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Abstract

Sets of desirable gambles were proposed by Walley [7]
as a general theory of imprecise probability. The main
reasons for this are: it is a very general model, includ-
ing as particular cases most of the existing theories
for imprecise probability; it has a deep and simple
axiomatic justification; and mathematical definitions
are natural and intuitive. However, there is still a lot
of work to be done until the theory of desirable gam-
bles is operative for its use in general reasoning tasks.
This paper gives an overview of some of the fundamen-
tal concepts expressed in terms of desirable gambles
in the finite case, gives a characterization of regular
extension, and studies the nature of maximally coher-
ent sets of gambles.
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1 Introduction

Sets of desirable gambles are a powerful and simple
model for representing and reasoning with imprecise
probabilities. For these reasons, they were proposed
by Walley [7] as a general model for imprecise proba-
bility after studying the limitations of other models.

The axioms for desirable gambles were introduced by
Williams [9] and Walley studied them in Appendix F
of his book [6]. They were also considered in [5] as
a basic for a logical approach to probability. They
are mathematically equivalent to partial probability
orderings [1, 3], but they are simpler [7]. Because of
this, desirable gambles are a more suitable theory of
uncertainty. Even though, their use in the literature is
very scarce. In many cases, it is possible to find papers
based on other representations, as for example lower
and upper previsions, in which the rules for inference
are deduced making arguments which are based on
desirability. This makes desirability a more primitive
notion.

Moral [4] recently studied the concept of epistemic ir-
relevance in terms of desirable gambles which resulted
in a very natural approach to this notion, as it was
possible to show a number of properties in a simple
form.

In this paper, we give an overview of some of the
main concepts of desirable gambles in the finite case,
showing the difference between desirable gambles and
almost desirable gambles (Section 2). Then, we study
the concept of conditioning, showing how the rules of
conditioning for lower previsions can be obtained from
the simple definition of conditioning for sets of desir-
able gambles and giving an axiomatic justification of
regular extension (Section 3). One of the problems
associated to the use of desirable gambles is the lack
of effective methods of representing information and
algorithms to make inference from available informa-
tion. Section 4 discusses this issue and shows that
there are algorithms in the literature which can be
directly applied in this theory. Finally Section 5 stud-
ies the case of maximally coherent sets of desirable
gambles. These sets have always an associated precise
probability measure. But, as sets of desirable gambles
contain more information than probability measures,
we prove that we can associate a more complex struc-
ture to the maximal coherent sets: a sequence of prob-
ability measures, each one of them defined in the set
in which the previous measure in the sequence assigns
a zero probability, similar to the sequences defined in
[2]. We also show that a general coherent set can be
expressed in terms of maximal (precise) coherent sets.

2 Sets of Desirable Gambles

Let Ω = {ω1, . . . , ωn} denote the (finite) set of out-
comes. We assume that there is an unkown true value
belonging to Ω. A gamble on Ω is a bounded mapping
from Ω to R, i.e., X : Ω → R. Gambles are used to
represent an agent’s beliefs and information. If an
agent accept a gamble X , then the value X(ω) rep-



resents the reward she would obtain if ω is the true
unknown value (this value can be negative and then
it represents a loss).

Let L denote the set of all gambles defined on Ω. For
X, Y ∈ L, let X ≥ Y mean that X(ω) ≥ Y (ω) for
all ω ∈ Ω, and let X > Y mean that X ≥ Y and
X(ω) > Y (ω) for some ω ∈ Ω.

A subset D of L is said to be a coherent set of desirable
gambles relative to L [7] when it satisfies the following
four axioms:

D1. 0 6∈ D,

D2. if X ∈ L and X > 0 then X ∈ D,

D3. if X ∈ D and c ∈ R+ then cX ∈ D,

D4. if X ∈ D and Y ∈ D then X + Y ∈ D.

In what follows, D is assumed to be a coherent set of
gambles. We assume that information is represented
by means of a coherent set of gambles. These rules
represent the consistency conditions for the gambles
that are considered desirable. For example, Axiom D4
says that if we consider as desirable X and Y , then we
should consider as desirable the gamble resulting from
adding the rewards of both gambles. Axiom D2 says
that a positive gamble (we can win but never lose) is
always desirable.

The null gamble is neutral and then it is not included
in the set of really desirable gambles, but this is not
an important fact. In some cases, as in [4, 6], the
null gamble has been considered desirable. The real
important condition for coherence is that if X < 0,
then X 6∈ D (avoiding partial loss). In our approach,
this condition is a consequence of D1 and the other
axioms (D2 and D4). But both options are completely
equivalent, in the sense that the only difference is the
inclusion of the null gamble in the set of desirable gam-
bles and this does not have any difference in practice.
The only consequence of taking one of the two possible
options is that some mathematical definitions have to
be changed (for example, conditioning is different if
we accept the null gamble). Walley first considered
the null gamble desirable in [6], but then he changed
to consider it non desirable in [4]. In this moment, we
also consider that this last option is simpler and more
intuitive.

The lower prevision induced by D is the function P :
L → R defined as follows: P (X) = sup{c : X − c ∈
D}.

The upper prevision induced by D is the function P :
L → R defined as follows: P (X) = inf{c : c − X ∈
D}.

