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A Minimum Distance Estimator in an Imprecise Probability Model

Estimation: Classical Statistics and Generalizations
Data xi, ..., X, are modeled by random variables

Xi, oo  Xo ~ Py i.id.

Py the true distribution (precise probability measure)

» classical statistics

» (Pp)oco: a parametric model (precise distributions)
» J6p € O such that Py = Py,
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Estimation: Classical Statistics and Generalizations
Data xi, ..., X, are modeled by random variables

Xi, oo  Xo ~ Py i.id.

Py the true distribution (precise probability measure)

» classical statistics

» (Pp)oco: a parametric model (precise distributions)
» J6p € O such that Py = Py,

» robust statistics

» (Py)oco : a parametric model (precise distributions)
» Uy : neighborhood about Py V0 € ©
» J6y € © such that Py € UQO

» an imprecise probability model

» My credal set (coherent upper prevision Py) V6 € ©
» 36y € © such that Py € My,

Goal: Estimate 6

Robert Hable University of Bayreuth Page 02



A Minimum Distance Estimator in an Imprecise Probability Model

An Imprecise Probability Model — Some More Assumptions
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An Imprecise Probability Model — Some More Assumptions

. may be found on the poster!
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Minimum Distance Estimator

» Simple idea:
» Construct empirical measure P, from the data
» Chose that credal set My which lies next to P,
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A Minimum Distance Estimator in an Imprecise Probability Model

Minimum Distance Estimator

» Simple idea:
» Construct empirical measure P, from the data
» Chose that credal set My which lies next to P,

» Definition:

Estimator 6, minimizes

0 — d(Pn,My) = _inf d(Ps,Py)

PyeMy

Distance d: total variation
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Empirical measure

Credal sets

True precise distribution
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Empirical measure

Minimal distance

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Empirical measure

Credal sets

True precise distribution

Robert Hable University of Bayreuth Page 05



A Minimum Distance Estimator in an Imprecise Probability Model

Calculations

» Replace original sample space (X', B) by a suitable discrete
sample space (X,C)
» Approximate calculation of d(IP’,,,M@) by linear programming
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Calculations

» Replace original sample space (X', B) by a suitable discrete
sample space (X,C)

» Approximate calculation of d(IP’,,,Mg) by linear programming:

qu—’yj —  max!
Jjen
Z}:1qj:1
S aibe(G) < Polfil + e Vk e {1,...,s}
G- < FVieh
(q1,...,q:) € R", >0 Vje{l,...,r},
(Ve CR, %20 Vjen

» Implemented as R-Package imprProbEst; see Hable (2008).
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A Minimum Distance Estimator in an Imprecise Probability Model

Simulation Study: Model 1

Data from an ideal, precise model with densities such as

0=0

» Maximum likelihood estimator: complete information about
precise model

» Minimum distance estimator: only imprecise information about
precise model
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Simulation Study: Model 1
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A Minimum Distance Estimator in an Imprecise Probability Model

Simulation Study: Model 2

Model: Approximate Poisson Distribution
» 90% of the data (in average) from Poisson distribution
» 10% of the data (in average) from uniform distribution
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Simulation Study: Model 2

Model: Approximate Poisson Distribution
» 90% of the data (in average) from Poisson distribution
» 10% of the data (in average) from uniform distribution

n=20 and ¢=0.10 n=250 and ¢=0.10
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A Minimum Distance Estimator in an Imprecise Probability Model

Real Data Set: Linear Regression

NHANES: persons’ body weight depending on persons’ height
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Real Data Set: Linear Regression
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The handout to this talk is also available on my homepage

http: //www.staff.uni-bayreuth.de/~“btms04 /index.html
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