
6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

A tree augmented classifier based on Extreme Imprecise Dirichlet Model

Giorgio Corani
IDSIA

Manno, Switzerland
giorgio@idsia.ch

Cassio P. De Campos
IDSIA

Manno, Switzerland
cassio@idsia.ch

Sun Yi
IDSIA

Manno, Switzerland
yi@idsia.ch

Abstract
In this paper we present TANC, i.e., a tree-augmented
naive credal classifier based on imprecise probabilities;
it models prior near-ignorance via the Extreme Imprecise
Dirichlet Model (EDM) [1] and deals conservatively with
missing data in the training set, without assuming them to
be missing-at-random. The EDM is an approximation of
the global Imprecise Dirichlet Model (IDM), which con-
siderably simplifies the computation of upper and lower
probabilities; yet, having been only recently introduced,
the quality of the provided approximation needs still to
be verified. As first contribution, we extensively com-
pare the output of the naive credal classifier (one of the
few cases in which the global IDM can be exactly im-
plemented) when learned with the EDM and the global
IDM; the output of the classifier appears to be identical
in the vast majority of cases, thus supporting the adoption
of the EDM in real classification problems. Then, by ex-
periments we show that TANC is more reliable than the
precise TAN (learned with uniform prior), and also that it
provides better performance compared to a previous [13]
TAN model based on imprecise probabilities. TANC treats
missing data by considering all possible completions of
the training set, but avoiding an exponential increase of
the computational times; eventually, we present some pre-
liminary results with missing data.

Keywords. Imprecise Dirichlet Model, Extreme Impre-
cise Dirichlet Model, Classification, TANC, Naive Credal
Classifier.

1 Introduction

Classifiers based on imprecise probabilities are progres-
sively becoming known and appreciated also outside the
area of imprecise probabilities [2]; typically, they are
based on the Imprecise Dirichlet Model (IDM) to model
a condition of prior near-ignorance. When faced with an
instance whose classification is prior-dependent, they pre-
serve reliability by returning a set of classes (indetermi-
nate classifications) instead of a single class. Thanks to

the IDM, credal classifiers robustly deal with cases where
the evidence arising from the data is not strong enough to
smooth the effect of the prior choice.

Two IDM variants have been adopted in credal classifiers:
the global IDM or the local IDM; the local lacks some con-
straints present in the global. The global IDM can make
it very difficult to solve the optimization problem to de-
termine lower and upper probabilities. So far, the naive
credal classifier (NCC) of [10] is the only case in which
it has been possible to develop a credal classifier based on
the global IDM. On the contrary, the local IDM allows for
an easier solution of the optimization problem; yet, it can
return probability intervals that can be unnecessarily wide,
compared to the global IDM.

Recently, the EDM (Extreme Dirichlet Model) [1] has
been introduced; it restricts the credal set of the global
IDM only to its extreme distributions. The intervals re-
turned by the EDM are hence included in the intervals re-
turned by the global IDM; however, the EDM can consid-
erably simplify the solution of the optimization problem.
So far, the EDM has been used only in very preliminary
experiments; as recognized also in [1], it is still necessary
to test the EDM in real classification problems and to study
the difference with the global IDM. A first contribution of
this paper is that we have implemented NCC with EDM
and we have compared it (using 23 data sets) against NCC
with global IDM; results show that the two models returns
the same set of classes in the large majority of cases.

However, besides prior-ignorance, there is another kind
of ignorance involved in the process of learning from
data, i.e., ignorance about the missingness process. Usu-
ally, classifiers ignore missing data; this entails the idea
that the missingness process (MP) is non-selective in pro-
ducing missing data, i.e., it is MAR (missing at random
[6]). However, assuming MAR cannot be regarded as
an objective-minded approach, if one is ignorant about
the MP. According to the Conservative Updating Rule
[11, 12], in order to deal conservatively with nonMAR1

1The term nonMAR is used to indicate that MAR is not assumed.

missing data in the training set, it is necessary to compute
a likelihood for each possible completion of the data set.
The naive credal classifier of [10] implements such an ap-
proach for data that are missing in the training set.

However, naive classifiers can become inadequate on cer-
tain data sets, as they assume the statistical independence
of the features given the class. Tree augmented naive
classifiers [5] have been shown to often outperform naive
Bayes, as they can model more realistically complex data
sets. An attempt to extend TAN to imprecise probabilities
has been proposed in [13]; in the following, this algorithm
is referred to as TANC*. TANC* is based on the local
IDM, to keep the computation affordable; yet, this choice
is likely to make TANC* much more indeterminate than if
the global IDM was used. In fact, TANC* returns a con-
siderable number of indeterminate classifications [13]. A
further characteristic of TANC* is that it assumes missing
data to be MAR, which also contributes for its efficiency.