The set of linear previsions induced by D is defined
as:

PD = {P : P (X) ≥ 0 for all X ∈ D}.

PD is always a credal set (a closed and convex set of
probability measures). P and P are dual and they
respectively coincide with the pointwise infimum and
the pointwise supremum of P ∈ PD. There can be two
different sets of desirable gambles D 6= D′ inducing
the same class of linear previsions PD = PD′ .

Conversely, given a set of linear previsions P , define

DP = {X ∈ L : P (X) > 0, ∀P ∈ P}∪{X : X > 0}.

DP is called the set of strictly desirable gambles asso-
ciated to P [6].

DP is coherent and, if P has been induced by a set
of desirable gambles D, then DP is a subset of it. In
other words, the following inclusion holds:

DPD
⊆ D

DP is the smallest set of gambles associated to a credal
set P .

P can be recovered from DP by

P = PDP
. (1)

Another possible set of desirable gambles associated
to P , but with more gambles in it is:

D′
P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P and

∃P ∈ P , with P (X) > 0} ∪ {X : X > 0}

A coherent set D of almost desirable gambles is a set
of gambles which satisfies axioms D2, D3, and D4 and
the following two axioms (the first one is a modifica-
tion of the corresponding axiom for desirable gambles.
The new version is called avoiding sure loss):

D1’. −1 6∈ D,

D5. if X + ǫ ∈ D, ∀ǫ > 0, then X ∈ D

A set of almost desirable gambles D can define a lower
prevision, an upper prevision, and a credal set, by
means of expressions completely analogous to the case
of desirable gambles. But now, from a credal set P ,
the associated set of almost desirable gambles D is
given by:

D∗
P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P} (2)



Intuitively, the set of desirable gambles contains all
the gambles that are really desirable, i.e. the agent
has reasons to accept them as desirable. The set of
almost desirable gambles also includes all the gambles
that are limit of desirable gambles, though some of
them as the null gamble is not really desirable. DP ,
the set of striclty desirable gambles associated to P
is the interior of D∗

P in the supremum norm topology
[6].

If D is a coherent set of desirable gambles, then D∗

will be the coherent set of almost desirable gambles
obtained by adding to it the gambles resulting of the
application of Axiom D5 (closure). Both D and D∗

always define the same credal set. If the credal set
is P , then DP ⊆ D ⊆ D∗. DP contains the strictly
desirable gambles. If a gamble X is in DP , then there
is a δ > 0 such that X − δ ∈ DP , i.e. even paying a
quantity δ, the gamble continues being desirable. D∗

contains more gambles, all the gambles such that for
any ǫ > 0, X + ǫ is desirable, i.e., if we receive any
positive quantity, this is enough to make the gamble
desirable (but the gamble alone may not be desirable).
D is the set of gambles that are considered desirable
by an agent without any additional consideration in
the limit.

Coherent sets of almost desirable gambles and credal
sets are equivalent, in the sense that there is a one-
to-one correspondence between these two families. If
D is a set of almost desirable gambles: D∗

PD
= D. A

credal set is a convex and closed set of probabilities
and an almost desirable gamble can be interpreted as
a linear restriction on the credal set by means of ex-
pression P (X) ≥ 0. The difference between desirable
and almost desirable gambles is that a set of almost
desirable gambles is always closed, and a set of de-
sirable gambles is never closed (the null is the limit
of desirable gambles and is never desirable) but not
necessarily open either. The set of strictly desirable
gambles is always open. Axioms can be also defined
for strict desirable gambles [6] and it is possible to
show the equivalence between sets of strict desirable
gambles and credal sets.

Example 1 Consider the credal set P represented in
Figure 2 for a frame with three elements {ω1, ω2, ω3},
where each point is a probability mass function with
values determined by the distances to the triangle
edges. Imagine that D and D∗ are a set of desirable
gambles and the set of almost desirable gambles asso-
ciated to it. A gamble can be associated to a linear
restriction about the probabilities through the inequal-
ity P (X) ≥ 0. If this inequality is not trivial in the
set of probabilities (X is trivial if X ≥ 0 ), then in
the triangle we will see the inequality as a segment
dividing the triangle in two parts and a direction de-

X1

X2

X3

Figure 1: Desirable and almost desirable gambles

termining in which of the two parts the inequality is
verified. So, a non trivial gamble X can be associated
with a segment and a direction. A gamble is almost
desirable if all the probabilities in the credal set verify
the restriction. In the figure, X1 and X3 are almost
desirable and X2 is not as there is a probability in P
not verifying the inequality associated to X2. X1 is
also strictly desirable. For desirability we have a nec-
essary condition: if X is desirable then P (X) ≥ 0 for
any P ∈ P. So, as X2 does not verify it, it can not
be desirable. We also have a sufficient condition: if
P (X) > 0, for any P , then X has to be strictly de-
sirable and desirable. So X1 is desirable and strictly
desirable. The difference is in those gambles X, for
which P (X) ≥ 0 for any P , but P (X) = 0 for some P .
This gamble is almost desirable and can not be strictly
desirable, but it can be desirable or not desirable. So,
it is not determined whether gamble X3 (touching the
border of the credal set) is or is not desirable. These
gambles in the border determine the difference between
desirability, almost desirability, and strict desirability.
They have behabioural consequences, in particular af-
ter conditioning to events of probability 0.

