ISIPTA '09 - Sixth International Symposium on Imprecise Probabilities: Theories and Applications

Durham University, UK, 2009

On general conditional random quantities

V. Biazzo & A. Gilio & G. Sanfilippo

Group of research

Veronica Biazzo

researcher, Probability and Statistics Dip. Matematica e Informatica University of Catania, Italy

Angelo Gilio

full professor, Probability and Statistics Dip. Metodi e Modelli Matematici per le Scienze Applicate ''Sapienza'', University of Roma, Italy

Giuseppe Sanfilippo

researcher, Probability and Statistics Dip. Scienze Statistiche e Matematiche University of Palermo, Italy

Fitting of our contribution in the context of ISIPTA:

We study the coherence of prevision assessments for general conditional random quantities, like X|Y, where X and Y are finite discrete random quantities.

We generalize the study concerning:

- conditional events, like E|H, where E and H are events;

- conditional random quantities, like X|H, where X is a random quantity and H is an event.

Outline

• We consider the notion of general conditional prevision of the form $\mathbb{P}(X|Y)$, where both X and Y are random quantities, introduced in (Lad and Dickey, 1990).

• We integrate the analysis of Lad and Dickey by properly managing the case $\mathbb{P}(Y) = 0$

• We propose a definition of coherence for the conditional prevision of 'X given Y'

• We obtain some results on coherence of a conditional prevision assessment $\mathbb{P}(X|Y) = \mu$ in the finite case

Basic notions

In the setting of coherence, given any r. q. X and any events E, H, with P(E|H) = p and $\mathbb{P}(X|H) = \mu$, if you pay p (resp., μ) you receive E|H (resp., X|H); then, *operatively*, it is

 $E|H = EH + pH^c = EH + p(1 - H),$

 $X|H = XH + \mu H^c = XH + \mu(1 - H).$

A general conditional r. q. X|Y is obtained by replacing in the last formula the event H (and its indicator) by a r. q. Y.

Definition 1. (Lad & Dickey)

Given two r. q. X and Y, the conditional prevision for 'X given Y', denoted $\mathbb{P}(X|Y)$, is a number you specify with the understanding that you accept to engage any transaction yielding a random net gain $G = sY[X - \mathbb{P}(X|Y)]$.

Definition 2. (Lad & Dickey)

Having asserted your conditional prevision $\mathbb{P}(X|Y) = \mu$, the c. r. q. X|Y is defined as

$$X|Y = XY + (1 - Y)\mu = \mu + Y(X - \mu).$$

Then $G = sY(X - \mu) = s(X|Y - \mu)$ and, as $\mathbb{P}(G) = 0$, it follows (generalized compound prevision theorem)

$$\mathbb{P}(XY) = \mathbb{P}(X|Y)\mathbb{P}(Y).$$

Some remarks.

1) if $Y \equiv 0$, you always receive the same amount $\mu = \mathbb{P}(X|Y)$ that you have payed (the net gain is always 0). To avoid this trivial case we will assume that $(Y = 0) \neq \Omega$.

2) if X and Y are uncorrelated, it is $\mathbb{P}(XY) = \mathbb{P}(X)\mathbb{P}(Y)$; then, assuming $\mathbb{P}(Y) \neq 0$, it follows $\mathbb{P}(X|Y) = \mathbb{P}(X)$.

In other words, under the hypothesis $\mathbb{P}(Y) \neq 0$, X and Y are uncorrelated if and only if the prevision of 'X given Y' coincides with the prevision of X.

3) $\mathbb{P}(Y) = 0 \implies \mathbb{P}(XY) = 0$; then, it may happen that doesn't exist any finite value of $\mathbb{P}(X|Y)$ which satisfies the equality

 $\mathbb{P}(XY) = \mathbb{P}(X|Y)\mathbb{P}(Y).$

A critical example

(where $\mathbb{P}(Y) = 0$, $\mathbb{P}(XY) \neq 0$)

