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Abstract

The likelihood approach to statistics can be inter-
preted as a theory of fuzzy probability. This paper
presents a generalization of credal networks obtained
by generalizing imprecise probabilities to fuzzy prob-
abilities; that is, by additionally considering the rela-
tive plausibility of different values in the probability
intervals.
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1 Introduction

A common interpretation of membership functions of
fuzzy sets is as statistical likelihood functions. With
this interpretation, the well-established likelihood ap-
proach to statistics appears as a theory of fuzzy prob-
abilities. These generalize imprecise probabilities by
additionally considering the relative plausibility of
different values in the probability or expectation in-
tervals. Besides the increased expressive power, the
fundamental advantage of the likelihood-based fuzzy
probabilities with respect to imprecise probabilities is
the ability of using all the information provided by the
data. In fact, the resulting hierarchical model exploits
the outstanding statistical properties of the likelihood
function, which makes it an ideal basis for inference
and decision making (see Cattaneo, 2005, 2007).

In the present paper, the hierarchical model is used
in the framework of belief networks, to describe the
uncertain knowledge about the values of the involved
variables. This leads to a generalization of Bayesian
networks and credal networks, combining the possibil-
ity of imprecision in the probability values with the
ability of using all the information provided by the
data.

In Section 2 the hierarchical model is briefly intro-

duced (see Cattaneo, 2008a, for a more detailed de-
scription), while in Section 3 some aspects of the
model of great practical importance are presented.
Finally, in Section 4 the hierarchical networks are de-
fined and compared with credal networks.

2 Hierarchical Model

In most theories of imprecise probability, the model
corresponds to a set P of probability measures on a
measurable space (Ω,A). The set P is often assumed
to be convex, and when an event A ∈ A is observed,
P is usually updated to

P ′ = {P (· |A) : P ∈ P, P (A) > 0} (1)

(that is, each P ∈ P is conditioned on A). The con-
ditional probability measure P (· |A) is obtained by
normalizing the “restricted” measure P (· ∩ A), but
the normalization step deletes the information about
the value P (A). The values P1(A), P2(A) describe the
relative ability of the probability measures P1, P2 ∈ P
to forecast the observed event A (before observing it):
the larger the probability value, the better the fore-
cast. These values are combined in the likelihood func-
tion lik′ on P ′ defined (up to a positive multiplicative
constant) by

lik′(P ′) ∝ sup
P∈P : P (· |A)=P ′

lik(P ) P (A) (2)

for all P ′ ∈ P ′, where lik was the likelihood func-
tion on P before observing A. The likelihood func-
tion is a central concept in statistical inference: it
is usually interpreted as a measure of the relative
plausibility of the probability measures as models of
the reality under consideration (proportional likeli-
hood functions are considered equivalent). When A is
the first observed event, the prior likelihood function
lik : P → (0,∞) can be interpreted as a (subjective)
measure of the relative plausibility of the elements of
P according to the prior information (see also Dahl,



2005). In particular, prior ignorance is described by
a constant prior likelihood function lik; in this case,
(2) corresponds to the usual definition of statistical
likelihood function induced by the observation of the
event A (apart from the fact that lik′ is defined on P ′
instead of P). In general, the prior likelihood function
is interpreted and used as if it were the statistical like-
lihood function induced by (hypothetical) past data.

In the likelihood approach to statistics (see for exam-
ple Pawitan, 2001), the likelihood of a set of probabil-
ity measures is usually defined as the supremum of the
likelihood of its elements (this idea is used also in (2),
if there are several P ∈ P such that P (· |A) = P ′).
When lik is a likelihood function on P, the set func-
tion LR on 2P defined by

LR(H) =
supP∈H lik(P )
supP∈P lik(P )

for all H ⊆ P (in this paper, sup ∅ = 0) is a normal-
ized possibility measure with possibility distribution
proportional to lik. A possibility distribution can also
be considered as the membership function of a fuzzy
set (see Zadeh, 1978). In the present paper, possi-
bility distributions and membership functions are in-
terpreted as proportional to likelihood functions: this
is a common interpretation (see in particular Hisdal,
1988, and Dubois, 2006). Hence, it suffices to con-
sider normalized fuzzy sets and normalized possibil-
ity measures, but grades of membership and degrees
of possibility have only a relative meaning.

The set P of probability measures and the likelihood
function lik on P can be considered as the two lev-
els of a hierarchical model: these two levels describe
different kinds of uncertainty (probabilistic and pos-
sibilistic, respectively). When an event A ∈ A is ob-
served, the two levels P and lik of the hierarchical
model are updated to P ′ and lik′ according to (1)
and (2), respectively. The uncertain knowledge about
the value g(P ) of a function g : P → G is described
by the induced possibility measure LR ◦ g−1 on G (in
this paper, g−1 denotes the set function associating
to each subset of G its inverse image under g); that is,
by the normalized fuzzy subset of G with membership
function proportional to the profile likelihood func-
tion likg on G defined (up to a positive multiplicative
constant) by

likg(γ) ∝ sup
P∈P : g(P )=γ

lik(P )

for all γ ∈ G. In particular, if g associates to each
probability measure P ∈ P the expectation g(P ) =
EP (X) of a random variable X, or the probability
g(P ) = P (B) of an event B ∈ A, then the normalized
fuzzy subset of R with membership function propor-

tional to likg can be interpreted as the fuzzy expecta-
tion of X, or the fuzzy probability of B, respectively.
In this sense, the likelihood approach to statistics can
be interpreted as a theory of fuzzy probability. The
discussion on how to evaluate by one or more real
numbers the normalized fuzzy subset of R with mem-
bership function proportional to likg goes beyond the
scope of the present paper (but see Cattaneo, 2007,
for some interesting results): only the α-cut{

x ∈ R : likg(x) ≥ α supy∈R likg(y)
}

with α ∈ (0, 1) will be considered here. This is a like-
lihood-based confidence region for g(P ), whose cover-
age probability can often be approximated thanks to
the result of Wilks (1938): in particular, 95% coverage
probability corresponds to α = 0.1465.

