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Abstract

Imprecision arises naturally in the context of com-
puter models and their relation to reality. An im-
precise treatment of general computer models is pre-
sented, illustrated with an analysis of a complex
galaxy formation simulation known as Galform. The
analysis involves several different types of uncertainty,
one of which (the Model Discrepancy) comes di-
rectly from expert elicitation regarding the deficien-
cies of the model. The Model Discrepancy is therefore
treated within an Imprecise framework to reflect more
accurately the beliefs of the expert concerning the dis-
crepancy between the model and reality. Due to the
conceptual complexity and computationally intensive
nature of such a Bayesian imprecise uncertainty anal-
ysis, Bayes Linear Methodology is employed which
requires consideration of only expectations and vari-
ances of all uncertain quantities. Therefore incorpo-
rating an Imprecise treatment within a Bayes Lin-
ear analysis is shown to be relatively straightforward.
The impact of an imprecise assessment on the input
space of the model is determined through the use of
an Implausibility measure.

Keywords. Bayesian Inference, Computer models,
Calibration, Imprecise model discrepancy, Implausi-
bility, Galaxy Formation, Graphical Representation
of Model Imprecision.

1 Introduction

Computer models make imprecise statements about
physical systems. This arises because of compromises
made in the physical theory and in approximations
to solutions of very complex systems of equations.
Therefore any statement about a physical system, for
example climate change, which is derived from the
analysis of computer models will be necessarily imper-
fect, as it will usually be very difficult to put a precise
quantification on the discrepancy between the model
analysis and the physical system [1]. A full probabilis-

tic representation of the imprecision arising from such
model discrepancy will typically be very complex and
difficult to analyse. However, there is an alternative
way to express such imprecision, based on viewing
expectations rather than probability as the natural
primitive for expressing uncertainty statements. This
formulation allows us to focus directly on ‘high level’
summary expressions of imprecision. This approach
is termed Bayes Linear Analysis; for a detailed treat-
ment see [2].

In this paper we show how the Bayes Linear approach
may be used to capture the most important features
of the imprecision arising from the use of complex
physical models. We illustrate our approach with
the galaxy formation model known as Galform. Gal-
form simulates the formation and evolution of approx-
imately 1 million galaxies from the beginning of the
Universe until the current day (a period of approxi-
mately 13 billion years). It gives outputs representing
various physical features of each of the galaxies which
can be compared with observational data [3].

This paper is structured as follows: in section 2 we
discuss the Galform model in more detail, in section
3 the theory of computer models and the incorpora-
tion of the imprecise model discrepancy is described,
and in section 4 we develop appropriate graphical dis-
plays for such imprecise analyses and demonstrate the
application of these methods to the Galform model.

2 Cosmology and Galaxy Formation

2.1 Understanding the Universe

Over the last 100 years, major advances have been
made in understanding the large scale structure of
the Universe. Current theories of cosmology suggest
that the Universe began in a hot, dense state approx-
imately 13 billion years ago, and that it has been ex-
panding rapidly ever since. However, there exists a
major problem: observations of galaxies imply that



there must exist far more matter in the Universe than
the visible matter that makes up stars, planets and us.
This is referred to as ‘Dark Matter’ and understand-
ing its nature and how it has affected the evolution
of galaxies within our Universe is one of the most im-
portant problems in modern cosmology.

In order to study many of the effects of Dark Mat-
ter, cosmologists try to model Galaxy formation using
complex computer models. In this paper, we develop
the Bayesian treatment of imprecision for computer
models, and illustrate our analysis using one such
model, known as Galform (developed by the Galform
group at the Institute for Computational Cosmology,
Durham University).

2.2 Galform: a Galaxy Formation
Simulation

Simulating the formation of large numbers of galax-
ies from the beginning of the Universe until the cur-
rent day is a difficult task and so the process is split
into two parts. First a Dark Matter simulation is
performed to determine the behaviour of fluctuations
of mass in the early Universe, and their subsequent
growth into millions of galaxy sized lumps in the fol-
lowing 13 billion years. Second, the results of the
Dark Matter simulation are used by a more detailed
model called Galform which models the far more com-
plicated interactions of normal matter including: gas
cloud formation, radiative cooling, star formation and
the effects of central black holes.