 $(X, Y) \in \{(0, -1), (0, 1), (1, -1), (1, 1)\};$ we set p(x, y) = P(X = x, Y = y), with

$$p(0,-1) = \frac{1}{3}, \quad p(0,1) = \frac{1}{6},$$

 $p(1,-1) = \frac{1}{6}, \quad p(1,1) = \frac{1}{3}.$

We have

 $Y \in \{-1, 1\}, XY \in \{-1, 0, 1\},\$

with

$$P(Y = -1) = P(Y = 1) = \frac{1}{2},$$
$$P(XY = 0) = \frac{1}{2},$$
$$P(XY = -1) = \frac{1}{6}, \ P(XY = 1) = \frac{1}{3};$$
so that $\mathbb{P}(Y) = 0$ and $\mathbb{P}(XY) = \frac{1}{6};$

hence, the equation $\frac{1}{6} = \mathbb{P}(X|Y) \cdot 0$ has no solutions.

What can be said about coherence of the assessment $\mathbb{P}(X|Y) = \mu$ when $\mathbb{P}(Y) = 0$?

To properly manage the case $\mathbb{P}(Y) = 0$, we integrate the work of Lad and Dickey (i) by using an explicit definition of coherence for any given assessment $\mathbb{P}(X|Y) = \mu$; (ii) by discarding, in the definition of coherence, the value 0 of the net gain associated with the case Y = 0.

Definition of coherence. Given two r. q. X, Y and a conditional prevision assessment $\mathbb{P}(X|Y) = \mu$, let $G = s(X|Y - \mu) = sY(X - \mu)$ be the net random gain, where s is an arbitrary real quantity, with $s \neq 0$, and $H = (Y \neq 0)$. The assessment $\mathbb{P}(X|Y) = \mu$ is coherent if and only if: inf $G|H \cdot \sup G|H \leq 0$, for every s. (without loss of generality, we can set s = 1)

Remark. If Y is the indicator |H| of an event H, then X|Y = X|(|H|) and $(Y \neq 0) \equiv (H \text{ true})$; then, the coherence of the assessment $\mathbb{P}(X|Y) = \mu$ reduces to the notion of coherence for the assessment $\mathbb{P}(X|H) = \mu$.

Example. We continue the study of the critical example, by examining the coherence of a given assessment $\mathbb{P}(X|Y) = \mu$. We recall that

$$(X,Y) \in \{(0,-1), (0,1), (1,-1), (1,1)\};$$

moreover

 $H = (Y \neq 0) = \Omega, \quad G|H = G = Y(X - \mu).$

The values of G|H associated with the values of (X, Y) are respectively:

 $g_1 = \mu, g_2 = -\mu, g_3 = -1 + \mu, g_4 = 1 - \mu;$ hence: inf $G|H \cdot \sup G|H \le 0, \forall \mu.$

Another example

 $(X,Y) \in \{(0,-1),(1,1)\}, \ \mathbb{P}(X|Y) = \mu.$ We have

 $H = (Y \neq 0) = \Omega, \ G|H = G = Y(X - \mu);$ the values of G|H are: $g_1 = \mu, \ g_2 = 1 - \mu;$

then

inf
$$G|H$$
 \cdot sup $G|H \leq$ 0 \iff $\mu \notin$ (0,1);

i. e., if and only if: $\mu \in (-\infty, 0] \cup [1, +\infty)$.

With each μ it is associated a probability distribution on (X, Y), say (p, 1 - p), $0 \le p \le 1$, where

$$p = P(X = 0, Y = -1) = 1 - P(X = 1, Y = 1).$$

By requiring that the prevision of the random gain be 0, i.e. $p\mu + (1-p)(1-\mu) = 0$, one has

$$p = f(\mu) = \frac{1-\mu}{1-2\mu},$$

1	\cap
т	υ

with

Notice that $\mu = f^{-1}(p) = \frac{1-p}{1-2p}$; i.e., $f^{-1} = f$.

As shown by this example, the set of coherent assessments μ may be not convex.