If G is an arbitrary set of gambles, then the set of
all gambles obtained by applying axioms D2, D3, and
D4 is called the set of gambles generated by G and it
is denoted by G. If this set is coherent (0 6∈ G) then
it will be called its natural extension (the minimum
coherent set containing G). If 0 ∈ G we will say that
G is incoherent. If X < 0 and X ∈ G we will say that
G does not avoid partial loss.

It is an immediate result that

G = {
n∑

i=1

λi Xi : λi > 0, [Xi ∈ G or Xi > 0]

i ≤ n ∈ N, n ≥ 1}.

Walley [6] considers the gambles that dominate (are
greater or equal) than the positive linear combination



of gambles in G. Our expression with equality is equiv-
alent as we allow to combine positive gambles, except
that we avoid to add the 0 gamble.

3 Conditioning

Let us consider a set of desirable gambles D on Ω. Let
B denote (the indicator function of) an arbitrary sub-
set of Ω. The set of B-desirable gambles ([6], Section
6.1.6) can be defined as follows:

DB = {X ∈ L : BX ∈ D} ∪ {X : X > 0}.

This set will be also called the set of conditional de-
sirable gambles given B. This set is determined by
those gambles Y that are desirable and that outside
of B are null, i.e. nothing happens if B does not oc-
cur. A gamble X belongs to DB if BX is equal to one
of these gambles or is positive.

The following results relate this definition with the
usual concept in the associated credal set, consisting
in computing the conditional probability given B of
all the probability measures in the credal set (when
P (B) > 0 for all the probabilities). In all of them,
D∗ is the set of almost desirable gambles associated
to the set of desirable gambles D.

Lemma 1 Let D ⊂ L be a coherent set of desirable
gambles and B a subset of Ω such that P (B) > 0.
Then:

X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0.

Proof: According to the above hypotheses, P (B) > 0
and thus, there exists some c > 0 such that B−c ∈ D.
Furthermore, the gamble X + ǫc is assumed to belong
to D, for all ǫ > 0. By the coherence of D, the gambles
ǫ(B− c) = ǫB− ǫc and X + ǫ B = (X + ǫc)+(ǫB− ǫc)
belong to it, for each ǫ > 0, and thus the thesis of the
lemma is checked. �

Lemma 2 Let D ⊂ L be a coherent set of desirable
gambles satisfying the condition:

X ∈ D∗ and − X 6∈ D∗ ⇒ X ∈ D. (3)

Then, for any B subset of Ω such that P (B) > 0., the
following condition is also verified:

X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0.

Proof: Let us assume that X + ǫ ∈ D, ∀ ǫ > 0. Then,
by the coherence of D, (X + ǫB) + ǫ′ = (X + ǫ′) +
ǫ B ∈ D, ∀ ǫ, ǫ′ > 0. So X + ǫB ∈ D∗. To prove that
this gamble is also in D, we only have to prove that

−X−ǫB 6∈ D∗, i.e., there exists some ǫ′′ > 0 such that
−(X + ǫB)+ ǫ′′ 6∈ D. Let us check it by contradiction.
Let us suppose that ǫ′′−(X+ǫB) ∈ D, ∀ ǫ′′ > 0. Then
the gamble ǫ′′′ + ǫ′′− ǫB = (X + ǫ′′′)+(ǫ′′− (X + ǫB))
belongs to D, for all ǫ′′, ǫ′′′ > 0 by the coherence of
D. But the last assertion contradicts the assumption
P (B) > 0. �

Theorem 3 Let D ⊂ L be a coherent set of desirable
gambles and let B be a subset of the universe Ω. Let
us assume that the following condition holds:

(X ∈ D∗ ⇒ X + ǫ B ∈ D, ∀ ǫ > 0). (4)

Then,
PDB

= (PD)|B,

where (PD) |B denotes the set of linear previsions

(PD)|B = {P (·|B) : P ∈ PD and P (B) > 0},

and, for each P with P (B) > 0, P (·|B) is defined as
follows:

P (X |B) =
P (BX)

P (B)
, ∀X ∈ L.

Proof:

First, let us prove that (PD)|B ⊆ PDB
. If Q ∈ (PD)|B,

then Q = P (.|B), where P ∈ PD and P (B) > 0.

If X ∈ DB, then either X > 0, and then it is verified
Q(X) ≥ 0, or XB ∈ D. In the last case, as P ∈ PD,
we have that P (XB) ≥ 0, and as Q = P (.|B), then

Q(X) = Q(XB) = P (XB)
P (B) ≥ 0. Being Q(X) ≥ 0 for

any X ∈ DB, we can conclude that Q ∈ PDB
.

To prove the other inclusion PDB
⊆ (PD)|B , first

consider that both are credal sets with probabilities
which are 0 outside of B, then the inclusion can
be obtained if we show that any linear restriction
P (X) ≥ 0 verified by probabilities in (PD)|B with
X(ω) = 0, ∀ω ∈ Ω − B, it is also verified by probabil-
ities in PDB

.