In this paper we present TANC, i.e., a tree-augmented
naive credal classifier based on imprecise probabilities,
which (a) models prior near-ignorance via the EDM and
(b) treats missing data in the training set2 without assum-
ing MAR, thus computing a set of likelihoods. Although
the number of possible likelihoods is in principle exponen-
tial with respect to the number of missing values, we show
that the computational complexity of TANC does not nec-
essarily increase exponentially with the total number of
missing data in the training set.

We thoroughly evaluate TANC by experiments. Firstly,
we evaluate TANC against the precise TAN (i.e., learned
with uniform prior) on several data sets; we show that
TANC is effective at detecting hard-to-classify instances,
over which TAN becomes unreliable; instead, TANC pre-
serve its reliability thanks to indeterminate classifications.
In a second series of experiments, we compare TANC and
TANC*; we show that TANC is less indeterminate than
TANC*; the results suggest moreover that TANC returns
determinate and correct answers on instances over which
TANC* is unnecessarily indeterminate. Since the differ-
ence between TAN, TANC and TANC* lies in the model
of prior ignorance, the differences between them decreases
with the size of the data set: large amount of data reduce
the role of prior densities.

Eventually, we present some preliminary results with non-
MAR missing data, comparing TANC against the naive
credal classifier (which is also able to treat missing data as
nonMAR). Under this setting, TANC appears to be much
more indeterminate than the naive credal classifier, be-
cause of the more complex graph.

The paper is structured as follows: Section 2 introduces
the notation and the basic definitions; Section 3 describes

2The extension to nonMAR missing data in the testing set is left for
future development.

the Imprecise Dirichlet Model in its local, global and ex-
treme specifications; in Section 5 we experimentally show
that using the naive credal classifier with global IDM or
with the EDM leads to equivalent classifications in most
cases. Section 6 presents the TANC algorithm and proves
its correctness; Section 7 shows the experimental results,
including the comparison against TAN, TANC* and some
preliminary results with missing data. Finally, Section 8
contains the conclusions.

2 Notation and Basic Definitions

This section presents the notation used later in the paper,
the definition of a credal network and the specification of
the data that is employed for learning the parameters of
the network. To simplify, we use a definition of credal
network were the factorization is enforced in a set of joint
probability distributions.

Definition 1 A credal network is a triple (G,X ,K), where
G is a directed acyclic graph with nodes associated to dis-
crete random variables X = {X1, . . . , Xm} and K is a
set of multinomial probability distributions on X such that
each p ∈ K factorizes as p(X) =

∏
i p(Xi|Πi) (which

can be read as every variable is conditionally independent
of its non-descendants given its parents), where Πi denotes
the parents of Xi in G (when Πi = ∅, p(Xi|Πi) is in fact
the marginal p(Xi)).

The state space of a variable Xi is denoted by ΩXi , and
the joint space on a set of variables Y by ΩY = ×X∈YΩX .
Lowercase letters are used to specify assignments to vari-
ables: xi ∈ ΩXi is a category of Xi, and πi ∈ ΩΠi is an
assignment to all parents of Xi. Parents and children of
variables are denoted always with respect to the graph G
of the network. A variable Xi with Πi = ∅ is called a root
variable. We further denote by Λi the set of children of
Xi.

We assume the training data set D to contain n instances
of type x = {x1, . . . , xm}. With reference to the subset of
variables Y ⊆ X , we define ny as the number of instances
for which the set of variables Y is set to y.

We allow the training data set to contain missing values,
that is, for each instance x some of its elements may be
absent. A completion of x is an assignment to the missing
values such that x becomes complete. A completion of
the data set is a completion for all its instances. We denote
by dY a possible realization of the training data set (i.e.,
the observed values plus a possible realization for missing
data, if any) restricted to the variables Y ⊆ X .

3 Variants of the Imprecise Dirichlet Model

The Imprecise Dirichlet Model(IDM) [8] is a tool for infer-
ence from categorical data, based on a set of prior Dirich-
let densities. In the following, we illustrate the different
variants of the IDM, considering as an example the simple
credal network X1 → X2.