A strong generalized compound prevision theorem

We recall that $H = (Y \neq 0)$, $\mu = \mathbb{P}(X|Y)$. We assume that μ , $\mathbb{P}(Y|H)$, and $\mathbb{P}(XY|H)$ are finite; then, we remark that

(i) we pay μ and we receive X|Y, under the hypothesis H true; then, *operatively* μ is the prevision of X|Y, *conditional on* H;

(ii) hence, a more appropriate representation of X|Y is given by:

$$X|Y = [\mu + Y(X - \mu)]|H;$$

(iii) then, by computing the prevision on both sides, we have $\mu = \mu + \mathbb{P}[(XY - \mu Y)|H]$ and by linearity of prevision it follows

$$\mathbb{P}(XY|H) = \mathbb{P}(X|Y)\mathbb{P}(Y|H).$$
(1)

Remark. If Y is a finite discrete r. q., with $Y \ge 0$, or $Y \le 0$, it is $\mathbb{P}(Y|H) \ne 0$; then, by (1) it follows $\mathbb{P}(X|Y) = \frac{\mathbb{P}(XY|H)}{\mathbb{P}(Y|H)}$.

Notice that, as $H^c = (Y = 0)$, it follows

$$\mathbb{P}(Y|H^c) = \mathbb{P}(XY|H^c) = 0;$$

hence,

$$\mathbb{P}(Y) = \mathbb{P}(Y|H)P(H) + \mathbb{P}(Y|H^{c})P(H^{c}) =$$

$$= \mathbb{P}(Y|H)P(H) = \mathbb{P}(YH), \qquad (2)$$

$$\mathbb{P}(XY) = \mathbb{P}(XY|H)P(H) + \mathbb{P}(XY|H^{c})P(H^{c}) =$$

$$= \mathbb{P}(XY|H)P(H) = \mathbb{P}(XYH). \qquad (3)$$
Then, by (1), (2), and (3), one has
$$\mathbb{P}(XY) = \mathbb{P}(XY|H)P(H) =$$

$$= \mathbb{P}(X|Y)\mathbb{P}(Y|H)P(H) = \mathbb{P}(X|Y)\mathbb{P}(Y);$$

(the formula of Lad & Dickey, which we call weak generalized compound prevision theorem).

The case $Y \ge 0$, or $Y \le 0$

Let C_X, C_Y and C be, respectively, the finite sets of possible values of X, Y and (X, Y).

$$X^{0} = \{x_{h} \in C_{X} : \exists (x_{h}, y_{k}) \in C : y_{k} \neq 0\}$$

 $x_{0} = \min X^{0}, \quad x^{0} = \max X^{0}.$

Theorem 1 Given two finite r. q. X, Y, with $Y \ge 0$ or $Y \le 0$, the prevision assessment $\mathbb{P}(X|Y) = \mu$ is coherent iff $x_0 \le \mu \le x^0$.

Example.

 $(X,Y) \in \mathcal{C} = \{(0,1), (1,0), (1,1), (2,2)\},\$ $\Pi = \text{ set of coherent assessments } \mathbb{P}(X|Y) = \mu$ on X|Y.One has

$$X^{0} = X, x_{0} = \min C_{X} = 0, x^{0} = \max C_{X} = 2;$$

the values of G|H, where $H = (Y \neq 0)$, are

 $g_1 = -\mu$, $g_2 = 1 - \mu$, $g_3 = 2(2 - \mu)$;

such values are all positive (resp., all negative) when $\mu < 0$ (resp., $\mu > 2$);

hence every $\mu \notin [0,2]$ is *not coherent*.

Finally, when $\mu \in [0, 2]$ one has $-\mu(2 - \mu) \leq 0$ and the condition inf $G|H \cdot \sup G|H \leq 0$ holds.

Hence, $\Pi = [x_0, x^0] = [0, 2].$

The case min $Y < 0 < \max Y$.

$$\begin{aligned} X^{-} &= \{ x_{h} \in \mathcal{C}_{X} : \exists (x_{h}, y_{k}) \in \mathcal{C}, y_{k} < 0 \} , \\ X^{+} &= \{ x_{h} \in \mathcal{C}_{X} : \exists (x_{h}, y_{k}) \in \mathcal{C}, y_{k} > 0 \} ; \\ \mu_{0} &= \min(\max X^{-}, \max X^{+}) , \\ \mu^{0} &= \max(\min X^{-}, \min X^{+}) , \\ \text{if } \mu_{0} < \mu^{0} , \text{ we set } I = (\mu_{0}, \mu^{0}) ; \end{aligned}$$

Moreover, we set $X^- < X^+ \,, \ \ {\rm if} \ \ {\rm max} \ X^- < {\rm min} \ X^+ \,;$

 $X^- > X^+$, if min $X^- > \max X^+$; $X^- \nsim X^+$, otherwise.