Example 1 Consider an urn containing 3 balls: one
ball is white, another is black, while the third one could
be white or black. We have no idea about the color
(white or black) of the third ball, but we can perform
a sequence of random draws with replacement from
the urn, and observe the colors of the balls drawn.
Conditional on the composition of the urn, these ob-
servations can be described as a sequence of indepen-
dent Bernoulli trials with constant probability 1

3 or 2
3

of observing a black ball (depending on the color of
the third ball: white or black, respectively). We shall
never be able to determine with absolute certainty the
composition of the urn, but if in a long sequence of
draws the proportion of black balls is approximately
2
3 , then it is much more plausible that the color of the
third ball is black than it is white.

Let P be the (convex) set of probability measures re-
sulting from the only imprecise prior probability mea-
sure about the composition of the urn (that is, about
the color of the third ball) such that the probability
of observing a black ball in the first draw is described
by the interval [ 13 , 2

3 ]. This is the vacuous imprecise
prior, and therefore, if P is updated according to (1),
then the (posterior) imprecise probability of observing
a black ball in the next draw remains [ 13 , 2

3 ], indepen-
dently of the number and colors of the balls drawn.
By contrast, the (posterior) fuzzy probability of ob-
serving a black ball in the next draw (resulting from
the hierarchical model with constant prior likelihood
function on P) evolves as expected: it tends to con-
centrate on the value 2

3 , when in a sequence of draws
of increasing length the proportion of black balls re-
mains approximately 2

3 . Figure 1 shows the graphs of
the membership functions of the fuzzy probability p of
observing a black ball in the next draw: prior to any
draw (dotted line), after drawing 2 white balls and 5
black balls (dashed line), and after drawing 8 white
balls and 15 black balls (solid line); in particular, the
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Figure 1: Membership functions of the fuzzy proba-
bility p of observing a black ball in the next draw (in
the situation of Example 1): prior to any draw (dot-
ted line), after drawing 2 white balls and 5 black balls
(dashed line), and after drawing 8 white balls and 15
black balls (solid line).

corresponding α-cuts with α = 0.1465 are the intervals
[0.333, 0.667], [0.389, 0.667], and [0.651, 0.667], respec-
tively.

These membership functions can be easily obtained by
applying the results of Section 3; the detailed calcula-
tions will be presented in Example 4.

The hierarchical model with levels P and lik gener-
alizes the imprecise probability model P, since the
probabilistic level is updated in the same way (1) as
the imprecise probability model, while the possibilis-
tic level carries additional information. In particular,
the fuzzy expectation of a random variable X is a
fuzzy subset of the imprecise expectation

[E(X), E(X)] = [infP∈P EP (X), supP∈P EP (X)] ,

and the fuzzy probability of an event B ∈ A is a fuzzy
subset of the imprecise probability

[P (B), P (B)] = [infP∈P P (B), supP∈P P (B)] ,

since their membership functions are constant equal
to 0 outside these intervals (for example, the fuzzy
probabilities of Figure 1 are fuzzy subsets of the im-
precise probability [ 13 , 2

3 ]). That is, fuzzy probabilities
generalize imprecise probabilities by additionally con-
sidering the relative plausibility of different values in
the probability intervals (imprecise probabilities cor-
respond to the crisp case of fuzzy probabilities). This
additional information allows us in particular to get
out of the state of complete ignorance; that is, to
reach nontrivial conclusions also when starting with
the vacuous prior, as in Example 1. Alternative up-
dating rules for the imprecise probability model P,
making use of some information contained in the pos-
sibilistic level lik, have been proposed in particular by
Moral (1992), Wilson (2001), and Held et al. (2008):

these updating rules discard some of the less plausi-
ble probability measures in P, but this can lead to
important problems, since any discarded probability
measure can become the most plausible one in the
light of new data. To avoid these problems, it is nec-
essary to store more information than it is possible
in an imprecise probability model: the hierarchical
model provides a simple solution.

When the probabilistic level of the hierarchical model
is a singleton P = {P}, the possibilistic level con-
tains no information, since the likelihood function
is defined only up to a positive multiplicative con-
stant. In this case, the membership function of the
fuzzy expectation of a random variable X, or of the
fuzzy probability of an event B ∈ A, is the indica-
tor function of {EP (X)}, or of {P (B)}, respectively;
and when an event A ∈ A is observed, the proba-
bilistic level is updated according to (1) by condition-
ing P on A. Hence, the purely probabilistic descrip-
tion of uncertain knowledge about ω ∈ Ω (that is,
the Bayesian model) is a special case of the hierar-
chical model. The same is true also for the purely
possibilistic description of uncertain knowledge about
ω ∈ Ω: a normalized possibility measure Π on Ω with
possibility distribution π can be described by the hi-
erarchical model with as probabilistic level the set
P = {δω : ω ∈ Ω, π(ω) > 0} (where δω is the Dirac
measure on Ω concentrated on ω), and as possibilistic
level the likelihood function lik on P defined (up to
a positive multiplicative constant) by lik(δω) ∝ π(ω)
for all δω ∈ P. In this case, Π = LR ◦ t−1 is the pos-
sibility measure on Ω induced by the identification of
each Dirac measure δω ∈ P with the corresponding
ω ∈ Ω, described by the function t : P → Ω with
t(δω) = ω for all δω ∈ P. The fuzzy expectation of a
random variable X corresponds then to the possibil-
ity measure Π ◦ X−1 on R induced by X : Ω → R;
and when an event A ∈ A is observed, the hierar-
chical model is updated according to (1) and (2) to
the hierarchical model with levels P ′ = t−1(A) and
lik′ = lik|P′ (the restriction of lik to P ′). That is,
when A is observed, Π is updated to the normalized
possibility measure Π′ on Ω with possibility distribu-
tion proportional to the pointwise product of π and
the indicator function of A.

