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History

1986 Jiroušek Radim, Perez Albert: Graph-aided
Knowledge Integration in Expert System INES.
Proceedings IPMU’86.

1997 Jiroušek Radim: Composition of probability measures
on finite spaces.
Proceedings UAI’97.

1998 Vejnarová Jirina: Composition of possibility measures
on finite spaces: Preliminary results.
Proceedings IPMU’98.

2007 Jiroušek Radim, Vejnarová Jirina, Daniel Milan:
Compositional models for belief functions.
Proceedings ISIPTA’07.
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Probabilistic operator of composition

For κ1(xK ) and κ2(xL) defined on XK and XL, respectively, such

that κ↓K∩L
1 � κ↓K∩L

2 , which means that

∀x ∈ XK∩L (κ↓K∩L
2 (x) = 0 =⇒ κ↓K∩L

1 (x) = 0);

their composition is defined for all x ∈ XK∪L

(κ1 . κ2)(x) =
κ1(x

↓K )κ2(x
↓L)

κ↓K∩L
2 (x↓K∩L)

= κ1(x
↓K )κ2(x

↓L\K |x↓L∩K ).
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Basic properties of the operator of composition

κ1(xK ) . κ2(xL) = (κ1 . κ2)(xK∪L);

(κ1(xK ) . κ2(xL))
↓K = κ1(xK );

operator is neither commutative nor associative;

κ1 . κ2 = κ2 . κ1 ⇐⇒ κ↓K∩L
1 = κ↓K∩L

2 ;

XK\L ⊥⊥ XL\K |XK∩L [κ1 . κ2];

...;

XI ⊥⊥ XJ |XK [κ] ⇐⇒ κ(x↓I∪J∪K ) = κ(x↓I∪K ) . κ(x↓J∪K ).
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Generating sequences

κ1(xK1), κ2(xK2), . . . , κn(xKn)

Definition

Compositional Model:

κ1(xK1) . κ2(xK2) . . . . . κn(xKn)

=
(
. . .

(
κ1(xK1) . κ2(xK2)

)
. . . . . κn(xKn)

)
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Perfect sequences

Definition

Generating sequence κ1(xK1), κ2(xK2), . . . , κn(xKn) is perfect if

κ1 . κ2 = κ2 . κ1,

(κ1 . κ2) . κ3 = κ3 . (κ1 . κ2),

(κ1 . κ2 . κ3) . κ4 = κ4 . (κ1 . κ2 . κ3),

...

(κ1 . . . . . κn−1) . κn = κn . (κ1 . . . . . κn−1) .
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Perfect sequences

Characterization Theorem:

Generating sequence κ1, κ2, . . . , κn is perfect iff all κi are marginal
distributions of κ1 . κ2 . . . . . κn.
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Comparison with Bayesian networks

Both compositional models and Bayesian networks represent the
same class of distributions

Pros

It does not need help of
Graph Theory

Perfect sequence models
are computationally more
efficient

Cons

Compositional models are
not always defined

It is more difficult to
construct perfect
sequence models

Operator of composition was defined also in Possibility theory
(1998) and D-S theory of evidence (2007).
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Set notation

Let K ⊂ L ⊆ N and x ∈ XL. x↓K denotes a projection of x into
XK .
Analogously, for and A ⊂ XL, A↓K denotes a projection of A into
XK :

A↓K = {y ∈ XK |∃x ∈ A : y = x↓K}.

Important: we do not exclude K = ∅. In this case A↓∅ = ∅.

A join of two sets A ⊆ XK and B ⊆ XM is the set

A⊗ B = {x ∈ XK∪M : x↓K ∈ A & x↓M ∈ B}.
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Operator of composition

For basic assignments m1 on XK and m2 on XL a composition
m1 . m2 is defined for all C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C ↓K∩L) > 0 and C = C ↓K ⊗ C ↓L then

(m1 . m2)(C ) =
m1(C↓K )·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C ↓K∩L) = 0 and C = C ↓K × XL\K then

(m1 . m2)(C ) = m1(C
↓K );

[c] in all other cases (m1 . m2)(C ) = 0.
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Basic properties

For ba’s m1 on XK and m2 on XL:

m1 . m2 is ba on XK∪L;

m1 is marginal of m1 . m2;

operator is neither commutative nor associative;

....;

for all A ⊆ X↓K∪L,A 6= A↓K ⊗ A↓L =⇒ (m1 . m2)(A) = 0;

E.g. for binary case |X{1,2,3}| = 28 − 1 = 255

|{A : A = A↓{1,2} ⊗ A↓{2,3}}| = 99.
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Radim Jiroušek Almost Bayesian Assignments and Conditional Independence



Outlines
History and motivation
Belief function models

Conditional independence

Set notation
Compositional models
Almost Bayesian basic assignments

Almost Bayesian basic assignments

Definition

Basic assignment is said to be almost Bayesian if it is

cylindrical - all its focal elements C are point-cylinders
(C = C ↓L × XK\L for |C ↓L| ≤ 1); and

sparse (quasi-Bayesian)- all its focal elements are pairwise
disjoint.

Assertion

Any compositional model assembled from Bayesian basic
assignments is almost Bayesian.

Radim Jiroušek Almost Bayesian Assignments and Conditional Independence



Outlines
History and motivation
Belief function models

Conditional independence

Set notation
Compositional models
Almost Bayesian basic assignments

Almost Bayesian basic assignments

Definition

Basic assignment is said to be almost Bayesian if it is

cylindrical - all its focal elements C are point-cylinders
(C = C ↓L × XK\L for |C ↓L| ≤ 1); and

sparse (quasi-Bayesian)- all its focal elements are pairwise
disjoint.

Assertion

Any compositional model assembled from Bayesian basic
assignments is almost Bayesian.
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Conditional noninteractivity for belief functions

There are several definitions of this notion:
The most frequent is that used by M. Studený, P. Shenoy, Ben
Yaghlane et al.:

Definition

Variables XI and XJ are conditionally non-interactive given
variables XK (XI ⊥⊥[m] XJ |XK ) if for all A ⊆ XN

Comm↓I∪J∪K (A↓I∪J∪K ) · Comm↓K (A↓K )

= Comm↓I∪K (A↓I∪K ) · Comm↓J∪K (A↓J∪K ).

Comm(A) =
∑
B⊇A

m(B).
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Conditional independence for belief functions

In this case, however:

XI ⊥⊥[m] XJ |XK ⇐⇒× m↓I∪J∪K = m↓I∪K . m↓J∪K

If we substitute conditional irrelevance by factorization we get
conditional independence relation with the following properties:

its restriction to Bayesian basic assignment corresponds to
probabilistic conditional independence relation;

it meets all the semigraphoid axioms (symmetry and Block
independence lemma);

it does not suffer from the conditional irrelevance
imperfectness: it is consistent with marginalization.
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Consistency with marginalization

Having two projective ba’s m1 on XK and m2 on XM ,
(i.e. m↓K∩M

1 = m↓K∩M
2 ) does there exist a ba m such that:

m1 and m2 are marginal assignments of m;

XK\M ⊥⊥[m] XM\K |XK∩M?

The solution is simple:

m = m1 . m2.
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THANK YOU FOR YOUR ATTENTION
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