Then, we obtain

1.
$$X^+ < X^- \Leftrightarrow I \neq \emptyset$$
 and $I = (\mu_0, \mu^0)$, with $\mu_0 = \max X^+, \ \mu^0 = \min X^-.$

2.
$$X^+ > X^- \Leftrightarrow I \neq \emptyset$$
 and $I = (\mu_0, \mu^0)$, with $\mu_0 = \max X^-, \ \mu^0 = \min X^+.$

3.
$$X^- \not\sim X^+ \Leftrightarrow I = \emptyset$$
.

We have

Theorem 2 Let be given two r. q. X, Y, with min $Y < 0 < \max Y$. If case 1, or case 2, holds, then $X^- \cap X^+ = \emptyset$ and the assessment $\mathbb{P}(X|Y) = \mu$ is coherent if and only if $\mu \notin I$. In the case 3, the assessment $\mathbb{P}(X|Y) = \mu$ is

coherent for every real number μ .

Example. We determine the set Π of coherent prevision assessments $\mathbb{P}(X|Y) = \mu$ on X|Y, where

 $(X,Y) \in \mathcal{C} = \{(0,1), (0,2), (1,-1), (1,-2)\}.$ We have

$$X^{-} = \{1\}, \quad X^{+} = \{0\},$$

so that $X^- \cap X^+ = \emptyset$ and $X^- \not\sim X^+$. Then, I = (0,1) and, by Theorem 2, $\Pi = \Re \setminus (0,1)$; that is, μ is coherent if and only if $\mu \notin (0,1)$.

The same result follows, by observing that: (i) G|H = G; (ii) given any μ , the values of G are:

 $g_1 = -\mu$, $g_2 = -2\mu$, $g_3 = -1+\mu$, $g_4 = -2+2\mu$; (iii) if $\mu \in (0, 1)$, the values of *G* are all negative; if $\mu \notin (0, 1)$, it is: min G < 0, max G > 0.

Further work

Further developments of the research concern:

(i) coherence of a conditional prevision assessment $\mathcal{M}_n = (\mu_1, \dots, \mu_n)$ on a family of n conditional random quantities $\mathcal{F}_n = \{X_1 | Y_1, \dots, X_n | Y_n\};$

(ii) study of general properties and methods for the checking of coherence;

(iii) generalized coherence of imprecise conditional prevision assessments, for instance intervalvalued assessments like $\mathcal{A}_n = ([l_1, u_1], \dots, [l_n, u_n])$, on \mathcal{F}_n .

Some results concerning (i) and (ii) have been obtained in a paper which will be presented on September at WUPES 2009.

Motivations for Poster Session

Some aspects which could be deepened during Poster Session are:

- the notion of conditional prevision, $\mathbb{P}(X|Y)$, generalize that of conditional probability, P(E|H), and the familiar one of conditional prevision, $\mathbb{P}(X|H)$, where the r. q. Y is an event H.

- we can discuss an *operative* approach which, given any r. q. X and any events A, B, H, K, with P(B|AH) = y and $\mathbb{P}(X|HK) = \mu$, leads to the representations

 $B|AH = (AB + yA^c)|H = AB|H + yA^c|H,$

 $X|HK = (XH + \mu H^c)|K = XH|K + \mu H^c|K,$

and, by linearity of prevision, to the formulas

$$P(AB|H) = P(B|AH)P(A|H),$$

$$\mathbb{P}(XH|K) = \mathbb{P}(X|HK)P(H|K).$$

- the notion of general conditional prevision, $\mathbb{P}(X|Y)$, was introduced by Lad & Dickey, in the setting of the operational subjective theory of coherent previsions, to solve decision problems involving "state dependent preferences";

- in particular, it was applied to a "currency exchange problem" suggested by Jay Kadane.