The hierarchical model offers a unified approach to
the combination of probabilistic and possibilistic un-
certainty (for instance, fuzzy data can be used with-
out problem). Since membership functions and pos-
sibility distributions are interpreted as proportional
to likelihood functions, the rules for manipulating
fuzzy probabilities are implied by the well-established
theories of probability and likelihood. It is impor-
tant to underline that other interpretations of mem-



bership functions and possibility distributions would
lead to other rules for manipulating fuzzy probabil-
ities; in particular, the updating rule would be dif-
ferent. For example, Walley (1997) and De Cooman
(2005) interpret possibility measures as upper proba-
bility measures: the resulting fuzzy probability model
is a special case of the imprecise probability model (at
least from the mathematical standpoint); in particu-
lar, constant possibility distributions remain constant
independently of the data observed (that is, we can-
not get out of the state of complete ignorance).

3 Convex Hierarchical Models

Let M0 be the set of all finite measures µ on the
measurable space (Ω,A), and let P0 ⊂ M0 be the
set of all probability measures P on (Ω,A). Hence,
M0 and P0 are subsets of the real vector space of all
finite signed measures on (Ω,A). Let µ0 ∈ M0 \ P0

be the measure on (Ω,A) with µ0(Ω) = 0 (that is,
µ0 has constant value 0). The normalization function
n : M0 \ {µ0} → P0 is defined by n(µ) = [µ(Ω)]−1 µ
for all µ ∈ M0 \ {µ0}, where the multiplication of
µ with the normalization constant [µ(Ω)]−1 is to be
interpreted pointwise. The restriction n|P0 of n to P0

is the identity function on P0, since P (Ω) = 1 for all
P ∈ P0. A set M ⊂ M0 is said to be bounded if
supµ∈M µ(Ω) is finite.

Each bounded set M ⊂ M0 such that M \ {µ0} is
not empty describes a hierarchical model: the proba-
bilistic level

P = {n(µ) : µ ∈M \ {µ0}}

is the image of M\{µ0} under n, and the possibilistic
level is the likelihood function lik on P defined (up to
a positive multiplicative constant) by

lik(P ) ∝ sup
µ∈M\{µ0} :

n(µ)=P

µ(Ω)

for all P ∈ P. Each hierarchical model can be de-
scribed in this way by a subset of M0: for example
the hierarchical model with levels P and lik is de-
scribed by

M = {lik(P ) P : P ∈ P}

(where the multiplication of P with the constant
lik(P ) is to be interpreted pointwise), but such a de-
scription is not unique: for instance the sets M∪{µ0}
and M\ {µ0} describe the same hierarchical model.
The advantage of the description by a subset of M0

is that the updating is particularly simple: when an
event A ∈ A is observed, the set M is updated to

M′ = {µ(· ∩A) : µ ∈M}. (3)

That is, the updated description M′ is the image of
M under rA, where rA is the function on M0 de-
fined by rA(µ) = µ(· ∩ A). It can be easily proved
that the update of M according to (3) corresponds
to the update of the hierarchical model according to
(1) and (2), because if n(µ) = P and P (A) > 0,
then (n ◦ rA)(µ) = P (· |A). In particular, when
applied to the probability measures P ∈ P0 with
P (A) > 0, the function n ◦ rA describes the condi-
tioning on A; hence, the updating (3) of the set M
of measures corresponds to the updating (1) of the
imprecise probability model, but without the normal-
ization step (which deletes the information about the
relative ability of the probability measures to forecast
the observed event A). For the hierarchical model
described by M, the uncertain knowledge about the
value g(P ) of a function g : P → G is described by the
normalized fuzzy subset of G with membership func-
tion proportional to the profile likelihood function likg

on G, which satisfies

likg(γ) ∝ sup
µ∈M\{µ0} :
(g◦n)(µ)=γ

µ(Ω)

for all γ ∈ G.

The imprecise probability model P corresponds to the
hierarchical model with as probabilistic level the set
P, and as possibilistic level a constant likelihood func-
tion lik on P; this hierarchical model is described by
the set M = P ⊂ M0. The imprecise probability
model P is often assumed to be convex; it can be eas-
ily proved that a set M′ can be obtained by updating
a convex set M = P according to (3) if and only if
M′ is convex. A hierarchical model is said to be con-
vex if it can be described by a convex subset of M0.
Hence, the convex hierarchical models are the hier-
archical models that can be interpreted as the result
of updating (with real or hypothetical data) a convex
imprecise probability model; that is, the convex hier-
archical models are the direct generalizations of the
convex imprecise probability models.

Let L1,L2 be real vector spaces, and let C ⊆ L1 be
convex. A function f : C → L2 is said to maintain
segments if for all x, y ∈ C, the image of the set

{λ x + (1− λ) y : λ ∈ [0, 1]}

under f is the set

{λ f(x) + (1− λ) f(y) : λ ∈ [0, 1]} .

The convex hull of a set S ⊆ L1 is denoted by ch(S).
The following result can be easily proved.

Theorem 2 Let L1,L2 be real vector spaces, and let
C ⊆ L1 be convex. If the function f : C → L2 main-



tains segments, and S ⊆ C, then the image of the con-
vex hull of S under f is the convex hull of the image
of S under f ; that is,

{f(x) : x ∈ ch(S)} = ch ({f(y) : y ∈ S}) .

