Outline		Category selection	

CATEGORY SELECTION FOR MULTINOMIAL DATA

REBECCA BAKER

Department of Mathematical Sciences, University of Durham

REBECCA BAKER

Outline		

1 The multinomial NPI model

- Motivation
- The probability wheel representation

2 Research topics

3 Category selection

- NPI for multiple future observations
- Selecting a single category
- Selecting a subset of categories

4 Future research

REBECCA BAKER

Outline	The multinomial NPI model		Future research
Motivation			

The multinomial NPI model

Model for learning from multinomial data

- inferences about a future observation
- in form of a probability interval
- based entirely on past observations

Have observed $Y_1, ..., Y_n$, want to find out about Y_{n+1}

- each observation belongs to a particular category
- K categories in total
- we have already observed $c_1, ..., c_k$
- **n**_j observations in category c_j

Event of interest is ($Y_{n+1} \in E$) where *E* is a subset of the *K* categories

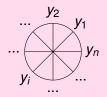
REBECCA BAKER

Outline	The multinomial NPI model ○ ●○○		Future research
The probabil	ity wheel representation		

The probability wheel representation

Represent data on a probability wheel

• Y_{n+1} has probability $\frac{1}{n}$ of being in each slice



- Slice bordered by two observations in the same category is assigned to this category
- Slice bordered by two observations in different categories may be assigned to any available category

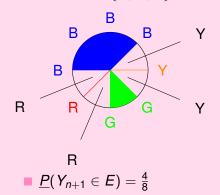
Note: Each category may only be represented by a single segment of the wheel.

REBECCA BAKER

Outline	The multinomial NPI model ○ ○●○		
The probabilit	y wheel representation		

Deriving lower probabilities

Possible categories are blue (B), green (G), red (R), yellow (Y), pink (P) and orange (O)
 Event E = {B, G, P}

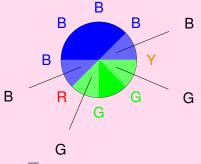


REBECCA BAKER

Outline	The multinomial NPI model ○ ○○●		
The probabil	ity wheel representation		

Deriving upper probabilities

Possible categories are blue (B), green (G), red (R), yellow (Y), pink (P) and orange (O)
 Event E = {B, G, P}



$$\overline{P}(Y_{n+1} \in E) = 1$$

REBECCA BAKER

Outline	Research topics	

Research topics

NPI with subcategories

- A generalised NPI model to deal with data described at subcategory level
- Enables consistent inferences at different levels of detail

Category selection

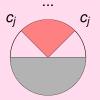
- A generalised NPI model which uses inferences about multiple future observations
- Selection of an optimal category or subset of categories which meets some specified probability criterion
 - What are the relevant lower and upper probabilities?
 - How large does the subset need to be?

REBECCA BAKER

Outline		Category selection ● ○○ ○	
NIDI (constable	the first successful and		

NPI for multiple future observations

We derive new NPI lower and upper probabilities using *m* future observations



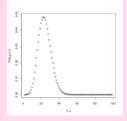
There are $\binom{n+m-1}{m}$ arrangements of *m* future observations amongst the *n* slices of the wheel

There are (^{(s-1)+f}) arrangements of *f* future observations within a segment made up of *s* slices

REBECCA BAKER

Selecting a single category to maximise $P(M_j = m_j)$

Problem: Select the category which maximises $\underline{P}(M_j = 11)$ We have observed 20 B, 27 G, 25 R, 28 Y By theorem, $n_j = 23$ will maximise this probability



Closest values are $n_B = 20$ and $n_R = 25$ $P(M_B = 11) = 0.0443$ $P(M_R = 11) = 0.0462$

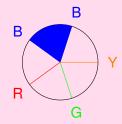
The category we should select is R.

REBECCA BAKER

Outline		Category selection ○ ○● ○	Future research
Selecting a s	ingle category		

Selecting a single optimal category: $P(M_i \ge m_i)$

Problem: Select the optimal category for the event $M_j \ge \frac{m}{3}$ We have observed 2 B, 1 G, 1 R, 1 Y



Take
$$m = 3$$

 $P(M_B \ge 1) = [\frac{15}{35}, \frac{31}{35}]$
 $P(M_G \ge 1) = P(M_R \ge 1) = P(M_Y \ge 1) = [0, \frac{25}{35}]$
The category we should select is B.

REBECCA BAKER

Selecting a subset of categories

Selecting an optimal subset of categories: $P(M_S \ge m_s)$

Problem: Select the optimal subset such that $P(M_{S_i} \ge 1) \ge 0.8$ CategoryABCDEFGHObservations2520181310950

i	S_i	$P(M_{S_i} \geq 1)$	$P(M_{S_i} \geq 2)$
1	A	[0.4206, 0.4505]	[0.0594, 0.0695]
2	A,B	0.6727,0.7166	0.1873, 0.2234
3	A-C	0.8376, 0.8822	0.3624, 0.4378
4	A-D	0.9196,0.9543	0.5204, 0.6257
5	A-E	0.9697,0.9846	[0.6903, 0.7754]
6	A-F	0.9945,0.9980	0.8655, 0.9220
7	A-G	0.9998, 1.0000	0.9802, 1.0000
8	A-H	[1.0000, 1.0000]	[1.0000, 1.0000]
The	subso	t we should select	is $S_{a} = \int A B C l$

The subset we should select is $S_3 = \{A, B, C\}$.

REBECCA BAKER

Outline		Future research

Future research

Classification

- Classification trees with NPI probabilities
- Investigating naive classification with NPI

NPI in finance

- イロト イポト イミト イミト 三三 のへの

REBECCA BAKER

Outline		Future research

References

- Augustin, T. and Coolen, F.P.A. (2004) Nonparametric predictive inference and interval probability *Journal of Statistical Planning and Inference*, **124**, 251-272.
- Coolen, F.P.A. and Augustin, T. (2005) Learning from multinomial data: a nonparametric predictive alternative to the Imprecise Dirichlet Model *ISIPTA '05*, 125-134.
- Coolen, F.P.A. (2006) On nonparametric predictive inference and objective Bayesianism. *Journal of Logic, Language and Information*, **15**, 21-47.
- Coolen, F.P.A. and Augustin, T. (2009) A nonparametric predictive alternative to the Imprecise Dirichlet Model: the case of a known number of categories *International Journal of Approximate Reasoning*, **50**, 217-230.

REBECCA BAKER