As for the marginal distribution p(X1), the Dirichlet den-
sity is proportional to

∏
x1∈ΩX1

θ
αx1−1
x1 , where αx1 > 0

and
∑
x1∈ΩX1

αx1 = s, where s represents the equiva-
lent sample size (or hidden instances), which determines
the weight of the prior compared to the total number of in-
stances in the training set. By letting the hyper-parameters
αx1 take all the possible values in their domain of defini-
tion, the IDM produces an interval posterior estimate of
the chance, which for each x1 ∈ ΩX1 is:[

nx1

n+ s
,
nx1 + s

n+ s

]
. (1)

When we move to the estimation of p(x2|x1), the IDM
can be applied locally or globally. By the local IDM, we
repeat the estimation of formula (1), thus obtaining:[

nx1x2

nx1 + s
,
nx1x2 + s

nx1 + s

]
. (2)

In other terms, the hyper-parameters αx1x2 can vary be-
tween 0 and s (0 < αx1x2 < s). In this way, we obtain a
local credal set for each variable and each assignment of
its parents; the global credal set is eventually obtained by
the multiplication of the local credal sets.

Alternatively, one can use the global IDM; in this case the
hyper-parameter αx1x2 is constrained by

∑
x2
αx1x2 =

αx1 , where αx1 is the hyper-parameter of the marginal
distribution of the parent. The intervals computed by the
global IDM are:[

nx1x2

nx1 + αx1

,
nx1x2 + αx1

nx1 + αx1

]
. (3)

The global IDM estimates narrower posterior intervals
than the local IDM because of these additional constraints.
In fact, the intervals computed by the local IDM can be
very wide when we analyze the corresponding set of joint
distributions. On the other hand, under the global IDM, it
is usually hard to solve inferences, because the parameters
of the network become all correlated in some way. One of
the few cases in which this computation is tractable is the
naive credal classifier [10].

The EDM is a modification of the global IDM which re-
stricts the IDM to its extreme distributions. Let us consider
X1 again; the EDM allows αx1 to assume two values: 0 or
s; hence, it does not consider all the Dirichlet distributions
defined by the constraint

∑
x1∈ΩX1

αx1 = s, which are

infinite. Analogously, αx1x2 can assume only two values:
0 or s, but still depends on αx1 . In fact, the EDM treats
the s hidden instances as s rows of missing data; the rows
are assumed to be identical, but there is ignorance about
the value assumed by each variable; such an ignorance de-
termines the credal set.

When applied to a single variable, EDM returns the same
interval of the global IDM; however, when applied to a
credal network, it returns intervals that are included (or at
most equivalent) in the intervals computed by the global
IDM [1].

4 Credal Classification

We denote the class variable as C, assuming values in ΩC ;
while the set of remaining variables Y = X \C are called
features. The goal of classification is to build a classifier
on a training set, and then to predict the unknown class of
new instances, given the values y of the features.

According to [7], the optimality criterion for classifica-
tion based on imprecise probabilities is to return the non-
dominated classes. In particular, given the values y of the
features, class c’ dominates (or credal-dominates) class c”
if and only if:

min
p∈K

(p(c′|y)− p(c′′|y)) > 0

The set of non-dominated classes can be detected by per-
forming repeated pairwise comparisons, as shown in Fig-
ure 1.

IDENTIFICATION OF NON-DOMINATED CLASSES

1. set NonDominatedClasses := ΩC ;

2. for class c′ ∈ ΩC

• for class c′′ ∈ ΩC , c′′ 6= c′

– if c′′ is dominated by c′, drop c′′ from
NonDominatedClasses and break the inter-
nal loop;

3. return NonDominatedClasses.

Figure 1: Identification of non-dominated classes via pair-
wise comparisons.

A key point is that there can be several non-dominated
classes and that these classes are incomparable; in this
case, the classifier returns an indeterminate (or set-valued)
classification. Classifiers that issue set-valued classifica-
tions are called credal classifiers . Intuitively, credal clas-
sifiers will return determinate classifications (i.e., a single
class) on easy-to-classify instances, and more classes on
hard-to-classify instances.

5 IDM vs. EDM: empirical comparison on
Naive Credal Classifier

Before describing TANC, we experimentally evaluate
the naive credal classifier with adoption of the EDM
(NCC-EDM) against the traditional naive credal classifier
based on the global IDM (NCC). When checking credal-
dominance between c′ and c′′, NCC searches the minimum
of p(c′)/p(c′′) over (0, s), while NCC-EDM evaluates the
ratio p(c′)/p(c′′) only in 0 and s. We have implemented
NCC with EDM by reworking the code of JNCC2 3, an
open source implementation of NCC.

The answers returned by NCC and NCC-EDM might be
different: when checking whether c′ credal-dominates c′′,
it can happen that NCC-EDM detects credal-dominance
while NCC, using a larger credal set (which by the way
contains the former), does not detect credal-dominance (in
other terms: NCC can find a lower minimum, implying
non-dominance, than NCC-EDM).

Some of this different dominance tests do not affect the
final set of non-dominated classes, because several pair-
wise comparisons are run, but some do. Therefore, NCC
and NCC-EDM may return distinct sets of non-dominated
classes.