The convexification of a hierarchical model described
by the set M⊂M0 is the convex hierarchical model
described by the set ch(M) ⊂ M0. The function rA

on M0 maintains segments, since it is the restriction
to M0 of a linear map; hence, Theorem 2 implies
that if M is updated to M′ according to (3), then
ch(M) is updated to ch(M′) according to (3). This
result is particularly useful for updating the convex-
ification of a hierarchical model described by a finite
set M⊂M0 (such models are very important in the
framework of belief networks, studied in Section 4).
Since the normalization function n on M0 \ {µ0}
maintains segments, Theorem 2 can be used to prove
also the well-known result that if a set P of probabil-
ity measures is updated to P ′ according to (1), then
ch(P) is updated to ch(P ′) according to (1).

Let ρ : [0,∞] → [0,∞] be the function defined by
ρ(0) = ∞, ρ(∞) = 0, and ρ(x) = 1

x for all x ∈ (0,∞).
The function ρ is an involution; that is, ρ ◦ ρ is the
identity function on [0,∞]. The convex hull of a
function φ : C → [0,∞] is denoted by ch(φ); that
is, ch(φ) is the (pointwise) largest convex function
γ : C → [0,∞] such that γ(x) ≤ φ(x) for all x ∈ C.
The following theorem is useful because for exam-
ple the functions g associating to each probability
measure P ∈ P0 the expectation g(P ) = EP (X)
of a bounded random variable X, or the probability
g(P ) = P (B) of an event B ∈ A, are the restrictions
to P0 of linear maps. It is a consequence of Theo-
rem 2, since if g : P0 → G is the restriction to P0 of a
linear map, then the function f : M0 \ {µ0} → G ×R
defined by

f(µ) =
(
(g ◦ n)(µ), [µ(Ω)]−1

)
for all µ ∈M0 \ {µ0} maintains segments.

Theorem 3 Let G be a real vector space, and let
g : P0 → G be the restriction to P0 of a linear map.
If π and πch are the membership functions of the nor-
malized fuzzy subsets of G describing the uncertain
knowledge about the value g(P ) of g for a hierarchical
model and its convexification, respectively, then

πch = ρ ◦ ch(ρ ◦ π).

Theorem 3 implies in particular that for a convex hi-
erarchical model, the membership function π of the
fuzzy expectation of X, or of the fuzzy probability of
B, is “reciprocally convex”, in the sense that ρ ◦ π is

convex (since π = πch). Moreover, Theorem 3 implies
that for the convexification of a hierarchical model
described by a finite set M ⊂ M0 (such models are
very important in the framework of belief networks,
studied in Section 4), the membership function πch of
the fuzzy expectation of X, or of the fuzzy probability
of B, is piecewise hyperbolic, in the sense that ρ ◦ πch

is piecewise linear; in this case, the construction of
πch is particularly simple, as shown in the following
example.

Example 4 Consider the situation of Example 1.
Conditional on the composition of the urn (that is,
conditional on the color of the third ball: white
or black), the observations about the colors of the
balls drawn are modeled as a sequence of indepen-
dent Bernoulli trials with constant probability 1

3 or
2
3 of observing a black ball, described by the prob-
ability measures P 1

3
and P 2

3
, respectively. The im-

precise probability model P resulting from the vacu-
ous imprecise prior about the composition of the urn
(that is, about the color of the third ball) is the con-
vex hull of the finite set PB = {P 1

3
, P 2

3
} of probabil-

ity measures. The hierarchical model with constant
prior likelihood function on P is described by the set
P = ch(PB) ⊂ M0; hence, it is the convexification
of the hierarchical model described by the finite set
M = PB ⊂M0.

When the colors of the balls drawn are observed, the
updating to M′ according to (3) of the hierarchical
model described by the finite set M = PB is very sim-
ple. In fact, the updating (1) of the probabilistic level
PB = {P 1

3
, P 2

3
} is unimportant for the probability of

observing a black ball in the next draw, because the
Bernoulli trials are independent under both probabil-
ity measures P 1

3
and P 2

3
. The constant prior likelihood

function lik on PB is updated to lik′ according to (2):
since PB = {P 1

3
, P 2

3
} has only two elements, lik′ is

determined (up to a positive multiplicative constant)
by the likelihood ratio

lik′(P 2
3
)

lik′(P 1
3
)

=
( 1
3 )w ( 2

3 )b

( 2
3 )w ( 1

3 )b
= 2b−w

of P 2
3

and P 1
3
, where w and b are the numbers of

white and black balls observed, respectively. Assume
that b ≥ w: the hierarchical model described by the
finite set M′ simply tells us that the probability of
observing a black ball in the next draw is either 1

3
or 2

3 , with a likelihood ratio of 2b−w in favor of the
second value. This uncertain knowledge is described
by the fuzzy probability p of observing a black ball in
the next draw, whose membership function π on [0, 1]



satisfies

π(p) =

 ( 1
2 )b−w if p = 1

3 ,
0 if p ∈ [0, 1]\{ 1

3 , 2
3},

1 if p = 2
3 .

Theorem 3 allows us to easily obtain the membership
function πch of the fuzzy probability of observing a
black ball in the next draw for the convexification of
the hierarchical model described by M = PB; that is,
for the hierarchical model with constant prior likeli-
hood function on P, which was considered in Exam-
ple 1. Since the function ρ ◦ π on [0, 1] satisfies

(ρ ◦ π)(p) =

 2b−w if p = 1
3 ,

∞ if p ∈ [0, 1]\{ 1
3 , 2

3},
1 if p = 2

3 ,

its convex hull ch(ρ◦π) is the piecewise linear function
on [0, 1], whose values in ( 1

3 , 2
3 ) are obtained by linear

interpolation of the values of ρ◦π in 1
3 and 2

3 ; that is,

(ch(ρ◦π))(p) =
{

2b−w−3 (2b−w−1) (p− 1
3 ) if p∈[ 13 , 2

3 ],
∞ if p∈[0,1]\[ 13 , 2

3 ].

