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Information from Descriptions?

Suppose x is a real value variable and LA is a set of
labels describing Ω = R.

If an agent learns that ‘x is high’ or perhaps ‘x is
high ∧ ¬medium’, what can he/she infer about the value
of x?

Based on a prototype theory interpretation of label
semantics we shall argue that such constraints naturally
result in imprecise probabilities.

The nature of this probabilistic information will depend
on the available prior information about variable x.
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Communicating Agents

We consider a population of communicating agents,
where each agent aims to describe elements from an
underlying domain Ω, in such a way as to effectively
communicate information to other agents.

Descriptions are drawn from a finite set of labels LA,
and the expressions LE generated recursively from LA

using connectives ∧,∨ and ¬.

For x ∈ Ω, an agents needs to identify expressions
θ ∈ LE, which are appropriate to describe x.

Appropriateness is governed by linguistic conventions
which emerge through multiple communications
between agents.
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An Epistemic Model

Decision Problem: Which expressions of the form ‘x is θ’
(for θ ∈ LE) are assertible?

Epistemic Stance: Agents assume as part of a practical
decision making strategy that there is a clear dividing
line between those labels which are, and those which
are not appropriate to describe x.

Uncertainty: Agents have only partial knowledge of the
underlying linguistic conventions, obtained through the
experience of their communications with other agents.

Consequently they are uncertain as to which labels are
appropriate to describe any given element of Ω.

Label semantics introduces a calculus for such
measures of appropriateness.
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Mass Functions

Agents should attempt to determine Dx, which is the
complete set of labels appropriate to describe x.

Dx = {medium, high} means that both medium and high
can be appropriately used to describe x, and no other
labels are appropriate.

mx : 2LA → [0, 1] is probability mass function on subsets
of labels.

For F ⊆ LA mx(F ) is the agent’s subjective probability
that Dx = F .

Assertions of the form ‘x is θ’ provides agents with
constraints on the possible values of Dx...
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Appropriateness Measures

For example, ‘x is high ∧ ¬medium’ provides the
information that high is an appropriate label to describe
x, and medium is not an appropriate label.

This corresponds to the constraint
Dx ∈ {F ⊆ LA : high ∈ F,medium 6∈ F}.

We can define a mapping λ : LE → 22LA

such that ‘x is
θ’ provides the constraint Dx ∈ λ(θ).

For expression µθ(x) is the agents subjective probability
that θ is appropriate to describe x.

This is given by µθ(x) =
∑

F∈λ(θ) mx(F ).
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A Prototype Interpretation

Let d : Ω2 → [0,∞) be a distance function satisfying
d(x, x) = 0 and d(x, y) = d(y, x).

For S, T ⊆ Ω let d(T, S) = inf{d(x, y) : x ∈ S, y ∈ T}.

For Li ∈ Ω let Pi ⊆ Ω be a set of prototypical elements
for Li.

Let ǫ be a random variable into [0,∞) with density
function δ.

Li is appropriate to describe x iff d(x, Pi) ≤ ǫ.

Dǫ
x = {Li : d(x, Pi) ≤ ǫ}.

∀F ⊆ Ω mx(F ) = δ({ǫ : Dǫ
x = F})
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Neighbourhood Representation

Let N ǫ
Li

= {x ∈ Ω : d(x, Pi) ≤ ǫ} and then recursively so
that ∀θ, ϕ ∈ Ω;

N ǫ
θ∧ϕ = N ǫ

θ ∩N ǫ
ϕ, N ǫ

θ∨ϕ = N ǫ
θ ∪N ǫ

ϕ, N ǫ
¬θ = (N ǫ

θ )c.

For θ not involving negation N ǫ
θ is nested, otherwise not

in general.

Alternative characterisation: µθ(x) = δ({ǫ : x ∈ N ǫ
θ})

Labels represent sets of points sufficiently similar to
prototypes (Information Granules).

Conditioning on information ‘x is θ’ corresponds to
conditioning on the constraint that x ∈ N ǫ

θ .
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Example (Uniform δ)

Let Ω = R and d(x, y) = ||x − y||. Let Li = about [a, b]
where a ≤ b, so that Pi = [a, b].

Let δ be the uniform distribution on [k, r] for 0 ≤ k < r:

a br r

k k

1
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No Prior Knowledge about x

Let Ω = R and d(x, y) = ‖x − y‖ and consider a set LA

of number labels Li describing R with prototype sets Pi

each corresponding to an interval of R.

Given a real valued random variable x for which we
know only that ‘x is θ’ for some θ ∈ LE we define upper
and lower cumulative distribution functions for the
probability that x ≤ y as follows:

F (y|θ) = δθ({ǫ : N ǫ
θ ⊆ (−∞, y]}) and

F (y|θ) = δθ({ǫ : N ǫ
θ ∩ (−∞, y] 6= ∅}) and where

δθ(ǫ) =







δ(ǫ)
∫

ǫ:Nǫ
θ
6=∅

δ(ǫ)dǫ
: N ǫ

θ 6= ∅

0 : otherwise
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Prior Density on x

Now suppose we have prior information that x is
distributed according to density function p(x).

Let F (y|N ǫ
θ ) denote the corresponding updated

cumulative distribution given the constraint that x ∈ N ǫ
θ

for a fixed ǫ.

The values of F (y|N ǫ
θ ) are uncertain given the

remaining uncertainty about the value of the threshold ǫ.

Hence, we define a second order cumulative
distribution: ∀p ∈ [0, 1]

F̃y,θ(p) = δθ({ǫ : F (y|N ǫ
θ) ≤ p})
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Expected Density

If a precise posterior distribution is required conditional
on θ, then one possibility is to take the expected value
of posterior distributions given N ǫ

θ , as ǫ varies.

Taking the expected value of p(x|N ǫ
θ ) as ǫ varies we

obtain:

p(x|θ) = Eδθ
(p(x|N ǫ

θ ))

This is consistent with the upper and lower cumulative
distributions:

For y ∈ R and θ ∈ LE, F (y|θ) ≤ F (y|θ) ≤ F (y|θ) where
F (y|θ) =

∫ y

−∞
p(x|θ)dx = Eδθ

(F (y|N ǫ
θ )).
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Example (Conditioning)

Consider the number label Li = about 2 for which
Pi = {2} and let δ be the uniform density on [0, 1].

Let the prior density p(x) correspond to the uniform
distribution on [0, 10].
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