To empirically evaluate the difference between NCC and
NCC-EDM we have worked on 23 data sets from the UCI
repository 4. Each data set has been used as training and
then as testing set; in fact, the goal here is to compare
the answers of the two classifiers and not to provide an
assessment of their accuracy.

On 22 data sets out of 23, the percentage of credal-
dominance tests which receive a different answer from
NCC-EDM and NCC is far smaller than 1%; the percent-
age of instances over which the two models return a differ-
ent set of dominated classes is very low: 0.01% on aver-
age. The number of performed pairwise comparison over-
all is in the order of 106, while the total number of in-
stances classified by NCC and NCC-EDM is around 105.

There is however a single data set over which NCC and
NCC-EDM lead to different results: the audiology. It has
226 instances, 24 classes and 69 features. Remarkably,
most binary features have very skewed distributions, such
as 224 versus 2, or 225 versus 1. Because of the many
classes and of the unevenly distributed features, the differ-
ences on the model of prior ignorance can lead to a differ-
ent set of non-dominated classes. This happens on 51/226
instances, i.e., about 22% of the instances.

We conclude that NCC and NCC-EDM are practically
equivalent on most cases; however, differences between
the two models can arise on data sets with many classes

3http://www.idsia.ch/˜giorgio/jncc2.html
4http://archive.ics.uci.edu/ml/

and unevenly distributed features. Still, such indications
support the introduction of EDM in classification.

6 Tree Augmented Naive Credal Classifier

The Tree-Augmented Naive (TAN) structure has the char-
acteristic that each feature has at least C as parent and
at most one other parent constituted by another feature.
By Tree Augmented Naive Credal Classifier (TANC), we
mean a credal network over a TAN graph.

As described in Section 4, TANC performs pairwise com-
parison to detect credal-dominance; for every comparison
between two classes, the minimization is performed over
(a) all possible completions of the training data (because
missing data of the training set are nonMAR) and (b) over
the prior densities belonging to the EDM. The credal dom-
inance condition can be rewritten as:

min
dX ,α

(p(c′|y)− p(c′′|y)) > 0,

because the distributions p ∈ K are completely defined by
dX and α.

We assume further that there is no missing values in the
class and that the hyper-parameters αC are fixed (we may
solve at each time a given extreme configuration of αC).
Hence, the credal dominance problem is equivalent to

min
dX ,α

(p(y|c′)p(c′)− p(y|c′′)p(c′′)) > 0

because p(y) is positive and so does not affect the sign of
the formula. Then we can separately solve each optimiza-
tion as follows:

p(c′) · min
dX ,α\αC

p(y|c′)− p(c′′) · max
dX ,α\αC

p(y|c′′) (4)

because p(y|c′) only depends on αc′ and on the data of
instances with C = c′, while p(y|c′′) depends on αc′′ and
counts from instances with C = c′′ (data with C = c′ and
C = c′′ are obviously disjoint).

Because we take the Extreme IDM as model for the pri-
ors, α only assumes extreme values. Hence, it is possible
to tackle the problem by introducing s new instances to
the training set that are completely missing. As this new
fake instance of missing values has also missing classes,
it could introduce a dependence between the minimiza-
tion and the maximization of Equation (4). However, it is
possible to solve the optimization for every possible com-
pletion of the missing data of the class in this additional
instance (which are just two extremes). Thus we have

p(c′) ·min
dX

p(y|c′)− p(c′′) ·max
dX

p(y|c′′), (5)

which is solved for every possible completion of the data
(including the fake instance).

Figure 2: Part of the computation tree of the TANC algo-
rithm.

The idea of the algorithm to evaluate Equation (5) is to
combine the computations that are performed separately in
the children of each variable and then to propagate the best
possible solution to their sole parent. We ignore the arcs
from C because we look for p(y|c′) = mindX p(y|c′) and
p(y|c′′) = maxdX p(y|c′′), that is, the actual root vari-
able C is observed. The computation starts on the leaves
and follows in a bottom-up idea. At each variable Xi, the
goal is to obtain the joint probability p(yΛi

|yi, c) of its
children conditional on yi5 (c equals c′ or c′′ depending
whether it is the minimization or the maximization). This
evaluation is done for all possible completions dXi and it is
optimized over the completions of the children. The result
is stored in a cache φi(dxi). Figure 2 shows part of a net-
work. At Xj1 , the joint probabilities p(yΛik

|yik , c) of ev-
ery child Xik ∈ Λj1 (for every possible completion of that
sub-tree) are already computed. So, they are combined
to obtain p(yi1 , . . . , yiu |yj1 , c), for every possible comple-
tion of Xj1 . These new probabilities p(yΛj1

|yj1 , c) are
then made available to the parent Xπ , where the compu-
tations are analogous but using the information obtained
from Xj1 and its siblings. The process goes through the
tree structure until reaching the root.