Assume that X(ω) = 0, ∀ω ∈ Ω−B and that P (X) ≥
0, ∀P ∈ (PD)|B. Then, we have that Q(X |B) ≥
0, ∀Q ∈ PD, with Q(B) > 0. As, X(ω) = 0, ∀ω ∈
Ω − B, then Q(X |B) = Q(XB)/Q(B) ≥ 0, ∀Q ∈
PD, Q(B) > 0. As, the inequality is trivially verified
if Q(B) = 0, then we have that Q(XB) ≥ 0, ∀Q ∈
PD.

If we add an amount ǫ to the gamble we obtain a desir-
able gamble: XB + ǫ ∈ D, ∀ǫ > 0, and by condition
(4) we have that XB + ǫB ∈ D, ∀ǫ > 0. By the defi-
nition of DB, we obtain that XB+ǫB ∈ DB, ∀ǫ > 0.
This implies that P (XB + ǫB) ≥ 0, ∀ǫ > 0, ∀P ∈
PDB

and therefore P (XB) ≥ 0, ∀P ∈ PDB
. As



XB = X , then the inequality P (X) ≥ 0 is also veri-
fied by probabilities P ∈ PDB

. �

According to Lemmas 1 and 2 and Theorem 3, we
derive the following corollary:

Corollary 4 Let D ⊂ L be a coherent set of desir-
able gambles and let B be an arbitrary subset of the
universe Ω. Let us assume that one of the following
conditions holds:

1. P (B) > 0.

2. P (B) > 0 and D ⊂ L satisfies the restriction
considered in Equation (3).

Then:

PDB
= (PD)|B.

Remark 3.1 When P (B) > 0 the set of linear previ-
sions (PD)|B can be written as follows:

(PD)|B = {P (·|B) : P ∈ PD},

since then condition P (B) > 0 is redundant.

This corollary represents the main result in this paper.
First it shows the known fact that when P (B) > 0,
conditioning (in terms of credal sets) can be done by
conditioning all the probability measures. The sec-
ond thing is relative to conditioning when P (B) = 0,
but P (B) > 0, in this case conditioning is not deter-
mined when we look at the associated credal set, but
if we assume condition (3), then conditioning can be
obtained in the associated credal set by conditioning
all the probabilities with P (B) > 0, this condition-
ing was called regular extension. Condition (3) can
be seen as a weaker version of Axiom D5, as here an
almost desirable gamble X is also desirable when −X
is not almost desirable. If X and −X are both almost
desirable and we were accepting both of them as de-
sirable, then we would obtain that the null gamble is
desirable, and then the associated set would not be
coherent. But, if X is almost desirable, but −X is
not, then it could be considered that we have some
reasons to assume that X is desirable. Here, we have
shown that this implies regular conditioning.

Example 2 Assume that we have the credal set of
Figure 2 and that we want to compute its conditional
credal set to B = {ω1, ω2} and that the points P
with P (B) = 1 are the triangle base. In this case
conditional gambles are those gambles X such that
X(ω3) = 0 and the associated linear restrictions pass
through the vertex opposite to the triangle base. When
the credal set does not contain this vertex (P (B) > 0),

Figure 2: Conditional Gambles

then there are desirable conditional gambles that deter-
mine that the conditional credal set is the thick seg-
ment represented in the basis and that is equal to the
projection of all the probabilities in the credal set from
the upper vertex (the projection of a probability P is
its conditional probability P (.|B)). In other words,
the set linear restrictions associated to the conditional
gambles (passing through the upper vertex) that are
strictly desirable (all the probabilities verify them and
are not touching the credal set) as the one in the figure
are enough to restrict the set on conditional probabil-
ities to the segment in the figure.

However, when P (B) = 0, then the upper vertex is in
the credal set, as in Figure 3, and all the conditional
gambles as the one depicted in the figure are touch-
ing the border of the credal set, and therefore their
desirability is not determined by the credal set. The
set of conditional desirable gambles could contain only
the trivial gambles and then the conditional credal set
is the full base (the natural extension of the general-
ized Bayes rule [6]) or it could be a more restrictive
one and include all the gambles with linear restric-
tions verified by the probabilities in the segment AC
(the smallest possible conditional credal set: the regu-
lar extension).

4 Introduction to Representation and

Algorithms

A very important issue to make desirable gambles use-
ful in practice is to determine an effective method to
represent information and to develop algorithms able
of working with this representation. In particular we
would like to have procedures that have as input a set
of gambles F and are able of carrying out the follow-
ing basic reasoning tasks:

1. to determine whether the natural extension F is
coherent (i.e. 0 6∈ F),
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Figure 3: Conditional Gambles, P (B) = 0

2. given X, to determine whether X ∈ F ,

3. given X and B ⊂ Ω, to compute P (X |B) and
P (X |B) under F when this set is coherent.

The second question is immediate to answer if we can
solve the first one, as the following theorem shows.

Theorem 5 If F is an arbitrary set of gambles such
that F is coherent, then X ∈ F if and only if
F ∪ {−X} is not coherent.

Proof: If X ∈ F , then X,−X ∈ F ∪ {−X}, and
X − X = 0 ∈ F ∪ {−X}. So this set is not coherent.