Hence, for the hierarchical model with constant prior
likelihood function on P (which was considered in Ex-
ample 1), the fuzzy probability p of observing a black
ball in the next draw, after having observed w white
balls and b black balls (with b ≥ w), has membership
function πch on [0, 1] satisfying

πch(p) =
{

[2b−w−3 (2b−w−1) (p− 1
3 )]−1 if p∈[ 13 , 2

3 ],
0 if p∈[0,1]\[ 13 , 2

3 ].

Figure 1 shows the graphs of the piecewise hyperbolic
function πch when b− w = 0 (dotted line), b− w = 3
(dashed line), and b− w = 7 (solid line).

4 Hierarchical Networks

Let X1, . . . , Xk be some variables taking value in the
finite sets X1, . . . ,Xk, respectively. An elegant and
useful way of constructing a probability measure P
on Ω = X1 × · · · × Xk (that is, a purely probabilistic
description of uncertain knowledge about the values of
the variables X1, . . . , Xk) is through a Bayesian net-
work (see for example Pearl, 1988, or Jensen, 2001).
This consists of a directed acyclic graph with nodes
X1, . . . , Xk, such that to each node Xi is associated
a stochastic kernel Pi from PAi to Xi, where PAi

is the image of Ω under PAi, and PAi is the func-
tion on Ω assigning to each ω = (x1, . . . , xk) ∈ Ω
the vector (xj1 , . . . , xjl

) of the values of the parents
Xj1 , . . . , Xjl

of Xi (that is, the nodes from which start
the edges pointing to Xi). The stochastic kernel Pi

associates to each vector pai ∈ PAi a probability mea-
sure Pi (· | pai) on Xi; in particular, if Xi is a root (that
is, it has no parents), then PAi assigns the “empty
vector” () to all ω ∈ Ω, and therefore PAi = {()}
is a singleton and the stochastic kernel Pi reduces to
a probability measure Pi (· | ()) on Xi. The probabil-
ity measure PP1,...,Pk

on Ω associated to the Bayesian
network is defined by

PP1,...,Pk
{ω} =

k∏
i=1

Pi ({xi} |PAi(ω))

for all ω = (x1, . . . , xk) ∈ Ω. A key property of
Bayesian networks is that the graph encodes condi-
tional independences between the variables X1, . . . ,
Xk: these conditional independences can be deter-
mined by the graphical criterion of d-separation.

Bayesian networks can be generalized to credal net-
works by associating to each node Xi a set Pi of
stochastic kernels Pi from PAi to Xi, instead of a sin-
gle stochastic kernel (see for example Cozman, 2005,
or Antonucci and Zaffalon, 2008). The set Pi asso-
ciated to a node Xi is said to be separately specified
if for each pai ∈ PAi we can specify a set Pi,pai

of
probability measures on Xi, and obtain Pi as the set
of all stochastic kernels Pi from PAi to Xi such that
Pi (· | pai) ∈ Pi,pai for each pai ∈ PAi (that is, Pi

can be identified with the Cartesian product of the
sets Pi,pai

). The imprecise probability model usually
associated to the credal network (called strong exten-
sion of the credal network) is the convex hull of the
set

PP1,...,Pk
= {PP1,...,Pk

: P1 ∈ P1, . . . , Pk ∈ Pk}.

In practical applications of credal networks the sets
Pi of stochastic kernels are often finite, and thus the
set PP1,...,Pk

of probability measures is finite too.

Credal networks can be generalized to hierarchical
networks by associating to each node Xi also a (prior)
likelihood function liki on the set Pi of stochastic ker-
nels associated to Xi. When the set Pi associated to
a node Xi is separately specified by the sets Pi,pai

of
probability measures on Xi (where pai ∈ PAi), the
likelihood function liki on Pi associated to Xi is said
to be separately specified if for each pai ∈ PAi we can
specify a likelihood function liki,pai

on Pi,pai
, and ob-

tain liki as the function on Pi defined by

liki(Pi) =
∏

pai∈PAi

liki,pai
(Pi (· | pai))

for all Pi ∈ Pi (that is, liki can be interpreted as the
independent combination of the marginals liki,pai

).
A node Xi is said to be Bayesian if the set Pi of
stochastic kernels associated to Xi is a singleton;
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Figure 2: Directed acyclic graph of the hierarchical
network of Example 5.

that is, the uncertain knowledge about the value of
a Bayesian node conditional on the values of its par-
ents is purely probabilistic. A node Xi is said to be
fuzzy if Pi (· | pai) is a Dirac measure on Xi for all
pai ∈ PAi and all stochastic kernels Pi in the set
Pi associated to Xi; that is, the uncertain knowledge
about the value of a fuzzy node conditional on the
values of its parents is purely possibilistic. The hier-
archical model associated to the hierarchical network
has as probabilistic level the set PP1,...,Pk

, and as pos-
sibilistic level the likelihood function lik on PP1,...,Pk

defined (up to a positive multiplicative constant) by

lik(P ) ∝ sup
P1∈P1,...,Pk∈Pk :

PP1,...,Pk
=P

k∏
i=1

liki(Pi)

for all P ∈ PP1,...,Pk
. Hence, the hierarchical model

associated to the hierarchical network is described by
the set M⊂M0 consisting of all measures µP1,...,Pk

on Ω with P1 ∈ P1, . . . , Pk ∈ Pk, where

µP1,...,Pk
{ω} =

k∏
i=1

[liki(Pi) Pi ({xi} |PAi(ω))]

for all ω = (x1, . . . , xk) ∈ Ω. If only convexifications
of hierarchical models are considered, then credal net-
works correspond to the hierarchical networks with
constant likelihood functions liki, and it often suffices
to use finite sets Pi of stochastic kernels, so that the
setM of measures is finite and the results of Section 3
can be exploited, as in the following examples.