Denote by yσ(i) the assignment for all the variables in the
sub-tree rooted at Xi, that is, yσ(i) ∈ ΩXσ(i) is the queried
assignment over Xσ(i) ⊆ X , the set of variables in the
sub-tree rooted at Xi. Suppose that the root variables (if
C is not considered) are X1, . . . , Xr. So,

p(y|c′) =
r∏
j=1

p(yσ(j)|c′)

=
r∏
j=1

p(yj |c′) ·
∏

Xi∈Λj

p(yσ(i)|yj , c′),

and, in general, mindX p(yσ(j)|πyj , c′) =

= min
dX

p(yj |πyj , c′) · ∏
Xi∈Λj

p(yσ(i)|yj , c′)

 ,

5yi ∈ ΩXi is used as the notation for the queried state of Xi.

where πyj ∈ ΩΠj is the assignment of Πj that is being
queried. (the maximization is analogous). Now, when you
complete the variable Xj , the children Λj have separable
computations. They are separable because the counts n
that appear in the children of Xj are independent of each
other as they concern disjoint subsets of variables (the
structure is a tree, so Xσ(i)∩Xσ(i′) = ∅ forXi, Xi′ ∈ Λj ,
with i 6= i′ and Xj = Πi = Πi′ .). The only dependent
value is nyj , as it appears in the denominators of distinct
children of Xj . However, nyj is fixed as the problem is
solved for every possible completion of Xj . Besides that,
note that the terms α are not present because we treat them
using the fake missing instance. Hence, the overall com-
putation can be decomposed as

= min
dXj

p(yj |πyj , c′) · ∏
Xi∈Λj

min
dXσ(i)

p(yσ(i)|yj , c′)

 .

To prove that this idea is correct, we rewrite it as a function
of completions: ∀dXσ(j) , we have

φj(dXσ(j)) =
∏

Xi∈Λj

min
dXσ(i)

(
nyiyj
nyj

φi(dXσ(i))
)
, (6)

where the product is assumed to be 1 when Λj is empty.
The maximization version is analogous. We prove by in-
duction on the tree the following property:

φj(dXσ(j)) =
{

1, if Xj is a leaf,
p(yσ(j) \ {yj}|yj , c′), otherwise.

(7)
The base of induction holds by definition. Now assume
that Equation (7) holds for every Xi ∈ Λj . By applying
this hypothesis on Equation (6), we have

φj(dXσ(j)) =
∏

Xi∈Λj

min
dXσ(i)

(
nyiyj
nyj

p(yσ(i) \ {yi}|yi, c′)
)
,

(8)
where nyj is fixed and nyiyj depends on the completion
dXi , which belongs to dXσ(i) . Thus, it is possible to min-
imize the factor of each child separately and we obtain
φj(dXσ(j)) = p(yσ(j) \ {yj}|yj , c′).

The derivation so far requires exponential time over all
missing values. Nevertheless, an important fact in Equa-
tion (6) is that φi(dXσ(i)) = φi(dXi), for dXi compatible
with dXσ(i) , that is, it is enough to keep the best possible
solution for every completion of a variable without hav-
ing to record all the completions of its descendants. This
is valid because nyiyj is known when the completion dXi
is given, so completions of variables in Xσ(i) \ {Xi} are
irrelevant for the minimization in Equation (6), and it is
enough to have the best possible solution for each dXi .
This leads us only to compute:

∀dXj φj(dXj) =
∏

Xi∈Λj

min
dXi

(
nyiyj
nyj

φi(dXi)
)
, (9)

and equivalently in the maximization case. Now the al-
gorithm can be implemented in a bottom-up manner so as
the φ’s of children are available when a given variable is
treated, which reduces the complexity of the method to be
exponential in the number of missing values of only two
variables (a variable and its parent) instead of all missing
values.

The described formulation obtains p(y \ {yi}|c′′) and
p(y\{yi}|c′), for each root variableXi, i ≤ r. Those val-
ues still need to be multiplied by the corresponding p(yi|c)
(using the proper c). We leave this last step intentionally
apart to show how to deal with the forest of trees. The
probability of the variables that have only C as parent are
multiplied all together, just as if we had computed φC(·)
according to Equation (9):

p(y|c′) = φC(·) =
∏

Xi∈ΛC

min
dXi

(
nyic′

nc′
φi(dXi)

)
, (10)

and similarly for the maximization. In case r = 1 (single
root), the outer product of Equation (10) disappears. This
final step returns the desired values p(y|c′′) and p(y|c′),
which are later multiplied by p(c′′) and p(c′), respectively,
to evaluate Equation (5).