On the other hand, if F ∪ {−X} is not coherent, then
0 ∈ F ∪ {−X}. This set is equal to all the gambles
Y = α.Z − β.X , where Z ∈ F and α, β ≥ 0, α > 0
or β > 0. In particular, there must be α, β such that
0 = α.Z−β.X , where Z ∈ F . As F is coherent, β 6= 0,
and we obtain X = α

β
Z, and by Axiom D3, X ∈ F .

�

A coherent set of gambles D contains infinite gambles.
If we want to represent them in a computer in order to
manipulate them by means of algorithms, we need to
determine a procedure to represent a coherent set of
gambles D by means of a set F such that D = F , and
for representing the set F in some formal language.
A basic issue is: to determine the type of sets F we
are going to consider and the representation we are
going to use. For sets of almost desirable gambles, we
can start with a finite set of gambles F (which can
be represented by enumerating the gambles in the set
F). This could also be done with sets of desirable
gambles, but the capabilities of representation would
be too limited, as the following example shows.

Example 3 Assume that we know that P (B) = 0,
then the only possible set of desirable gambles repre-
senting this fact, should include all the gambles ǫ−B
for any ǫ > 0, but not the gamble in the limit −B.

If B 6= Ω, then −B can be almost desirable without
giving rise to an incoherent set. So this fact can be
represented with a finite set of almost desirable gam-
bles, but not with a finite set of desirable gambles.

If we start with a finite set of gambles and compute
its natural extension then some of the basic pieces of
information can not be represented. In this paper, we
want to point out a representation scheme which is
not general enough for all the sets of desirable gam-
bles, but which is enough for some of the most usual
types of information and for which there are efficient
algorithms in the literature.

Definition 1 A basic set of gambles is a set of gam-
bles FX,B = {X + ǫB : ǫ > 0}, where X is an arbi-
trary gamble and B ⊆ Ω. This set of gambles will be
denoted as (X, B).

When B = ∅, we have a single gamble, X . Otherwise,
(X, B) is an infinite set with X in the limit.

The representation we propose is based in considering
sets F given by the union of a finite family of basic
sets of gambles: (X1, B1), . . . , (Xk, Bk).

With this system, P (X |B) = c is represented by
means of ((X − c)B, B), i.e. in frame B, we are
ready to pay c − ǫ to get reward X(ω), for any ǫ > 0.
P (X |B) = c is represented by means of ((c−X)B, B).

Coherence of the set of gambles generated by a finite
set of basic gambles, (X1, B1), . . . , (Xk, Bk)1, is equiv-
alent to the fact that the 0 gamble is not in the set
of gambles generated by these gambles, which can be
checked by showing that the following system in λi

and ǫ has no solution:

∑k

i=1 λi(Xi + ǫBi) ≤ 0
λi ≥ 0, ǫ > 0

This is due to the fact that the set of gambles∑k

i=1 λi(Xi + ǫBi) where λi ≥ 0, ǫ > 0 is the set of
gambles generated by the finite set of basic gambles
by applying Axioms D3 and D4. So, we are checking
whether the null gamble is contained in the natural
extension.

An algorithm to solve this system is given by Walley,
Pelessoni, and Vicig [8]. They start with a set of
lower previsions of events, but they finally arrive to a
system of this form, and propose an efficient algorithm
to solve it, based on the resolution of a sequence of
linear programming problems.

1We are considering coherence of the generated set of gam-

bles and not the usual notion of coherence for conditional previ-

sions which implies that none of the initial statements is strictly

redundant.



To compute P (X |B) it is necessary to solve the fol-
lowing optimization problem (we are computing the
supremum value of α such that (X −α)B is desirable
in the natural extension of the basic gambles:

sup α
s.t.∑k

i=1 λi(Xi + ǫBi) ≤ (X − α)B
ǫ > 0, λi ≥ 0

This paper [8] also proposes algorithms to solve an op-
timization problem completely analogous to this one
than can be easily adapted.

A basic question is whether there are simple sets of
gambles which can not be covered with this represen-
tation. The following example shows a simple case
in which there is no obvious solution by using this
representation.

Example 4 Consider Ω = {ω1, ω2} and the two gam-
bles X, Y given by X(ω1) = 1, X(ω2) = −1 and
Y (ω1) = −1, Y (ω2) = 1. Consider the set of gam-
bles F given by ǫ1X + ǫ2Y , where ǫ1, ǫ2 > 0. This
set of gambles is not coherent, as X + Y = 0 belongs
to it. However, if we start with any representation
(X, B1), (Y, B2), then either B1 = B2 = ∅ with which
we are adding X and Y to the set F (they were not ini-
tially in F as they can not be expressed as ǫ1X + ǫ2Y
with ǫ1, ǫ2 > 0) or if one of them, B1 or B2, is not
empty, then the set generated by (X, B1), (Y, B2) is
coherent.

The solution could be to start with more complex rep-
resentations as (X1, . . . , Xk) representing all the gam-

bles Z =
∑k

i=1 ǫiXi where ǫi > 0, that we will call
an open set of gambles. And then to work with sets
of gambles which are generated by a finite family of
open sets of gambles. However, the development of
algorithms for coherence and inference is something
to be done in the future, though it does not seem to
be simple task.

