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A Minimum Distance Estimator in an Imprecise Probability Model

Estimation: Classical Statistics and Generalizations
Data x1, . . . , xn are modeled by random variables

X1 , . . . , Xn ∼ P0 i.i.d.

P0 the true distribution (precise probability measure)

I classical statistics
I (Pθ)θ∈Θ : a parametric model (precise distributions)
I ∃ θ0 ∈ Θ such that P0 = Pθ0

I robust statistics
I (Pθ)θ∈Θ : a parametric model (precise distributions)
I Uθ : neighborhood about Pθ ∀ θ ∈ Θ
I ∃ θ0 ∈ Θ such that P0 ∈ Uθ0

I an imprecise probability model
I Mθ credal set (coherent upper prevision Pθ) ∀ θ ∈ Θ
I ∃ θ0 ∈ Θ such that P0 ∈Mθ0

Goal: Estimate θ0
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A Minimum Distance Estimator in an Imprecise Probability Model

An Imprecise Probability Model – Some More Assumptions

. . . may be found on the poster!
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A Minimum Distance Estimator in an Imprecise Probability Model

Minimum Distance Estimator

I Simple idea:
I Construct empirical measure Pn from the data
I Chose that credal set Mθ which lies next to Pn

I Definition:

Estimator θ̂n minimizes

θ 7→ d
(
Pn,Mθ

)
= inf

Pθ∈Mθ

d
(
Pn,Pθ

)
Distance d : total variation
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A Minimum Distance Estimator in an Imprecise Probability Model

True precise distribution

Credal sets

Empirical measure
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A Minimum Distance Estimator in an Imprecise Probability Model

True precise distribution

Credal sets

Empirical measure

Minimal distance
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A Minimum Distance Estimator in an Imprecise Probability Model

Calculations

I Replace original sample space (X ,B) by a suitable discrete
sample space (X , C)

I Approximate calculation of d
(
Pn,Mθ

)
by linear programming

:∑
j∈J1

qj − γj −→ max!

∑r
j=1 qj = 1∑r
j=1 qjhk(cj) ≤ Pθ[fk ] + ε

(k)
θ ∀ k ∈ {1, . . . , s}

qj − γj ≤
nj

n
∀ j ∈ J1

(q1, . . . , qr ) ∈ Rr , qj ≥ 0 ∀ j ∈ {1, . . . , r} ,
(γj)j∈J1 ⊂ R , γj ≥ 0 ∀ j ∈ J1

I Implemented as R-Package imprProbEst; see Hable (2008).
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A Minimum Distance Estimator in an Imprecise Probability Model

Simulation Study: Model 1
Data from an ideal, precise model with densities such as
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I Maximum likelihood estimator: complete information about

precise model

I Minimum distance estimator: only imprecise information about

precise model
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A Minimum Distance Estimator in an Imprecise Probability Model

Simulation Study: Model 1
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A Minimum Distance Estimator in an Imprecise Probability Model

Simulation Study: Model 2
Model: Approximate Poisson Distribution

I 90% of the data (in average) from Poisson distribution
I 10% of the data (in average) from uniform distribution
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A Minimum Distance Estimator in an Imprecise Probability Model

Real Data Set: Linear Regression

NHANES: persons’ body weight depending on persons’ height

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

160 165 170 175 180 185 190 195

0
50

10
0

15
0

height

w
ei

gh
t

Minimum Distance Estimator Least Squares Estimator

Robert Hable University of Bayreuth Page 10



A Minimum Distance Estimator in an Imprecise Probability Model

Real Data Set: Linear Regression
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Real Data Set: Linear Regression

NHANES: persons’ body weight depending on persons’ height
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A Minimum Distance Estimator in an Imprecise Probability Model
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The handout to this talk is also available on my homepage

http://www.staff.uni-bayreuth.de/˜btms04/index.html

Robert Hable University of Bayreuth Page 11