We point out that, if the data set is complete, the only
missing data that must be processed by the algorithm are
those introduced by the fake instance (for the treatment of
the EDM). In such case, the complexity of the method is
clearly linear in the input size, as there is a constant num-
ber of computations by variable (there are only two ways
of completing the data by variable and the algorithm is lo-
cally exponential). In fact there are other ideas that might
be employed to solve the problem of selecting the hyper-
parameters α of the EDM, but we use the idea of fake
instance because it fits straightforward into the framework
of the proposed algorithm. In the presence of missing data,
the idea spends exponential time in the number of missing
data of two linked variables, which is already much bet-
ter than an overall exponential but still slow for data sets
with many missing values. Using dynamic programming,
it might be possible to further reduce this complexity to
exponential in the missing of a single variable.

7 Experiments on TAN

We have performed experiments on several data sets re-
trieved from the UCI repository. The data sets cover a wide
spectrum in terms of number of instances (min: 101; max:
12960) and classes (min: 2; max: 11). On each data set,
we have performed 10-folds cross-validation to the per-
formance of the classifiers. Numerical features have been
discretized using supervised discretization [4]; the features
discretized into a single bin have been removed from the
computation. TANC requires the features to be discrete;
however, supervised discretization of the features is a good

practice in general, as it has been shown to improve the ac-
curacy of several classifiers [3].

The instances over which TANC return a single class are
referred to as determinately classified, while those over
which TANC returns more classes are referred to as in-
determinately classified.

For some data sets, we report results before and after hav-
ing performed feature selection. To perform feature selec-
tion, we have cross-checked the suggestions of two feature
selectors implemented in WEKA [9]: correlation-based
and wrapper. Both approaches are multivariate, i.e., they
are designed to identify an optimal subset of feature, by
also considering interaction between features.

7.1 TANC vs TAN

In this section, we compare TANC against TAN on com-
plete data sets, i.e., with no missing data. On each cross-
validation run, we first learn the structure of the graph us-
ing WEKA [9]; later, we run TAN and TANC, using the
same network structure for both.

We adopt a set of indicators already known in literature
[10] for comparing a credal and a Bayesian classifier; in
particular:

• determinacy (D%): the percentage of instances clas-
sified determinately by TANC;

• TAN-D and TAN-I: the accuracy of TAN on the in-
stances which are classified determinately and inde-
terminately by TANC. As TANC is designed to sep-
arate hard-to-classify instances (that are prior depen-
dent, and hence indeterminately classified) and easy-
to-classify instances (those determinately classified),
we shall observe TAN-D>TAN-I, because TAN-D
is in fact the accuracy achieved both by TAN and
TANC on the determinately classified instances. Ac-
tually, if TANC is determinate, TAN and TANC re-
turn the same classification (although the uniform
prior adopted for TAN is not included in the credal
set of the EDM, it empirically appears that if both the
extreme priors of the EDM indicate the same class
as the most probable one, TAN will lead to the same
conclusion too).

• set-accuracy (S-acc%): the ratio of the number in-
determinate classifications which contain the actual
class to the total number of indeterminate classifica-
tions;

• indeterminate output size (ind. sz.): the average num-
ber of classes returned on the instances indetermi-
nately classified.

Note that set-accuracy and indeterminate output size are
meaningful only if the data set has more than two classes.

data set #inst. #cl. D TAN-D TAN-I S-acc Ind. Sz.
zoo 101 7 77% 100% 84% 100% 5.9/7
iris 150 3 93% 97% 44% 92% 2.8/3

diabetes 767 2 98% 80% 9% - -
segment 810 7 17% 99% 93% 98% 4.1/7
vehicle 846 7 67% 82% 60% 88% 2.4/7
vowel 990 11 66% 98% 77% 99% 7.6/11
credit 1000 2 87% 78% 55% - -
splice 3190 3 90% 97% 79% 99% 2.1/3
kr-kp 3196 2 99% 92% 40% - -

waveform 5000 3 88% 85% 73% 100% 2.1/3
nursery 12960 5 90% 97% 79% 99% 3.5/5
average 79% 91% 63% 97% 72%

Table 1: The data sets (sorted according to the number of instances) and the indicators. The meaning of the header is
as follows: #inst denotes the number of instances of the data set and #cl the number of classes; D is the determinacy of
TANC; TAN-D and TAN-I the accuracy achieved by TAN on the instances classified determinately and indeterminately
by TANC; S-acc is the set-accuracy of TANC while Ind. Sz. is the average number of instances returned by TANC on the
instances indeterminately classified.