Example 5 Consider a hierarchical network about
the value of the binary variables X1, . . . , Xk ∈ {0, 1}.
The directed acyclic graph is plotted in Figure 2. The
root X1 is Bayesian with uniform probability; that is,
P1 = {P1} with P1({0} | ()) = P1({1} | ()) = 1

2 . For
each i ≥ 2 the set Pi associated to the node Xi con-
sists of all stochastic kernels Pi from PAi = {0, 1}
to Xi = {0, 1} such that Pi({x} | (x)) ≥ 0.9 for both
x ∈ {0, 1}. All (prior) likelihood functions liki on the
sets Pi are constant. Hence, the hierarchical network
corresponds to a credal network with separately speci-
fied sets Pi. It can be interpreted as follows: X1 is the
unobservable variable of interest, and for each i ≥ 2

the variable Xi describes the observation returned by
a sensor with a probability of being correct of at least
90%. We want to describe the uncertain knowledge
about the value of X1 that we gain from the observa-
tions returned by the k−1 sensors, which are assumed
to be independent conditional on X1.

The case with k = 3 (interpreted as a credal network)
was studied by Antonucci et al. (2007, Example 1):
they showed that if the observations x2, x3 returned
by the two sensors are equal, then the posterior impre-
cise probability that X1 has value x2 = x3 is [0.988, 1],
while if the observations x2, x3 are different, then the
posterior imprecise probability about the value of X1

is vacuous. This can be reasonable, but the problem is
that the model behaves in the same way in the cases
with k > 3: it suffices that one of the observations
x2, . . . , xk returned by the k − 1 sensors is different
from the others, in order for the posterior imprecise
probability about the value of X1 to be vacuous, in-
dependently of the number of sensors. The reason is
that for each i ≥ 2 it is considered possible that the
sensor returning the observation Xi is perfect (that is,
always correct) while all others are not (that is, they
can be wrong), and in this case the posterior prob-
ability that X1 has value xi is 1, even when all ob-
servations returned by the other sensors are different
from xi. However, even if the sensor returning the ob-
servation Xi is always correct while all others can be
wrong, it is extremely improbable that all others are
wrong at the same time. Hence, when the observa-
tion returned by a sensor is different from all others,
it is extremely implausible that this sensor is perfect.
This information about plausibility is described by the
likelihood function, and in fact the problem disappears
when the network is interpreted as a hierarchical net-
work instead of a credal network.

The convexification of the hierarchical model associ-
ated to the hierarchical network can be easily updated
thanks to the results of Section 3: for instance, in the
case with k = 5, when 3 of the observations x2, . . . , x5

returned by the 4 sensors are equal x and one is differ-
ent from x, the membership function of the posterior
fuzzy probability p that X1 has value x is plotted in
Figure 3; in particular, the α-cut with α = 0.1465 is
the interval [0.932, 1]. As expected, this fuzzy proba-
bility is very high, although no probability value in the
interval [0, 1] is completely excluded.

To solve the above problem in the framework of credal
networks, we should exclude the possibility of perfect
sensors by bounding from above the probability that
sensors are correct. That is, we should choose a small
ε > 0, and for each i ≥ 2 replace the set Pi by the
set of all stochastic kernels Pi from PAi = {0, 1}
to Xi = {0, 1} such that Pi({x} | (x)) ∈ [0.9, 1 − ε]
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Figure 3: Membership function of the posterior fuzzy
probability p that X1 has value x, when 3 of the obser-
vations x2, . . . , x5 returned by the 4 sensors are equal
x and one is different from x (for the hierarchical net-
work of Example 5 with k = 5).

for both x ∈ {0, 1}. However, the resulting poste-
rior imprecise probabilities can depend strongly on the
choice of ε: for instance, in the case with k = 5,
when 3 of the observations x2, . . . , x5 returned by the
4 sensors are equal x and one is different from x,
the posterior imprecise probability that X1 has value
x is [0.422, 1.000] when ε = 0.001, [0.786, 1.000] when
ε = 0.005, and [0.880, 1.000] when ε = 0.01. By
contrast, in these cases the membership functions of
the posterior fuzzy probability that X1 has value x are
(almost) equal to the pointwise product of the indica-
tor function of the corresponding posterior imprecise
probability and the membership function for the case
with ε = 0 (plotted in Figure 3). Hence, this fuzzy
probability does not change much when ε is varied,
since only rather implausible probability values are ex-
cluded; in particular, the α-cuts with α = 0.1465 for
the cases with ε = 0.001, ε = 0.005, or ε = 0.01 are
practically equal to the α-cut [0.932, 1] for the case
with ε = 0.

The possibilistic level of the hierarchical model as-
sociated to the hierarchical network of Example 5
contains no information before the updating, because
the (prior) likelihood functions liki on the sets Pi

of stochastic kernels associated to the nodes Xi are
constant. But also hierarchical networks such that
the possibilistic levels of the associated hierarchical
models contain some prior information (that is, some
of the likelihood functions liki are not constant) can
be useful. In particular, when the stochastic kernels
of the network are learned from training data, it is
not necessary to reduce the likelihood function to the
maximum likelihood estimates (and thus discard the
information about the uncertainty of these estimates):
the whole likelihood function induced by the training
data can be maintained as the possibilistic level of
the hierarchical model associated to the hierarchical

network. This is a very interesting topic, but goes
beyond the scope of the present paper.

