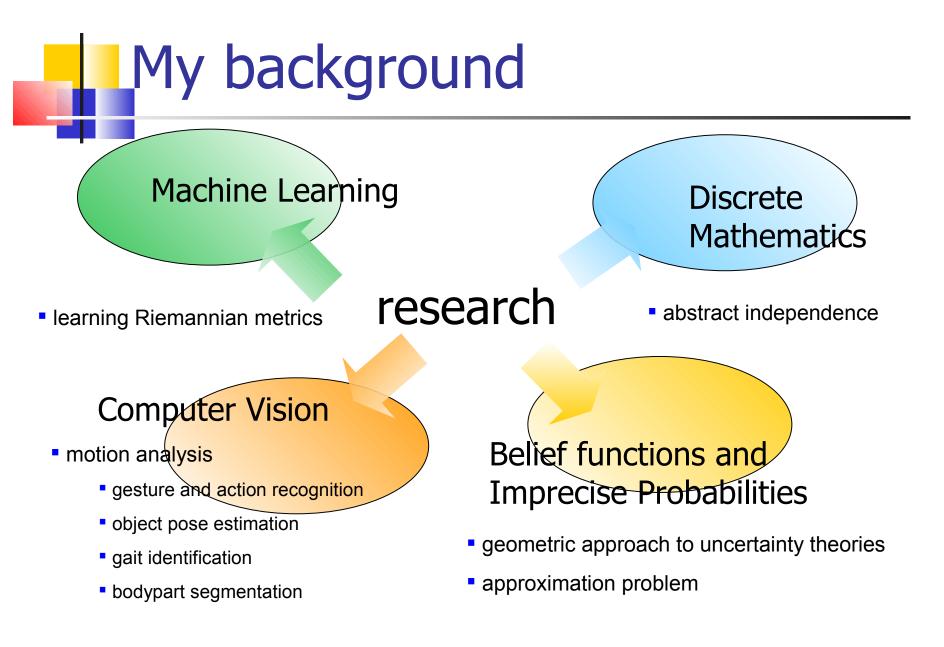
Consistent approximations of BF & Credal semantics of Bayesian transformations

Fabio Cuzzolin

Oxford Brookes Vision Group

Oxford Brookes University


ISIPTA'09 15/07/2009

- Master's thesis on gesture recognition at the University of Padova
- Visiting student, ESSRL, Washington University in St. Louis
- Ph.D. thesis on a geometric approach to belief functions
- Researcher at Politecnico di Milano with the Image and Sound Processing group
- Post-doc at the University of California at Los Angeles, UCLA Vision Lab
- Marie Curie fellow at INRIA Rhone-Alpes, Grenoble
- Lecturer, Oxford Brookes University, Oxford

A geometric approach to uncertainty

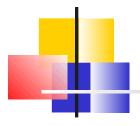
Ρ

₽(b′)

 belief space: the space of all the belief functions on a given frame

- it has the shape of a simplex
- IEEE Tr. SMC-C '08, Ann. Combinatorics '06, FSS '06, IDA'09

Approximation problem


 how to transform a measure of a certain family into a different uncertainty measure → can be done geometrically

р

b

 Probabilities, fuzzy sets, possibilities are all special cases of b.f.s

 IEEE Tr. SMC-B '07, IEEE Tr. Fuzzy Systems '07, AMAI '08, AI '08, IEEE Tr. SMC-B '09

credal semantics of Bayesian transformations

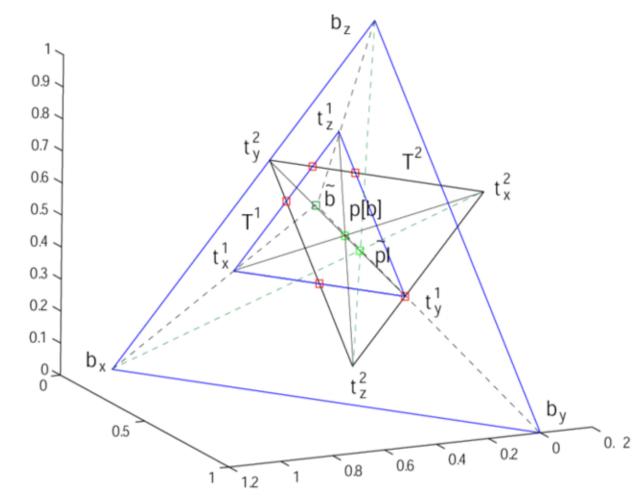
- Pignistic function i.e. center of mass of consistent probabilities
- orthogonal projection of b onto P
- intersection probability