The first simulation is run on a volume of space of
size (1.63 billion light-years)3. This volume is split
into 512 sub-volumes which are independently simu-
lated using the second model Galform, which is the
subject of the Imprecise Uncertainty Analysis in this
paper (see figure 1). Each run of Galform takes 20-30
minutes per subvolume per processor.

2.3 Galform Inputs and Outputs

The Galform simulation provides many outputs re-
lated to approximately 1 million simulated galaxies.
We consider the two most important types of out-
put: the bj and K band luminosity functions. The
bj band luminosity function gives the number of blue
(i.e. young) galaxies of a certain luminosity per unit
volume, while the K band luminosity function de-
scribes the number of red (i.e. old) galaxies (see Fig-
ure 1). The colour of a galaxy comes from the stars
it contains, stars which on average burn bluer early
in their lifecycle and redder as they age. These out-
puts can be compared to observational data gathered
by the 2dFGRS galaxy survey (see [3] and references
therein).

Figure 1: Top 4 panels: the evolution of both the Dark
Matter Simulation and Galform over a 13 billion year
period. Darker areas show higher concentrations of
Dark Matter, leading to the formation of bright galax-
ies (the white dots). Bottom 2 panels: the bj and K
luminosity functions. The grey lines are from 60 runs
of the Galform simulation. The black points are ob-
served data from the 2dFGRS survey with associated
measurement errors.



Galform has 17 input parameters that the cosmolo-
gists were interested in varying. Due to expert judge-
ments regarding the impact of these inputs on the
luminosity functions we attempted to calibrate Gal-
form over only 8 of the input parameters (while taking
into account the possible effects of the remaining 9).
These input parameters and their initial ranges are:

vhotdisk: 100 - 550
aReheat: 0.2 - 1.2
alphacool: 0.2 - 1.2
vhotburst: 100 - 550
epsilonStar: 0.001 - 0.1
stabledisk: 0.65 - 0.95
alphahot: 2 - 3.7
yield: 0.02 - 0.05

The other 9 parameters are: VCUT, ZCUT, alphas-
tar, tau0mrg, fellip, fburst, FSMBH, epsilonSMB-
HEddington and tdisk.

2.4 Galaxy Formation: Main Issues

The main physical questions that the cosmologists
are interested in are: do we understand how galax-
ies form, and could the galaxies we observe have been
formed in the presence of large amounts of dark mat-
ter? In order to answer these questions it is vital to
correctly analyse all relevant sources of uncertainty
within this situation. Many of the sources of uncer-
tainty derive from aspects of the problem for which we
have a good physical understanding, for example, the
various types of measurement error associated with
the observational data (which mainly come from op-
tical deficiencies of telescopes).

However, by far the most important uncertainties
arise from the fact that we are uncertain about the
discrepancy between the Galform model and the real
system, and we are also uncertain about which choice
of input should be made when running the model.

3 Bayes Linear Analysis for
Computer Simulators

To understand and describe all the sources of uncer-
tainty in the Galform simulator we apply computer
model emulation techniques. Although here we will
only discuss the Galform simulator, these techniques
are very general and can be applied to any com-
plex model of a physical system. Indeed they have
been successfully applied to a wide variety of physi-
cal models (see [5] for a Bayes Linear approach, [4]
for a fully Bayesian approach, and for an overview
of computer experiments in general see [6] or the
Managing Uncertainty in Complex Models website

http://mucm.group.shef.ac.uk/index.html).

3.1 Main Objectives

A common aim of computer experiment analysis is to
use observed data to reduce uncertainty about possi-
ble choices of the input parameters x (see [5] and [4]).
In many problems the major interest lies in whether
there is any choice of x that would lead to an ac-
ceptable match between model outputs and observed
data. The larger the assessed discrepancy between
model and system, the weaker the constraints the ob-
servations will impose on this choice. In this work
we treat this discrepancy as imprecise. Therefore one
of the most important aspects of the analysis of the
model lies in identifying and quantifying the impact
of such imprecision on the choice of possible input
values.