Another useful application of hierarchical networks
with nonconstant (prior) likelihood functions liki is
the contamination of a Bayesian (or credal) network:
for each node Xi we can give high relative plausibil-
ity to the original stochastic kernels Pi associated to
Xi, and low relative plausibility to all (or a subset
of) other stochastic kernels Pi from PAi to Xi. A
similar contamination would be possible also in the
framework of credal networks (by considering neigh-
borhoods of the original stochastic kernels), but we
could not include all possible stochastic kernels (since
otherwise the resulting imprecise probability model
would be useless), and the final considerations of Ex-
ample 5 suggest that the resulting posterior imprecise
probabilities would be much more sensitive than the
posterior fuzzy probabilities to the exact choice of the
contamination. In a certain sense, in the framework
of hierarchical networks the contamination can be at
the possibilistic level, while in the framework of credal
networks it must be at the probabilistic level, and this
can lead to instability.

Example 6 Consider the Bayesian network obtained
from the hierarchical network of Example 5 by select-
ing, for each i ≥ 2, the stochastic kernel Pi from
PAi = {0, 1} to Xi = {0, 1} such that Pi({x} | (x)) =
0.95 for both x ∈ {0, 1}. We can contaminate this
Bayesian network by choosing a small γ > 0 and as-
sociating to each node Xi the (separately specified) set
Pi of all stochastic kernels Pi from PAi = {0, 1} to
Xi = {0, 1} and the (prior) likelihood function liki

on Pi separately specified by the likelihood functions
liki,(x) on the set of all probability measures on {0, 1}
such that liki,(x)(Pi(· | (x))) = 1 if Pi(· | (x)) is the
corresponding conditional probability in the Bayesian
network, and liki,(x)(Pi(· | (x))) = γ otherwise, for
both x ∈ {0, 1}. The resulting hierarchical network
describes the situation in which there is some un-
certainty about the conditional probabilities of the
Bayesian network; it is useful because it tells us how
robust against modifications of the conditional proba-
bilities are the conclusions of the Bayesian network.

The convexification of the hierarchical model asso-
ciated to the hierarchical network can be easily up-
dated thanks to the results of Section 3: for instance,
Figure 4 shows the graphs of the membership func-
tions of the fuzzy probability p of X1 = 1 in the
case with k = 3 and γ = 0.05: prior to any obser-
vation (dashed line), after observing X2 = X3 = 0
(solid line with maximum near 0), after observing
X2 = 1 and X3 = 0 or vice versa (dotted line),
and after observing X2 = X3 = 1 (solid line with
maximum near 1); in particular, the corresponding α-
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Figure 4: Membership functions of the fuzzy probabil-
ity p of X1 = 1 (for the hierarchical network of Exam-
ple 6 with k = 3 and γ = 0.05): prior to any observa-
tion (dashed line), after observing X2 = X3 = 0 (solid
line with maximum near 0), after observing X2 = 1
and X3 = 0 or vice versa (dotted line), and after ob-
serving X2 = X3 = 1 (solid line with maximum near
1).

cuts with α = 0.1465 are the intervals [0.347, 0.653],
[0.001, 0.019], [0.035, 0.965], and [0.981, 0.999], respec-
tively. Hence, the conclusions of the Bayesian net-
work are pretty robust when the two sensors agree
(the uncertainty about the probability of X1 = 1 de-
creases), while they are not robust at all when the two
sensors disagree (the uncertainty about the probability
of X1 = 1 increases).

When X, Y, Z ⊆ {X1, . . . , Xk} are three disjoint sets
of variables, Y is said to be irrelevant to X given Z
(with respect to a hierarchical model on Ω) if the fuzzy
probability distribution for the variables in X condi-
tional on any realization of the variables in Z does not
change when also something about the variables in Y
is observed. This definition of conditional irrelevance
is stronger than the corresponding one for imprecise
probability models, since the invariance of both levels
of the hierarchical model is required. However, when
the hierarchical model is constructed through a hi-
erarchical network, the following fundamental result
holds (for a sketch of the proof see Cattaneo, 2008b,
Subsection 3.1).

Theorem 7 Let X, Y, Z ⊆ {X1, . . . , Xk} be three dis-
joint sets of variables. If X and Y are d-separated by
Z in the directed acyclic graph of a hierarchical net-
work, then Y is irrelevant to X given Z, with respect
to the hierarchical model associated to the hierarchical
network.

Theorem 7 is of crucial importance for the meaning
and usefulness of hierarchical networks: conditional
irrelevances between the variables X1, . . . , Xk are en-
coded in the graph and can be determined by the

graphical criterion of d-separation. Together with the
results of Section 3, Theorem 7 allows the calculation
of exact inferences in simple hierarchical networks.

Any probability measure on Ω can be constructed
through a Bayesian network with nodes X1, . . . , Xk.
By contrast, not all hierarchical models on Ω can be
constructed through hierarchical networks with nodes
X1, . . . , Xk. However, any hierarchical model describ-
ing the uncertain knowledge about the values of the
variables X1, . . . , Xk can be constructed through a hi-
erarchical network with nodes X1, . . . , Xk+1: it suf-
fices to add a root Xk+1, which in general is a parent
of all other nodes, and which indexes the probability
measures in the probabilistic level P of the hierarchi-
cal model. Hence, the variable Xk+1 takes values in
the set P, which can be infinite, but this is unim-
portant, since the root Xk+1 is fuzzy (with likelihood
function likk+1 corresponding to the possibilistic level
lik of the hierarchical model); by contrast, the nodes
X1, . . . , Xk are Bayesian.

