, \quad I_{k,\alpha_k} \in \mathbf{I}_k$$

with $\alpha = (\alpha_1, \dots, \alpha_n)$ depending on the set *S* of indices α :

- **1** Random set independence like: $S = S_R = (0, 1]^n$.
- **2** Fuzzy set independence like: $S = S_F = {\alpha \in (0,1]^n : \alpha_1 = \cdots = \alpha_n}$

Local upper probability

Event A with $J_{\alpha} \cap A = \emptyset$.

$$\overline{P}_{\alpha}(A) = \overline{P}((I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n})^c) = 1 - m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}).$$

Worst case.

Joint Weight $m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n})$ / Local Upper Probability \overline{P}_{α}

Random set independence

Product of the marginal weights: $m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}) = \prod_{i=1}^n m_i(I_{i,\alpha_i})$.

Leads to

$$\overline{P}_{\alpha}(A) = 1 - \prod_{i=1}^{n} (1 - \alpha_i).$$

Used if the uncertain variables are independent.

Joint Weight $m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n})$ / Local Upper Probability \overline{P}_{α}

Random set independence

Product of the marginal weights: $m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}) = \prod_{i=1}^n m_i(I_{i,\alpha_i})$.

Leads to

$$\overline{P}_{\alpha}(A) = 1 - \prod_{i=1}^{n} (1 - \alpha_i).$$

Used if the uncertain variables are independent.

Lower / upper bounds

Lower and upper bounds of Fréchet for the joint weights:

$$\max\left(\sum_{i=1}^n m(I_{i,\alpha_i}) - n + 1, 0\right) \leq m(I_{1,\alpha_1} \times \cdots \times I_{n,\alpha_n}) \leq \min_{i=1,\dots,n} m(I_{i,\alpha_i}).$$

Leads to

$$\max_{i=1,\ldots,n}(\alpha_i) \leq \overline{P}_{\alpha}(A) \leq \min(\alpha_1 + \cdots + \alpha_n, 1).$$

• Used if nothing is known about interactions between the variables.

Levels of the Joint Confidence Set / Upper Probability

Level function $\ell(\alpha)$

The different approaches have only an influence on the level

$$\boldsymbol{\ell(\alpha)} = \begin{cases} \max_{i=1,\dots,n} (\alpha_i) & \text{lower bound,} \\ 1 - \prod_{i=1}^n (1-\alpha_i) & \text{random set independence,} \\ \min(\alpha_1 + \dots + \alpha_n, 1) & \text{upper bound} \end{cases}$$

of the joint confidence set J_{α} , but not on the confidence set itself.

Levels of the Joint Confidence Set / Upper Probability

Level function $\ell(\alpha)$

The different approaches have only an influence on the level

$$\boldsymbol{\ell(\alpha)} = \begin{cases} \max_{i=1,\dots,n} (\alpha_i) & \text{lower bound,} \\ 1 - \prod_{i=1}^n (1-\alpha_i) & \text{random set independence,} \\ \min(\alpha_1 + \dots + \alpha_n, 1) & \text{upper bound} \end{cases}$$

of the joint confidence set J_{α} , but not on the confidence set itself.

Formula for the upper probability similar to the univariate case

$$\overline{P}_{\ell}^{S}(A) = \inf_{\alpha \in S} \{\ell(\alpha) : J_{\alpha} \cap A = \varnothing\}.$$

Numerical Example

Beam bedded on two springs with uncertain spring constants

Criterion of failure of beam: $g(\lambda_1, \lambda_2) \leq 0$

Failure function

$$g(\lambda_1, \lambda_2) = M_{\mathsf{yield}} - \max_{x \in [0,3]} |M(x, \lambda_1, \lambda_2)|$$

- $M(x, \lambda_1, \lambda_2)$ is the bending moment at x depending on λ_1, λ_2 .
- $M_{\text{yield}} = 12 \text{ kNm}$ is the elastic limit moment.

Upper probability distributions $\overline{F}_{\ell}^{\mathrm{S}}(g(\lambda_1,\lambda_2))$

The upper probabilities of failure are the results at $g(\lambda_1, \lambda_2) = 0$.

Ordering / Notations

Ordering of the upper probabilities

$$\overline{P}_{F}(A) = \overline{P}_{lower}^{R}(A) = \overline{P}_{lower}^{F}(A)$$

$$\overline{P}_{R}(A) \leq \overline{P}_{indep}^{R}(A) \leq \overline{P}_{indep}^{F}(A)$$

$$\overline{P}_{\mathrm{U}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{R}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{F}}(A)$$

Notation

Classical approaches

Notation	
$\overline{P}_{ m F}$	fuzzy set independence
$\overline{P}_{ m R}$	random set independence
$\overline{P}_{ m U}$	unknown interaction / Fréche

Ordering / Notations

Ordering of the upper probabilities

$$\overline{P}_{F}(A) = \overline{P}_{lower}^{R}(A) = \overline{P}_{lower}^{F}(A)$$

$$\overline{P}_{R}(A) \leq \overline{P}_{indep}^{R}(A) \leq \overline{P}_{indep}^{F}(A)$$

$$\overline{P}_{\mathrm{U}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{R}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{F}}(A)$$

All possible combinations of confidence intervals, $S = S_R$

Notation	level $\ell(oldsymbol{lpha})$	
\overline{P}_{lower}^{R}	$\max_{i=1,\ldots,n}(\alpha_i)$	lower Fréchet bound
	$1 - \prod_{i=1}^{n} (1 - \alpha_i)$	random set independence
$\overline{P}_{\mathrm{upper}}^{\mathrm{R}}$	$\min\left(\sum_{i=1}^n \alpha_i, 1\right)$	upper Fréchet bound

Ordering / Notations

Ordering of the upper probabilities

$$\overline{P}_{F}(A) = \overline{P}_{lower}^{R}(A) = \overline{P}_{lower}^{F}(A)$$

$$\overline{P}_{R}(A) \leq \overline{P}_{indep}^{R}(A) \leq \overline{P}_{indep}^{F}(A)$$

$$\overline{P}_{\mathrm{U}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{R}}(A) \leq \overline{P}_{\mathrm{upper}}^{\mathrm{F}}(A)$$

Combinations of intervals of the same level α only, $\mathit{S} = \mathit{S}_{\mathrm{F}}$

Notation	level $\ell(\alpha)$	
\overline{P}_{lower}^{F}	α	lower Fréchet bound
$\overline{P}_{ ext{indep}}^{ ext{F}}$	$1-(1-\alpha)^n$	random set independence
$\overline{P}_{\mathrm{upper}}^{\mathrm{F}}$	$\min(n\alpha, 1)$	upper Fréchet bound