3.2 Computer simulators

The simulator (Galform) is represented as a function,
which maps the input parameters x to the outputs
f(x). We use the “Best Input Approach”, where we
assume there exists a value x∗ independent of the
function f such that the value f∗ = f(x∗) summarises
all the information the simulator conveys about the
system. In order to make meaningful statements
about the system, denoted y, in relation to the model,
we link the simulator to the system using the model
discrepancy denoted εmd via the equation:

y = f∗ + εmd, (1)

and assume that εmd is independent of f and x∗, that
is, independent in terms of our own beliefs.

The Model Discrepancy term εmd links the real sys-
tem y to the best evaluation of the model represented
by f∗. This is distinct from other sources of uncer-
tainty in our analysis and comes directly from expert
opinion regarding the ‘accuracy’ of the model. Un-
derstanding the nature of εmd is a non-trivial task
as there are various other sources of uncertainty that
are present that interfere with any assessment of εmd.
For example, we can never measure the real system
y directly. Instead we have measurements z observed
with experimental error εobs which are linked to the
system by:

z = y + εobs. (2)

Another important source of uncertainty is due to lack
of knowledge about the form of the function f(x). As
the model takes a significant time to run and has a
high dimensional input space we only have limited
knowledge about its behavior. Further, there is un-
certainty regarding the best input value of x∗ that
features in the definition of εmd (equation (1)).



These other types of uncertainty make understanding
εmd difficult, which is a significant problem as often
εmd is the most important source of uncertainty due
to its size and nature. Due to these difficulties, the ex-
pert will often be imprecise over the assessment of the
model discrepancy, and even more imprecision could
occur when we consider the opinions of a group of ex-
perts. It is therefore reasonable to analyse εmd within
an imprecise framework, while treating other less sig-
nificant (and more understood) sources of uncertainty
as precise.

We need to understand the behavior of the Galform
simulation f(x): this is done by representing our be-
liefs about f(x) as a statistical function known as
an Emulator, described in the next section. We ad-
dress the calibration problem (that of finding inputs
x that give rise to good matches between the outputs
of f(x) and the observed data z) by use of a tech-
nique known as History Matching [5]. This involves
discarding regions of the input parameter space that
we are reasonably sure will give bad fits to the ob-
served data, and we do this using an Implausibility
measure. Analysing the effect on this measure of hav-
ing an imprecise Model Discrepancy εmd (and the cor-
responding effect on the History Match) is the main
goal of this work.

3.3 Representing beliefs about f using
emulators

An emulator is a stochastic belief specification for a
deterministic function. This would be constructed af-
ter performing a large, space filling set of runs of the
model [6]. Our emulator for component i of f is given
by:

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known
deterministic functions of x, and u(x) is a weakly sta-
tionary stochastic process. A simple specification is
to suppose, for each x, that ui(x) has zero mean with
constant variance and Corr(ui(x), ui(x′)) is a func-
tion of ‖x− x′‖. From the emulator, we may extract
the mean, variance and covariance for the function,
at each input value x.

µi(x) = E[fi(x)], κi(x, x′) = Cov(fi(x), fi(x′))

Often, because of the mode of construction, the ex-
pectation of the emulator interpolates known runs of
the model, while the variance represents uncertainty
of the function at x inputs that have not been run. A
key feature of an emulator is that it is (in most cases)
several orders of magnitude faster to evaluate than the
model itself. This is important as we will be exploring

high dimensional input spaces that necessitate large
numbers of evaluations. Emulator techniques are vital
in the analysis of any model that has a moderate/long
run time and a high dimensional input space.

3.4 Bayes Linear approach

For large scale problems involving computer models,
a full Bayes analysis is hard for the following reasons.
Firstly, it is very difficult to give a meaningful full
prior probability specification over high dimensional
input spaces. Secondly, the computations for learning
from both observed data and runs of the model, and
choosing informative runs, may be technically very
challenging. Thirdly, in such computer model prob-
lems, often the likelihood surface is extremely compli-
cated, and therefore any full Bayes calculation may
be extremely non-robust. However, the idea of the
Bayesian approach, namely capturing our expert prior
judgements in stochastic form and modifying them by
appropriate rules given observations, is conceptually
appropriate.

The Bayes Linear approach is (relatively) simple in
terms of belief specification and analysis, as it is based
only on the mean, variance and covariance specifica-
tion which, following de Finetti, we take as primitive.
It also allows a relatively straightforward description
of imprecision which is vital for this work.