commute with
 Dempster's combination

commute with affine combination

- Relative plausibility of singletons
- Relative belief of singletons [IEEE TFS08]
- Relative uncertainty of singletons [AMAI08]

Three different credal sets


- each transformation is indeed a transformation of an upper, lower, or interval probability system
- they have a credal interpretation

$$T^{1}[b] \doteq \{p : p(x) \ge b(x) \ \forall x \in \Theta\} \qquad \longrightarrow \widetilde{\mathsf{p}}$$
$$T^{n-1}[b] \doteq \{p : p(x) \le pl_{b}(x) \ \forall x \in \Theta\} \qquad \longrightarrow \widetilde{\mathsf{p}}\mathsf{l}_{\mathsf{b}}$$
$$\mathcal{P}[b, pl_{b}] \doteq \{p \in \mathcal{P} : b(x) \le p(x) \le pl_{b}(x), \forall x \in \Theta\}. \qquad \longrightarrow \mathsf{p}[\mathsf{b}]$$

interpretation of the associate transformations?

Bayesian transformations as foci

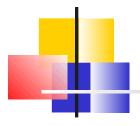
- relative belief = focus of (P,T¹)
- relative plausibility = focus of (P,Tⁿ⁻¹)
- intersection
 probability =
 focus of (T¹,Tⁿ⁻¹)

Focus of a pair of simplices

 different Bayesian transformations can be seen as foci of a pair of simplices among (P,T¹,Tⁿ⁻¹)

S

S

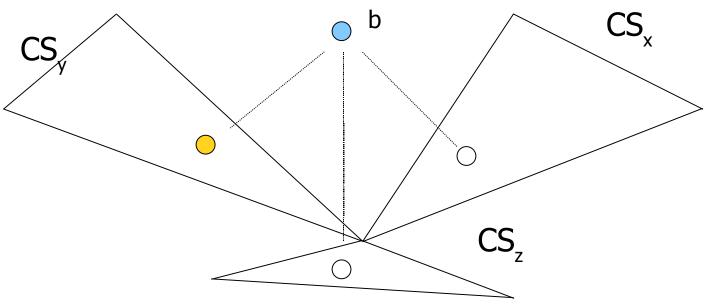

f(S

S₃

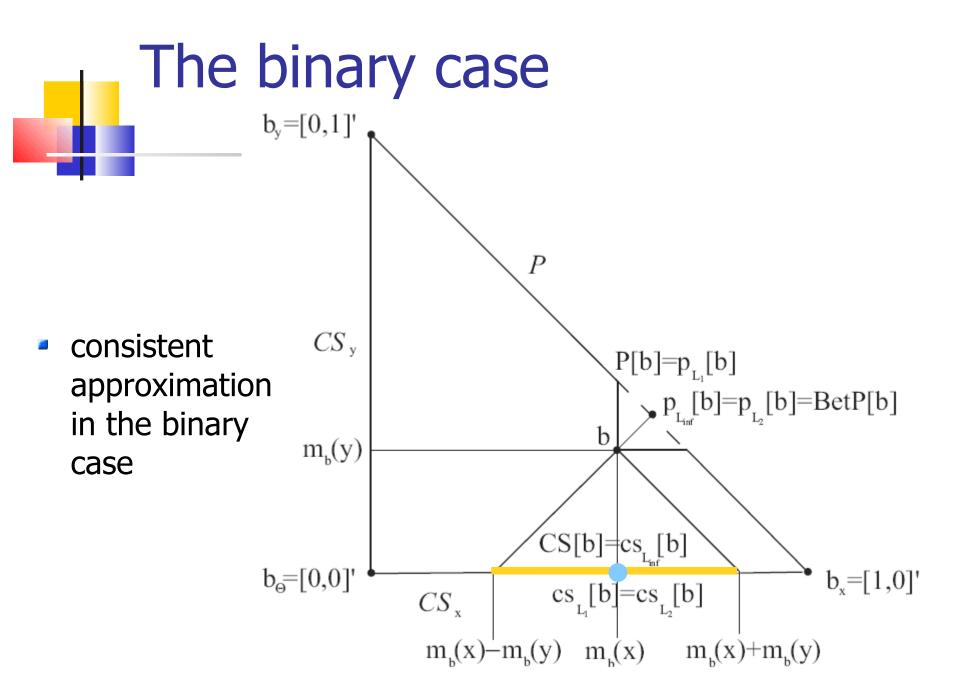
- focus = point with the same simplicial coordinates in the two simplices
- rationality principle: only
 distribution that meet both
 constraints in the same way