5 Maximal Sets of Gambles

In this section we will investigate maximal coherent
sets of gambles. These sets of gambles represent a
complete uncertain knowledge: adding a single more
gamble will give rise to an incoherent set. The associ-
ated credal sets will be linear previsions (probability
measures). But, we will also be able of associating
finite sequences of probability measures similar to the
ones considered by Coletti and Scozzafava [2].

Definition 2 We will say that a set of gambles D is
maximal if it is coherent and there does not exist any

X 6∈ D such that D ∪ {X} is coherent.

Lemma 6 If D is coherent and −X 6∈ D, X 6= 0,
then D ∪ {X} is coherent.

Proof: Let us check it by contradiction. Let us sup-
pose that D ∪ {X} is not coherent. Then there exists
a collection of non-negative numbers c1, . . . , cn, cn+1

such that
∑n

i=1 ciXi + cn+1X = 0, where some of the
ci’s is non zero. Furthermore, according to the coher-
ence of D, cn+1 6= 0. And, as X 6= 0, some of the
ci, i = 1, . . . , n is also different from 0. Thus, −X can
be written as follows: −X =

∑n

i=1
ci

cn+1
Xi. Then, by

the coherence of D, −X belongs to it, and we get a
contradiction. �

Theorem 7 A coherent set of gambles D is maxi-
mal if and only if X ∈ D xor −X ∈ D, for all
X ∈ L, X 6= 0.

Proof: Let us suppose that D is maximal and X 6∈ D.
Then, by definition, (D ∪ {X}) is not coherent. Thus,
according to Lemma 6, −X must belong to D. On the
other hand, if for any X ∈ L, X ∈ D xor −X ∈ D,
then D is maximal, as if X 6∈ D, then −X ∈ D and
D ∪ {X} can not be coherent. �

Lemma 8 If D is maximal then DB is maximal for
all B ⊆ Ω, B 6= ∅.

Proof: It is trivially derived from Theorem 7. �

Lemma 9 Let D be a maximal set of gambles and let
P and P be respectively the lower and the upper previ-
sions associated to it. Then P (B) = P (B), ∀B ⊆ Ω.

Proof: Let us prove it by contradiction. Let us sup-
pose that there exists some B ⊆ Ω such that P (B) <
P (B). Then, for all p ∈ (P (B), P (B)), B−p 6∈ D and
−(B − p) = p − B 6∈ D. According to Theorem 7, D
cannot be maximal. �

If we have a sequence of nested sets Ω = C0 ⊃ C1 ⊃
· · · ⊃ Cn = ∅, and B ⊆ Ω, then the layer of B with
respect to this sequence, will be the minimum value
of i such that B ∩ (Ci \ Ci+1) 6= ∅. It will be denoted
by layer(B).

Theorem 10 If D is maximal then there is a se-
quence of nested sets Ω = C0 ⊃ C1 ⊃ · · · ⊃ Cn = ∅
and a sequence of probability measures P0, . . . , Pn−1

satisfying the following conditions:

1. for each probability Pi, Pi(Ci\Ci+1) = 1, Pi(ω) >
0 for any ω ∈ Ci \ Ci+1,

2. for each A ⊆ B ⊆ Ω, if i = layer(B), then
P (A|B) = P (A|B) = Pi(A|B), where P (A|B)
and P (A|B) are the lower and upper probabilities
computed from DB.



Proof: According to Lemma 9, the lower and the
upper probabilities associated to D do coincide. In
other words, the class PD is a singleton (it is deter-
mined by an additive probability measure P on Ω).
Let C1 ( Ω be the subset of elements of probability
0 C1 = {ω ∈ Ω : P ({ω}) = 0}. If C1 6= ∅, accord-
ing to Lemma 8, DC1

is maximal. Based again on
Lemma 9, it induces a probability measure on C1,
P1. We can repeat the same process again and get
a strictly decreasing finite sequence of nonempty sets
Ci and an associated finite family of probability mea-
sures Pi. (Note that, after a finite sequence of n steps,
the set Cn will be the empty set and the process is
finished.)

On the other hand, if A ⊆ B ⊆ Ω and i is the layer of
B, then we have that B ⊆ Ci and Pi(B) > 0 (remem-
ber that Ci+1 is the subset of Ci given by the ω ∈ Ci

such that Pi(ω) = 0). Probability Pi is defined in Ci

and as it is associated to DCi
and this set is maximal,

we have that P (E|Ci) = P (E|Ci) = Pi(E) for any
E ⊆ Ci. As Pi(B) > 0, then its lower conditional
probability is greater than 0, and by Corollary 4, the
conditional probability can be computed by condition-
ing in the associated credal set, obtaining the desired
result:

Pi(A|B) = P (E|Ci ∩ B) =

P (A|Ci ∩ B) = P (A|B) = P (A|B)

�

This theorem shows the great similarity between max-
imal coherent gambles and the sequence of probabil-
ities associated to a coherent set of conditional as-
sessments given by Coletti and Scozzafava [2]. The
layer of B is also the minimum value of i for which
Pi(B) > 0, and therefore is the equivalent concept to
the zero layer of B proposed by these authors. How-
ever, there are some differences between the two mod-
els as we will show later: we can have the same se-
quence of probabilities associated to different maxi-
mal coherent sets of desirable gambles.