We replace Bayes Theorem (which deals with proba-
bility distributions) by the Bayes Linear adjustment
which is the appropriate updating rule for expecta-
tions and variances. The Bayes Linear adjustment of
the mean and the variance of y given z is:

Ez[y] = E[y] + Cov(y, z)Var(z)−1(z − E[z]),
Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y)

Ez[y], Varz[y] are the expectation and variance for y
adjusted by z.

The Bayes linear adjustment may be viewed as an ap-
proximation to a full Bayes analysis, or more funda-
mentally as the “appropriate” analysis given a partial
specification based on expectation (with methodology
for modelling, interpretation and diagnostic analysis).
For more details see [2].

3.5 History Matching using Implausibility
Measures.

We can now use the emulator, the model discrepancy
and the measurement errors to calculate a Univariate
Implausibility Measure, at any input parameter point
x, for each component i of the computer model f(x).



This is given by:

I2
(i)(x) = |E[fi(x)]− zi|2/Var(fi(x)− zi) (3)

which now becomes:

I2
(i)(x) = |E[fi(x)]− zi|2/(Var(fi(x)) + IMD + OE)

(4)
where E[fi(x)] and Var(fi(x)) are the emulator ex-
pectation and variance, zi are the observed data and
IMD = Var(εmd) and OE are the (univariate) Impre-
cise Model Discrepancy variance and Observational
Error variance.

When I(i)(x) is large this implies that, even given all
the uncertainties present in the problem, we would
be unlikely to obtain a good match between model
output and observed data were we to run the model
at input x. This means that we can cut down the
input space by imposing suitable cutoffs on the im-
plausibility function (a process referred to as History
Matching). Regarding the size of I(i)(x), if we as-
sume that for fixed x the appropriate distribution of
(fi(x∗)− z) is unimodal, then we can use the 3σ rule
which implies that if x = x∗, then I(i)(x) < 3 with
a probability of approximately 0.95 (even if the dis-
tribution is asymmetric). Values higher than 3 would
suggest that the point x should be discarded.

It should be noted that since the implausibility relies
purely on means and variances (and therefore can be
evaluated using Bayes Linear methodology), it is both
tractable to calculate and simple to specify and hence
to use as a basis of imprecise analysis.

One way to combine these univariate implausibilities
is by maximizing over outputs:

IM (x) = max
i

I(i)(x) (5)

Using the above unimodal assumptions, values of
IM (x) of around 3.5 might suggest that x can be dis-
carded, as is discussed in section 4.2.

If we construct a multivariate model discrepancy, then
we can define a multivariate Implausibility measure:

I2(x) = (E[f(x)]− z)T Var(f(x)− z)−1(E[f(x)]− z),

which becomes:

(E[f(x)]−z)T (Var(f(x))+IMD+OE)−1(E[f(x)]−z).

Again, large values of I(x) imply that we would be un-
likely to obtain a good match between model output
and observed data were we to run the model at input
x. Choosing a cutoff for I(x) is more complicated. As
a simple heuristic, we might choose to compare I(x)
with the upper critical value of a χ2 distribution with
degrees of freedom equal to the number of outputs.

4 Application to a Galaxy Formation
Simulation

One of the long-term goals of the Galform project is
to identify the set of input parameters that give rise
to acceptable matches between outputs of the Gal-
form model and observed data. We do this using the
History Matching ideas outlined above, the full de-
tails of which will be reported elsewhere. Before one
can embark on such a process, the imprecise model
discrepancy must be constructed, and its impact un-
derstood, as we now describe.

We proceed to analyse the Galaxy Formation model
Galform using the computer model techniques de-
scribed above. We choose to examine the mean of
the first 40 sub-volumes (following the cosmologists’
own attempts to calibrate) and select 11 output points
from the bj and K luminosity graphs for use in our
analysis, as shown in figure 2.

First, 1000 evaluations of the model were made (also
shown in figure 2) using a space filling latin hypercube
design across the 8-dimensional input space. These
runs were used to construct an emulator for Galform
as discussed in section 3.3.

We now describe the imprecise model discrepancy
used to capture the cosmologist’s assessment of the
discrepancy between model and reality, and then go
on to examine the imprecise implausibility measures
this generates, and their impact on the judgement as
to which inputs x are deemed acceptable.