More generally, we can easily transform any hierar-
chical network with nodes X1, . . . , Xk into a larger
hierarchical network which describes the same un-
certain knowledge about the values of the variables
X1, . . . , Xk, but such that each node is either Bayesian
or fuzzy (and we can also require that only roots can
be fuzzy). In fact, when a node Xi is neither Bayesian
nor fuzzy (or it is fuzzy but not a root), we can simply
add a root which is a parent of Xi only, and which in-
dexes the set Pi of stochastic kernels associated to Xi.
This additional root is fuzzy (with likelihood function
corresponding to the likelihood function liki on Pi as-
sociated to Xi), while the node Xi becomes Bayesian.
In particular, we can always obtain a hierarchical net-
work such that each node Xi is either Bayesian or
fuzzy and both the set Pi of stochastic kernels and
the likelihood function liki on Pi associated to Xi are
separately specified (since this is always the case for
roots and Bayesian nodes).

From the above considerations it follows easily the re-
sult (showed by Antonucci and Zaffalon, 2008) that
we can transform any credal network with nodes
X1, . . . , Xk into a larger credal network which de-
scribes the same uncertain knowledge about the val-
ues of the variables X1, . . . , Xk, but such that each
node Xi is either Bayesian or the set Pi of stochastic
kernels associated to Xi is separately specified by vac-
uous imprecise probability models. More specifically,
we can always obtain a credal network such that each
node Xi is either Bayesian or it is a root and the set Pi

of probability measures on Xi is the vacuous imprecise
probability model. The difference between the hierar-
chical model and the imprecise probability model is in
the way in which such roots Xi are updated when data



are observed (since the Bayesian nodes are updated in
the same way in both models): in the framework of
credal networks we remain in the state of complete
ignorance about the value of Xi (apart from when
we get deterministic information about it), while in
the framework of hierarchical networks the possibilis-
tic level allows us to get out of the state of complete
ignorance about the value of Xi.

This shows in particular that hierarchical networks
cannot be described by possibly larger credal networks
(for instance by interpreting possibility measures as
upper probability measures), because these could not
display the same behavior when data are observed,
not even with an alternative updating rule.

5 Conclusion

In the present paper, the use of fuzzy probabilities
to describe the uncertain knowledge about the val-
ues of the nodes of belief networks has been studied.
The increased expressive power, the ability of using
all the information provided by the data, and the in-
creased robustness of the conclusions are important
advantages over credal networks. The possibility of
using the whole likelihood function induced by train-
ing data (and not only the maximum likelihood es-
timates) seems very promising and deserves further
study. The description of convex hierarchical models
by finite sets of measures and the validity of the cri-
terion of d-separation allow the calculation of the de-
sired inferences in simple hierarchical networks. How-
ever, approximation algorithms are necessary for the
calculation of inferences in more complex networks:
some algorithm for credal networks can probably be
adapted to hierarchical networks, thanks to the strong
similarity between the descriptions of the hierarchical
model and of the imprecise probability model as con-
vex sets of measures.
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Antonucci, A., Brühlmann, R., Piatti, A., and Zaf-
falon, M. (2007). Credal networks for military iden-
tification problems. In ISIPTA ’07. SIPTA, 1–10.

Antonucci, A., and Zaffalon, M. (2008). Decision-
theoretic specification of credal networks: A uni-
fied language for uncertain modeling with sets of
Bayesian networks. Int. J. Approx. Reasoning 49,
345 – 361.

Cattaneo, M. (2005). Likelihood-based statistical de-
cisions. In ISIPTA ’05. SIPTA, 107–116.

Cattaneo, M. (2007). Statistical Decisions Based Di-

rectly on the Likelihood Function. PhD thesis, ETH
Zurich.

Cattaneo, M. (2008a). Fuzzy probabilities based on
the likelihood function. In Soft Methods for Han-
dling Variability and Imprecision. Springer, 43–50.

Cattaneo, M. (2008b). Probabilistic-possibilistic be-
lief networks. Technical Report 32. Department of
Statistics, LMU Munich.

Cozman, F. G. (2005). Graphical models for imprecise
probabilities. Int. J. Approx. Reasoning 39, 167–
184.

Dahl, F. A. (2005). Representing human uncertainty
by subjective likelihood estimates. Int. J. Approx.
Reasoning 39, 85–95.

De Cooman, G. (2005). A behavioural model for vague
probability assessments. Fuzzy Sets Syst. 154, 305–
358.

Dubois, D. (2006). Possibility theory and statistical
reasoning. Comput. Stat. Data Anal. 51, 47–69.

Held, H., Augustin, T., and Kriegler, E. (2008).
Bayesian learning for a class of priors with pre-
scribed marginals. Int. J. Approx. Reasoning 49,
212 – 233.

Hisdal, E. (1988). Are grades of membership proba-
bilities? Fuzzy Sets Syst. 25, 325–348.

Jensen, F. V. (2001). Bayesian Networks and Decision
Graphs. Springer.

Moral, S. (1992). Calculating uncertainty intervals
from conditional convex sets of probabilities. In
UAI ’92. Morgan Kaufmann, 199–206.

Pawitan, Y. (2001). In All Likelihood: Statistical Mod-
elling and Inference Using Likelihood. Oxford Uni-
versity Press.

Pearl, J. (1988). Probabilistic Inference in Intelligent
Systems. Morgan Kaufmann.

Walley, P. (1997). Statistical inferences based on a
second-order possibility distribution. Int. J. Gen.
Syst. 26, 337–383.

Wilks, S. S. (1938). The large-sample distribution of
the likelihood ratio for testing composite hypothe-
ses. Ann. Math. Stat. 9, 60–62.

Wilson, N. (2001). Modified upper and lower proba-
bilities based on imprecise likelihoods. In ISIPTA
’01. Shaker, 370–378.

Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory
of possibility. Fuzzy Sets Syst. 1, 3–28.