In the following we show that any coherent set of gam-
bles is the intersection of a family of coherent maximal
sets of gambles. First, we need a technical result.

Lemma 11 If D is coherent and −X, X 6∈ D and
X 6= 0, then D+X = (D ∪ {X} ∪ {−X + Y : Y ∈ D)
is coherent.

Proof: If this set is not coherent, then we have that
there are α1, α2, α3 ≥ 0, and Y1, Y2 ∈ D such that
α1Y1 + α2X + α3(−X + Y2) ≤ 0, and at least one of
the αi is not equal to 0.

From this inequality we have that: α1Y1 + α3Y2 ≤
(α3 − α2)X .

First, notice that α1, α3 can not be both equal to 0,
because otherwise, 0 ≤ (−α2)X , and as X 6= 0 and
α2 6= 0, we have that −X ∈ D, which is in contradic-
tion with the fact that −X, X 6∈ D.

Then, at least one of the values α1, α3 is different from
0, and thus α1Y1 + α3Y2 ∈ D.

Three situations are now possible:

• α3 = α2, which is in contradiction with the fact
that D is coherent.

• (α3 −α2) > 0, which is in contradiction with the
fact that D is coherent and X 6∈ D.

• (α2 −α3) > 0, which is in contradiction with the
fact that D is coherent and −X 6∈ D.

In any case, we arrive to a contradiction, so D+X must
be coherent. �

Theorem 12 Let D be a coherent set of gambles.
Then, there exists at least one maximal set of gam-
bles containing it.

Proof:

Let us start with a coherent set and then, repeat the
following process:

1. If for any gamble X (X 6= 0), we have that X ∈ D
or −X ∈ D, then D is maximal and the procedure
stops.

2. Select a gamble X such that −X, X 6∈ D and
X 6= 0.

3. Transform D by making it equal to D+X . By
Lemma 11, this new set is coherent and contains
to the old D.

4. Go to step 1.

The main point of this procedure is that it arrives
to a maximal coherent set after a finite number of
steps. This result is based on the fact that if in the
first k + 1 loops of this process we select gambles
X1, X2, . . . , Xk+1, then these gambles are linearly in-
dependent. This fact is obtained by proving that after
having added X1, . . . , Xk, then for any linear combina-
tion of these gambles Y =

∑k

i=1 αiXi, and Y 6= 0, we
have that either Y ∈ D or −Y ∈ D. So, in step 2, we
have to select a gamble which is linearly independent
of the previously selected ones.

This is going to be proved by induction in k. For
k = 1, Y = α1X1. Then if α1 > 0, Y ∈ D, and
if α1 < 0, then −Y ∈ D. α1 can not be equal to 0
because Y 6= 0.



Now, assume that it is true for the first k gambles
X1, . . . , Xk, and let us prove it for X1, X2, . . . , Xk+1.

Assume, Y =
∑k+1

i=1 αiXi. Let us denote by Z =∑k

i=1 αiXi.

If αi = 0 for all 1 ≤ i ≤ k, then Y = αk+1Xk+1 and
we are in a situation similar to the case k = 1.

If some αi with i ≤ k is different from 0, then by
induction, we have that either Z or −Z is in D, after
adding X1, . . . , Xk.

We have that Y = Z + αk+1Xk+1. The following
situations are possible:

• αk+1 = 0, then Y = Z and we have that either
Y or −Y is in D.

• αk+1 > 0 and Z ∈ D, then by coherence Y ∈ D.

• αk+1 > 0 and −Z ∈ D, then −Y = −Z −
αk+1Xk+1, and by the way we compute D+Xk+1

in which we add any gamble −Xk+1 + U , and
therefore any gamble −αk+1Xk+1 +U where U ∈
D, we have that −Y ∈ D.

• αk+1 < 0 and −Z ∈ D, then by coherence −Y ∈
D.

• αk+1 < 0 and Z ∈ D, then Y = αk+1Xk+1 +Z ∈
D after replacing D by D+Xk+1 .

As, we always choose a gamble that is linearly inde-
pendent of the previous one, and Ω being finite, the
dimension of L as a linear space is finite, and so the
process has to stop after a finite number of steps. �

Theorem 13 Let D be a coherent set of gambles.
Then D = ∩i∈IDi, where {Di : i ∈ I} is the class
of maximal sets of gambles containing D.

Proof: We only have to check the inclusion ∩i∈IDi ⊆
D. We will prove it by contradiction. Let us suppose
that X ∈ ∩i∈IDi \ D. Then, by Lemma 6, D ∪ {−X}
is coherent. By Theorem 12 there exists at least one
maximal set of gambles containing D ∪ {−X}. This
maximal set coincides with one of the Di, for some
i ∈ I. Then there exists some i ∈ I such that −X ∈
Di. It contradicts the assumption of coherence of Di.
�

This theorem can be the basis to obtain a representa-
tion of gambles analogous to the credal sets for sets
of almost desirable gambles. Now, a coherent set of
gambles can be expressed as a family of maximally
coherent sets of gambles, each one of them has an
associated sequence of probability measures. There
are important problems to be solved. One of them is
that a maximally consistent coherent set of gambles

is not exactly equivalent to a sequence of probability
measures as the following example shows.