4.1 Imprecise Model Discrepancy

At this stage we need to assess the Model Discrep-
ancy εmd related to all 11 outputs of interest. This
is obtained from an expert opinion regarding the dis-
crepancy between the model and reality, derived from
opinions about potential deficiencies of the model. As
this is a difficult assessment to make, an imprecise
quantification of the model discrepancy will often be
the most realistic representation of such uncertainty.

As we are doing a Bayes Linear analysis we only need
to consider the assessment of E[εmd] and Var(εmd).
This is a major benefit of the Bayes Linear approach
as we can represent any imprecision by letting some
of these quantities vary over specified ranges and can
then explore the consequences in the rest of our anal-
ysis. This is straightforward in comparison to a fully
probabilistic analysis where such an imprecise specifi-
cation would be extremely difficult, and a subsequent
examination of the impact of such imprecision would
often be intractable.

A leading expert stated that his beliefs regard-



Figure 2: The bj and K luminosity outputs from 1000
runs of the model. The vertical black lines show the
11 outputs chosen for emulation. The error bars now
incorporate the (univariate) model discrepancy with
a = a.

ing the model discrepancy were symmetric in that
E[εmd] = 0. Define IMD = Var(εmd). Even for the
univariate case (i.e. considering only one of the 11
outputs) the individual expert was unwilling to assess
the size of IMD precisely. However, the expert was
willing to make an imprecise assessment by specifying
lower and upper bounds IMD and IMD.

For the multivariate case, we needed to assess
IMD = Var(εmd) which is now an 11x11 matrix. The
structure of this matrix will come from the expert’s
opinion as to the deficiencies of the model. In the case
of Galform there are two major physical defects that
can be identified. The first is the possibility that the
model has too much (too little) mass in the simulated
universe. This would lead to the 11 luminosity out-
puts all being too high (or too low), and would lead
to positive correlation between all outputs in the MD
matrix. The second possible defect is that the galaxies
might age at the wrong rate leading to more/less blue
galaxies and therefore less/more red galaxies. This
would be represented as contributing a smaller nega-
tive correlation between the bj and K luminosity out-
puts. To respect the symmetries of these possible de-
fects, the multivariate Imprecise Model Discrepancy

(IMD) was parameterised in the following form:

IMD = a2





1 b .. c .. c
b 1 .. c . c
: : : : : :
c .. c 1 b ..
c .. c b 1 ..
: : : : : :




(6)

where now a, b and c are imprecise quantities,
and we obtain the following expert assessments:
a = 3.76× 10−2, a = 7.52× 10−2, b = 0.4, b = 0.8,
and c = 0.2, c = b.

It is possible to build in far more structure into IMD
if required. The more detailed the structure, the more
difficult eliciting expert information becomes. How-
ever, note the relative ease of specifying useful high-
level imprecise statements using expectation as prim-
itive, as compared to the corresponding effort for a
fully probabilistic analysis. Exploring the effects of
these specifications is also an easier task, as we now
show by examining the effects of varying choices of a,
b and c on the appropriate implausibility measures.

4.2 Implausibility Measures

In section 3.5 we showed how to construct the
maximised and multivariate Implausibility measures
IM (x) and I(x). As these are derived using the impre-
cise model discrepancy we can write the dependence
of these two implausibility measures on a, b and c ex-
plicitly. We can now explore the effects on IM (x, a)
and I(x, a, b, c) of varying a, b and c within the credal
set C defined by:

a < a < a, b < b < b, c < c < b,

as is described in the next section. As the implausibil-
ity measures are now imprecise, in order for regions of
the input space x to be discarded as Implausible, they
must violate the implausibility cutoff for all values of
a, b and c, that is:

I(x, a, b, c) > Icut ∀ a, b, c ∈ C, (7)

with a similar relation for IM (x, a):

IM (x, a) > IMcut ∀ a ∈ C. (8)