TBM-like frameworks

- Transferable Belief Model: belief are represented as credal sets, decisions made after pignistic transformation [Smets]
- reasoning frameworks similar to the TBM can be imagined ...
- ... in which upper, lower, and interval constraints are repr. as credal sets ...
- ... while decisions are made after appropriate transformation

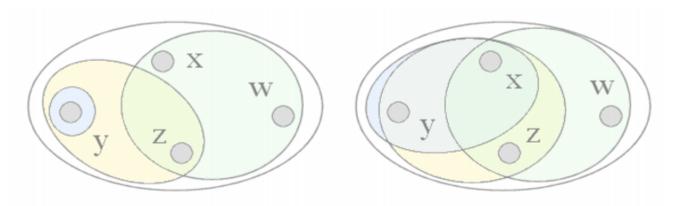

consistent approximations of belief functions

Consistent belief functions


- Bfs are result of aggregation of conflicting pieces of evidence
- consistent bfs <-> consistent knowledge bases
 - (cannot derive incompatible conclusions from them)
- BFs whose focal elements have non-empty intersection
- internal conflict is null
- consistent approximation → allows to preserve consistency of the body of evidence [IEEE TFS07]
- can be done using L_p norms in geometric approach

Projection onto a complex

- they live on a simplicial complex
- idea: belief function has a partial approximation on all simplicial components of CS



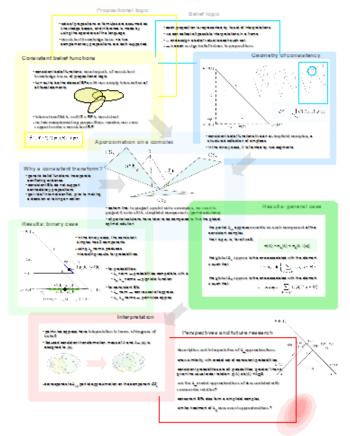
global solution = best such approximation

Partial L_p approximations

 L₁ = L₂ approximations have a simple interpretation in terms of belief [IEEE TFS07]

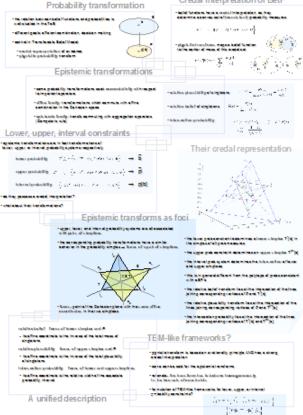
left: a belief function

right: its consistent approx focused on x


•
$$m'(A \cup x) = m(A) \quad \forall A$$

. please come to my posters!

IN FRANKINAL SYMPOSIUM ON IMPRECISE PROBABILITIES AND THEIR APPLICATIONS, BITTARD Defaultiereds, UK, July 14 (1920)


Consistent approximations of belief functions

Fablo Cuzzolin, Department of Computing, Oxford Brookes University

Credal semantics of Bayesian transformations Fable Cuzzellin, Department of Computing, Oxford Brookes University

Credal interpretation of BetP