Example 5 Assume that Ω = {ω1, ω2} and the prob-
ability given by P0(ω1) = P0(ω2) = 0.5 (only one prob-
ability in the sequence). It is clear that any gamble
with X(ω1) + X(ω2) > 0 should be desirable. But,
this probability does not determine whether the gam-
ble Y (ω1) = 1, Y (ω2) = −1 is desirable. We can have
a coherent set in which neither Y nor −Y is desirable,
another coherent set in which Y is desirable, and other
one in which −Y is desirable. Only the two last ones
are maximal.

An alternative model that allows to establish a cor-
respondence between maximally coherent sets of gam-
bles and sequences of probability measures is obtained
by making the consistency Axiom D1 stronger, modi-
fying it to the following version:

D1”. If X ∈ D, then there is ǫ > 0, such that −X +
ǫ supp(X) 6∈ D.

where supp(X), the support of X , is the set of ω ∈ Ω
such that X(ω) 6= 0.

This consistency condition is stronger than Axiom D1,
as this axiom was assuming that we can not have X
and −X as desirable. D1” implies that the null gam-
ble is not desirable. This axiom says that we can not
have X as desirable if −X is the limit of desirable
gambles with the same support. This is a kind of a
minimum of separation between X and −Y , if both
X and Y are desirable and have the same support.
The support is necessary in the condition, as if we
had only considered −X + ǫ (as in strict desirability
axioms [6, Section 3.7.8]), then it would have become
a too strong condition. Imagine that P0(B) = 0 , then
as P0(B) = 0 we have that −B + ǫ is also desirable
for any ǫ > 0. But we have that B ∈ D. So, the
separation condition without considering the support
would not be fulfilled.

The following theorem shows that a sequence of prob-
ability measures as the one generated in Theorem 10
can always be represented by means of a maximally
coherent set of gambles among those satisfying D1”
and that this set is unique.

Theorem 14 If we have a sequence of nested sets
Ω = C0 ⊃ C1 ⊃ · · · ⊃ Cn = ∅ and a sequence of prob-
ability measures P0, . . . , Pn−1 satisfying condition:

• for any i, Pi(Ci \ Ci+1) = 1, and Pi(ω) >
0, ∀ω ∈ Ci \ Ci+1,

then the set of gambles D = {X : Pi(X) >
0, where i = layer(supp(X))} is the only maximally



coherent set of desirable gambles among those satis-
fying Axiom D1” and that for any i the credal set
associated to DCi

contains only probability measure
Pi.

Proof: First, it is easy to prove that this set of gam-
bles satisfies all the axioms for coherence including
Axiom D1”. Considering Pi(X) > 0, we have that
Pi(supp(X)) > 0, Pi(−X + ǫ supp(X)) = −Pi(X) +
ǫ < 0 if we choose ǫ > 0 small enough. Therefore,
there is an ǫ > 0 such that −X + ǫ supp(X) 6∈ D.

It is immediate to prove that Pi is the credal set as-
sociated to DCi

, as there can not be a probability Q
different to Pi defined on Ci for which Q(X) > 0 for
all X ∈ DCi

.

On the other hand, this set is unique: if D′ is such
that for any i the credal set associated to D′

Ci
is

the probability Pi, then, if X is a gamble and i =
layer(supp(X)), then supp(X) ⊆ Ci and:

• if X is such that Pi(X) > 0, then X ∈ D′,

• if X is such that Pi(X) < 0, then X 6∈ D′,

• if X is such that Pi(X) = 0, then as there is
ω ∈ Ci \Ci+1 such that X(ω) > 0 and Pi(ω) > 0,
we have that for any ǫ > 0, Pi(−X+ǫ supp(X)) =
Pi(−X) + ǫ = ǫ > 0 then we have that −X +
ǫ supp(X) ∈ D′

Ci
⊆ D′. By Axiom D1”, X 6∈ D′.

As a consequence, D′ obeys the same criteria than D
to determine whether a gamble belongs to it (Pi(X) >
0) and thus D = D′.

The fact that D is maximal is a consequence of the
uniqueness. �

6 Conclusions

In this paper we have presented some basic concepts
under the light of desirability. We have tried to show
that this approach can shed light on some important
notions in imprecise probability, such as conditioning.
It can be useful for showing the relationships with
other approaches, such as as probabilistic coherence
[2]. There is important work to do, mainly on the
algorithmic side. Here we have shown some existing
algorithms which can be directly applied to some re-
stricted forms of coherent sets, but it is necessary
to determine whether this restriction is too severe
to leave out some important real situations. Also,
it would be interesting to determine some extra ax-
ioms under which the representation based on what
we have called basic sets of gambles is enough to cover
any possible set of desirable gambles.

As we have mentioned, Moral [4] studied the concept

of epistemic irrelevance and independence taking de-
sirability as basis. An important problem for the fu-
ture is how to use graphical models to represent and
use epistemic independence assessments in the com-
putation of conditional sets of desirable gambles.
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