In section 4.3 we set Icut = 26.75 corresponding to a
critical value of 0.995 from a χ2 distribution with 11
degrees of freedom (and IMcut = 3.5) which were felt
to be appropriate, conservative choices for the cutoffs.
Note that if an input x satisfies either constraint (7) or
constraint (8) then it is deemed implausible and will
be discarded. As can be seen from equations (6),(3)



and (5), IM (x, a) is a monotonically decreasing func-
tion of a and hence constraint (8) will be equivalent
to:

min
a∈C

IM (x, a) = IM (x, a) > IMcut (9)

The constraint for I(x, a, b, c) is more complex and in
general no such monotonicity arguments can be used.
In a full calibration analysis we would, for fixed x,
evaluate I(x, a, b, c) over a large number of points in
the credal set C, and only discard the input x if it does
not satisfy the implausibility cutoffs for every one of
these points. However, here we are more interested in
understanding the impact of different choices of a, b
and c on the input space, which we do in the next
section.

4.3 Effect of the Imprecise Model
Discrepancy on the Assessment of the
Best Input x∗

The most important effect of an imprecisely specified
model discrepancy is its impact upon the choice of
acceptable input parameters x∗. Above we showed
how to construct the implausibility measures and de-
scribed their use in deciding which inputs would be
deemed acceptable. Here we will explore the impact
of the imprecision on the multivariate measure itself,
then on the percentage of input space remaining, by
analysing the effects of varying a, b and c. Note that
while we present all the pictures in greyscale, these
displays are designed for presentation in colour.

Figure 3 shows the multivariate implausibility
I(x, a, b, c) as a function of a, b and c for two dif-
ferent fixed values of x. In the top (bottom) panel x7

i.e. alphahot is set to its minimum (maximum) value
of 2 (3.7). In both panels x1 i.e. vhotdisk is at its
maximum value of 550, and all other inputs are at
their midrange values. In these and subsequent fig-
ures we examine slightly larger ranges for a, b and c
than are defined by the Credal Set: here they sat-
isfy 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b.
The top panel shows that I(x, a, b, c) is minimised
for large values of a, b and c attaining a minimum
of approximately I(x, a, b, c) = 14.2. In the bot-
tom panel however, the implausibility is minimised
for low values of b and c and only attains a minimum
of I(x, a, b, c) = 38.3. This shows the dramatically
different behaviour of the implausibility measure as a
function of a, b and c for two different parts of the
input space, and specifically that general monotonic-
ity arguments (such as used in equation (4.2)) can-
not be applied to the imprecise parameters b and c.
Plots such as those shown in figure 3 are very useful
in helping to understand the impact of an imprecise
assessment. However, one cannot examine such plots
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Figure 3: Both panels shows the multivariate implau-
sibility I(x, a, b, c) as a function of a, b and c for two
different fixed values of x, with darker colours repre-
senting lower implausibility. Here a, b and c vary over
the ranges 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b.
Note that the scale on the a-axis is in terms of mul-
tiples of a. Top panel: vhotdisk = 550, alphahot =
2, Bottom panel: vhotdisk = 550, alphahot = 3.7, all
other inputs set to their midrange values.
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Figure 4: Fraction of input space that survives the multivariate implausibility cutoff given by equation (7) with
Icut = 26.75 as a function of a, b and c in the ranges 0.5a < a < 2a, 0 < b < 0.95 and 0 < c < b. Note that the
scale on the a-axis is in terms of multiples of a.

for all points in the 8-dimensional input space. We
therefore look at other ways to summarise and visu-
alise the analysis.

We can summarise the effect of the imprecise mul-
tivariate implausibility cutoff given by equation (7)
on the whole of the input space by looking at the
fraction of space remaining once the cutoff has been
imposed. Here we display the results corresponding
to Icut = 26.75, a value which was thought to be a
reasonably conservative choice. Figure 4 shows this
fraction of space remaining as a function of a, b and
c in the ranges 0.5a < a < 2a, 0 < b < 0.95 and
0 < c < b, with darker colours representing higher
fractions. Figure 5 shows the same 3D plot from a
different perspective. The 3D object has been cut in
3 places to allow one to see slices of the function at
fixed values of a. This shows that for large values of
a, the maximum space remaining would occur for in-
termediate values of b and c (approximately b = 0.7
and c = 0.6 for a = 2), however for smaller values of
a the space remaining would be maximised by large b
and c (e.g. for a = 0.5a = a, b = 0.95 and c = 0.95:
see figure 5). These plots also suggest that the space
remaining is far less sensitive to variation in b and c
than in a: it is useful for the expert to know therefore
that their assessment for a is more significant than for
b and c.