The results of Table 1 show that the determinacy of TANC
is quite high: 79% on average, and often above 90%. In
general, the determinacy of TANC increases with the num-
ber of instances in the data set (as large the data set as
reduced the importance of the prior) and decreases, for
similarly-sized data sets, with the number of classes. The
major exception to this is segment (17 features, 7 classes,
810 instances); however, in this case feature selection can
be helpful. It turns out that 10 out of the 17 features in seg-
ment are irrelevant; removing them from the data set and
re-running the experiment increases the determinacy from
17% to 57%, with only a minor drop of accuracy on the
instances determinately classified (TAN-D decreases from
99% on 17% of instances to 95% on 57% of instances).

Most importantly, TANC is quite effective in separating
hard-to-classify from easy-to-classify instances. There is
a sharp drop of accuracy of TAN when we move from de-
terminate to indeterminate instances; on the average, the
drop is about 28 percentage points. On data sets with two
classes, the accuracy of TAN on the instances indetermi-
nately classified is comparable to random guessing or even
worse (diabetes: 9%; credit: 55%, kr-kp: 40%); how-
ever, as the number of classes increases, TAN performs
better on the instances indeterminately classified (see for
instance segment and zoo: TAN-I is 84% and 93% respec-
tively). This might show that as the number of classes
increases, TANC becomes indeterminate also on some in-
stances that could be successfully classified. However,
studies suggest that even this kind of problem can be sig-
nificantly mitigated by feature selection [2]. As an exam-
ple, let us consider the zoo data set, which has 15 features.
By running feature selection, we find that there are 4 irrel-
evant features out of 15. Re-running the experiment on the
pruned data, determinacy rises from 77% to 79%, TAN-D

remains close to 100%, while TAN-I drops from 84% to
72%. Hence, in some particular data sets, feature selec-
tion can be helpful to improve the determinacy and/or the
detection of hard-to-classify instances.

On the hard-to-classify instances, TANC preserves its re-
liability thanks to indeterminate classifications, providing
set-accuracy close to 100%, while returning on the aver-
age about 70% of the total classes. All these findings are
in good agreement with previous comparisons of Bayesian
classifiers against their imprecise probability counterparts
[2, 13].

7.2 TANC vs. TANC*

Two main differences exist between TANC and TANC*
regarding the model of prior ignorance (TANC adopts the
EDM, while TANC* adopts the local IDM) and the treat-
ment of missing data in the training set (TANC* assumes
MAR, while TANC does not). In this section, we focus
on the impact of the models of prior ignorance on the two
classifiers; in order to remove the effect of the treatment of
missing data, we consider complete data sets. We did not
implement TANC* in our code; rather, we have compared
our results with those published in [13]. For this reason,
the analysis tries to draw general conclusions rather than
punctual ones. We consider here all the 6 complete data
sets analyzed in [13].

On the basis of previous explanation, we can expect TANC
to be more determinate that TANC*. However we have
also to verify that it becomes determinate on instances that
can be safely classified with a single class.

The comparison between the determinacy of TANC and
TANC* is shown in the upper plot of Figure 3. On the

Figure 3: Comparison between TANC and TANC*.

average, TANC is 11 percentage points higher than that of
TANC (89% vs. 78%). However, the determinacy of the
two classifiers is almost equivalent on both splice and kr-
kp; this might be due to the large size of the two data sets
(around 3200 instances each), which reduces the role of
the prior distributions.

In order to compare the ability of isolating hard-to-
classify instances, we introduce the indicator Delta =
(TAN-D−TAN-I), which evaluates the difference in accu-
racy achieved by TAN between the instances classified de-
terminately and indeterminately by TANC [resp. TANC*].
The results are displayed in the lower plot of Figure 3; they
suggests that the increased determinacy of TANC corre-
sponds also to a better ability in isolating hard-to-classify
instances, thus supporting the hypothesis that TANC is
returning determinate answers on instances over which
TANC* is unnecessarily indeterminate. However, these
results should be taken with some cautiousness, as it has
not been possible to actually run side-by-side the two clas-
sifiers.

7.3 Preliminary results with missing data

In this section we focus on comparing the determinacy of
the classifier in the presence of missing data. The effect of
the treatment of missing data is also important so as to ver-
ify the consequences of nonMAR in terms of accuracy, but
a deeper analysis is left for future work. We note that the
term nonMAR is employed to indicate the ignorance about
the MP, that is, MAR is not assumed. In particular, we
consider the crx data set, which has 16 features; the struc-
ture of the network has 14 links among features (besides
those which connect the class to all the features). We con-
sider the complete data set and then artificially generate
30 missing values, distributed among 6 different features.
Even such a small quantity of missing data decreases the
determinacy from 87% to 77%. On the very same data

sets, we run the naive credal classifier 2 [2] which can be
seen as NCC enabled for NonMAR treatment of missing
data; the determinacy of NCC2 (assuming NonMAR) re-
mains stable around 95% on both cases. Hence, it seems
that the TAN structure can lead to much larger indetermi-
nacy than the naive one, if MAR is not assumed. This
result is somehow expected, as TAN introduces the possi-
bility of having linked features with missing values, while
a naive structure does not.