Figure 6 shows the fraction of space remaining as a
function of a for fixed choices of b and c. The bound-
aries of the Credal Set are shown by dotted vertical
lines. Again one can see that to maximise the space

remaining requires intermediate values of b and c for
large a, and large values of b and c for small a. Also
note that as a tends to small values, the fraction of
space remaining varies only slowly: in fact setting
a = 0 (which is not shown in this figure) leads to
0.017 of the input space remaining: this is important
for the expert to know as it shows that some of the in-
put space would survive the cutoff even for zero model
discrepancy.

Examining the space remaining is useful in under-
stand the effects of the imprecise specification of
model discrepancy. However, it is also vital to assess
the effect on the input space directly i.e. to determine
which inputs x would not be discarded due to the im-
precise specification. One way to analyze this is to
ask what is the minimum value of a that is required
to ensure that a particular input point x satisfies the
implausibility cutoff. Figure 7 shows 3D plots of the
required value of a as a function of the input parame-
ters x1 and x7, and of b (with the other inputs at their
midrange values , with c = 0, and the key in terms of
multiples of a). The darkest areas are those that have
a required a of less than a and hence would survive the
cutoff for the current specification. These plots show
that while the value of b has effects in some parts of
the input space, the region defined by required a < a
is relatively independent of the value of b (a similar re-
sult is seen for plots with varying c and fixed b). This
demonstrates that the required value of a is far more
sensitive to the value of x1 and x7 as opposed to the
specified range of the imprecise quantity b, and gives
more evidence to suggest that the experts assessment



0.02

0.04

0.06

0.08

0.10

0.12

0.14
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that survives the multivariate implausibility cutoff
given by equation (7) with Icut = 26.75 as a function
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and 0 < c < b. Note that the scale on the a-axis is in
terms of multiples of a.
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Figure 6: Fraction of input space that survives
the multivariate implausibility cutoff given by equa-
tion (7) with Icut = 26.75 as a function of a for the
range 0.25a < a < 2a, for various choices of b and c.
The scale on the a axis is in terms of multiples of a.
Note that a = 0.5a. It can be seen that more space
survives when b = 0.7 and c = 0.6 for large a, however,
for smaller a the more extreme values b = 0.95 and
c = 0.95 are preferred (which are not in the Credal
Set).

for a is far more significant than that for b and c.

We have seen the effects of the imprecise assess-
ment on the multivariate implausibility measure
I(x, a, b, c), on the fraction of space remaining after
the cutoff is imposed, and on the set of allowed values
of x1 and x7. We showed that these effects are non-
trivial as the multivariate implausibility measure is a
complicated function of x, a, b and c.

5 Conclusions

We have discussed how computer models make impre-
cise statements about physical systems. This impre-
cision arises due to the immense difficulty in giving
a precise quantification on the discrepancy between
the model analysis and the system. We have shown
how use of Bayes Linear methods can provide a rela-
tively straightforward description of this imprecision,
allowing a meaningful elicitation of imprecise model
discrepancy while leading to a tractable analysis of the
issues involved in computer model calibration, which
we demonstrated in the context of the galaxy forma-
tion simulation Galform.

The mathematical tractability of treating expectation
as primitive also allows a detailed study of the effects
of such imprecise assessments. In this case this in-
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Figure 7: Plots showing the value of a that is required
to ensure a point in input space satisfies the multi-
variate cutoff, as a function of the input parameters
vhotdisk and alphahot, and of the imprecise quantity
b (with c set to 0). The key is in terms of multi-
ples of a, and the darker areas represent low required
a. All other input parameters have been set to their
midrange values.

volved understanding the impact of the imprecision on
the implausibility measures; measures that were used
to discard regions on input parameter space thought
to be very unlikely to give rise to acceptable matches
between model output and observed data. In this way
we were able to show the direct impact on parts of the
input space of the expert’s imprecise judgements re-
garding model deficiency. The effects of the imprecise
assessments were found to be non-trivial and a variety
of methods were used to summarise the data in order
to produce meaningful visual representations of such
effects.
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