8 Conclusions

TANC is a new credal classifier based on a Tree-
Augmented Naive structure; it treats missing data con-
servatively by considering all possible completions of the
training set, but avoiding an exponential increase of the
computational time. TANC adopt the EDM as a model of
prior ignorance; we have shown that EDM is a reliable and
computationally affordable model of prior near-ignorance
for credal classifiers. We have shown that TANC is more
reliable than precise TAN (learned with uniform prior)
and that it obtains better performance compared to a pre-
vious TAN model based on imprecise probabilities, but
learned with a local IDM approach; the adoption of EDM
overcomes the problem of the unnecessary imprecision in-
duced by the local IDM, while keeping the computation
affordable.

The TANC classifier has room for many improvements.
The treatment of MAR and nonMAR missing data all to-
gether, appearing both in the training and the testing set
are the main topics for future work. In order to make
TANC less indeterminate on incomplete data sets, a solu-
tion could be to allow for mixed configurations, in which
some features are treated as MAR and some others are not.
This would allow both for a decrease of indeterminacy and
for a finer-grained tuning of the way that missing data are
dealt with. Besides that, the computational performance
of TANC can also be further improved, for example, with
the use of dynamic programming. Extensions beyond trees
are also of interest, but they fall into the need of fast and
accurate inference methods for general credal networks.

Acknowledgments

Work partially supported by the Swiss NSF grant n.
200021-118071/1 and 200020-116674/1 and from the
project ’Ticino in rete’.

References

[1] A. Cano, M. Gómez-Olmedo, and S. Moral. Credal
nets with probabilities estimated with an extreme im-
precise Dirichlet model. In Proceedings of the Fifth
International Symposium on Imprecise Probability:

Theories and Applications (ISIPTA’07), Action M
Agency, Prague, pages 57–66, 2007.

[2] G. Corani and M. Zaffalon. Learning Reliable Clas-
sifiers from Small or Incomplete Data Sets: the Naive
Credal Classifier 2. Journal of Machine Learning Re-
search, 9:581–621, 2008.

[3] J. Dougherty, R. Kohavi, and M. Sahami. Super-
vised and unsupervised discretization of continuous
features. In A. Prieditis and S. Russell, editors, Pro-
ceedings of the 12th conference on machine learning,
pages 194–202, San Francisco, CA, 1995. Morgan
Kaufmann.

[4] U. M. Fayyad and K. B. Irani. Multi-interval Dis-
cretization of Continuous-valued Attributes for Clas-
sification Learning. In Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence,
pages 1022–1027, San Francisco, CA, 1993. Morgan
Kaufmann.

[5] N. Friedman, D. Geiger, and M. Goldszmidt.
Bayesian Network Classifiers. Machine Learning,
29(2):131–163, 1997.

[6] R. J. A. Little and D. B. Rubin. Statistical Analysis
with Missing Data. Wiley, New York, 1987.

[7] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall, New York, 1991.

[8] P. Walley. Inferences from multinomial data: learn-
ing about a bag of marbles. J. R. Statist. Soc. B,
58(1):3–57, 1996.

[9] I. H. Witten and E. Frank. Data Mining: Practi-
cal Machine Learning Tools and Techniques (Second
Edition). Morgan Kaufmann, 2005.

[10] M. Zaffalon. Statistical inference of the naive credal
classifier. In G. de Cooman, T. L. Fine, and T. Sei-
denfeld, editors, ISIPTA ’01: Proceedings of the Sec-
ond International Symposium on Imprecise Proba-
bilities and Their Applications, pages 384–393, The
Netherlands, 2001. Shaker.

[11] M. Zaffalon. Exact credal treatment of missing
data. Journal of Statistical Planning and Inference,
105(1):105–122, 2002.

[12] M. Zaffalon. Conservative rules for predictive infer-
ence with incomplete data. In F. G. Cozman, R. Nau,
and T. Seidenfeld, editors, ISIPTA ’05: Proceed-
ings of the Fourth International Symposium on Im-
precise Probabilities and Their Applications, pages
406–415, Manno, Switzerland, 2005. SIPTA.

[13] M. Zaffalon and E. Fagiuoli. Tree-Based Credal
Networks for Classification. Reliable Computing,
9(6):487–509, 2003.

