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Abstract
Sets of desirable gambles constitute a quite general type
of uncertainty model with an interesting geometrical inter-
pretation. We study exchangeability assessments for such
models, and prove a counterpart of de Finetti’s finite repres-
entation theorem. We show that this representation theorem
has a very nice geometrical interpretation. We also lay bare
the relationships between the representations of updated
exchangeable models, and discuss conservative inference
(natural extension) under exchangeability.
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1 Introduction

In this paper, we bring together desirability, an interesting
approach to modelling uncertainty, with exchangeability, a
structural assessment for uncertainty models that is import-
ant for inference purposes.

Desirability, or the theory of (coherent) sets of desir-
able gambles, has been introduced with all main ideas
present—as far as our search has unearthed—by Williams
[18, 19, 20]. Building on de Finetti’s betting framework [6],
he considered the ‘acceptability’ of one-sided bets instead
of two-sided bets. This relaxation leads one to work with
cones of bets instead of with linear subspaces of them. The
germ of the theory was, however, already present in Smith’s
work [15, p. 15], who used a (generally) open cone of ‘ex-
change vectors’ when talking about currency exchange.
Both authors influenced Walley [16, Sec. 3.7 and App. F],
who describes three variants (almost, really, and strictly de-
sirable gambles) and emphasises the conceptual ease with
which updated and posterior models can be obtained in this
framework [17]. Moral [12, 13] then took the next step
and applied the theory to study epistemic irrelevance, a
structural assessment. De Cooman and Miranda [1] made
a general study of transformational symmetry assessments
for desirable gambles.

The structural assessment we are interested in here, is ex-
changeability. Conceptually, it says that the order of the
samples in a sequence of them is irrelevant for inference pur-
poses. The first detailed study of this concept was made by
de Finetti [4], using the terminology of ‘equivalent’ events.
He proved the now famous Representation Theorem, which
is often interpreted as stating that a sequence of random
variables is exchangeable if it is conditionally independ-
ent and identically distributed. Other important work—all
using probabilities or previsions—was done by, amongst
many others, Hewitt and Savage [9], Heath and Sudderth
[8], and Diaconis and Freedman [7]. Exchangeability in
the context of imprecise-probability theory—using lower
previsions—was studied by Walley [16, Sec. 9.5] and more
in-depth by De Cooman et al. [1–3]. The first embryonic
study of exchangeability using desirability was recently
performed by Quaeghebeur [14, Sec. 3.1.1].

In this paper, we present the first results of a more matured
study of exchangeability using sets of desirable gambles.1

First, in Sec. 2, we introduce the basics of the theory of
desirable gambles. Then, in Sec. 3, we give a desirability-
based analysis of finite exchangeable sequences, presenting
a Representation Theorem and treating the issues of natural
extension and updating under exchangeability.

2 Desirability

Consider a non-empty set Ω describing the possible and
mutually exclusive outcomes of some experiment. We also
consider a subject, who is uncertain about the outcome of
the experiment.

A gamble f is a bounded real-valued map on Ω , and it
is interpreted as an uncertain reward. When the actual
outcome of the experiment is ω , then the correspond-
ing (possibly negative) reward is f (ω), expressed in units

f

f (ω)

f (ω ′)

0
of some pre-determined linear utility.
This is illustrated for Ω = {ω,ω ′}. G (Ω)
denotes the set of all gambles on Ω .

1Proofs of this paper’s results are included in Appendix A.
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We say that a non-zero gamble f is desirable to a subject
if he accepts to engage in the following transaction, where:
(i) the actual outcome ω of the experiment is determined,
and (ii) he receives the reward f (ω), i.e., his capital is
changed by f (ω). The zero gamble is not considered to be
desirable.2

2.1 Sets of desirable gambles

We try and model the subject’s beliefs about the outcome
of the experiment by considering which gambles are desir-
able for him. Suppose the subject has a set R ⊆ G (Ω) of
desirable gambles.3

Definition 1 (Avoiding non-positivity and coherence). We
say that a set of desirable gambles R avoids non-positivity
if f 6≤ 0 for all gambles f in coni(R).4 Let K be a linear
subspace of G (Ω) such that R ⊆K . Then we say that
R is coherent relative to K if it satisfies the following
rationality requirements, for all gambles f1 and f2 in K
and all real λ > 0:

D1. if f = 0 then f /∈R;
D2. if f > 0 then f ∈R [accepting partial gain];
D3. if f ∈R then λ f ∈R [scaling];
D4. if f1, f2 ∈R then f1 + f2 ∈R [combination].

If R is coherent relative to G (Ω), then we simply say
that R is coherent. We denote the set of coherent sets of
desirable gambles by D(Ω).

G +
0 (Ω)

G−(Ω)

Requirements D3 and D4 make R a
cone: coni(R) = R. Due to D2, it in-
cludes the positive gambles G +

0 (Ω);
due to D1, D2 and D4, it excludes the
non-positive gambles G−(Ω):

D5. if f ≤ 0 then f /∈R.

R R
We give two illustrations, the first
is a general one and the second
models certainty about ω happen-
ing. The dashed line indicates a non-included border.

2The nomenclature in the literature regarding desirability is somewhat
confusing, and we have tried to resolve some of the ambiguity here. Our
notion of desirability coincides with Walley’s later [17] notion of desirab-
ility, initially also used by Moral [12]. Walley in his book [16, App. F]
and Moral in a later paper [12] use another notion of desirability. The
difference between the two approaches resides in whether the zero gamble
is assumed to be desirable or not. We prefer to use the non-zero version
here, because it is better behaved in conjunction with our notion of weak
desirability in Definition 2.

3We use this convention throughout: subscripting a set with zero cor-
responds to removing zero (or the zero gamble) from the set, if present.
For example R+ (R+

0 ) is the set of non-negative (positive) real num-
bers including (excluding) zero. Further notational conventions: f ≥ g iff
f (ω)≥ g(ω) for all ω in Ω ; f > g iff f ≥ g and f 6= g. The conical hull
operator coni generates the set of (strictly!) positive linear combinations
of elements of its argument set.

4A related, but weaker condition, is that R avoids partial loss, meaning
that f 6< 0 for all gambles f in coni(R). We need the stronger condition
because we have excluded the zero gamble from being desirable.

The intersection
⋂

i∈I Ri of an arbitrary non-empty family
of sets of desirable gambles Ri, i ∈ I, is still coherent. This
is the idea behind the following result.

Theorem 1 (Natural extension). Consider an assessment,
a set A of gambles on Ω , and define its natural extension

E (A ) :=
⋂
{R ∈ D(Ω) : A ⊆R} (1)

= coni
(
G +

0 (Ω)∪A
)

(2)

Then the following statements are equivalent:

(i) A avoids non-positivity;
(ii) A is included in some coherent set of desirable

gambles;
(iii) E (A ) 6= G (Ω);
(iv) E (A ) is a coherent set of desirable gambles;
(v) E (A ) is the smallest coherent set of desirable

gambles that includes A .

A E (A )A
With a small illustration, we can visualise
natural extension as a conical hull opera-
tion:

2.2 Weakly desirable gambles, previsions &
marginally desirable gambles

We now define weak desirability: a useful modification of
Walley’s [16, Section 3.7] notion of almost-desirability. Our
conditions for a gamble f to be weakly desirable are more
stringent than Walley’s for almost-desirability: he only re-
quires that adding any constant strictly positive amount of
utility to f should make the resulting gamble desirable. We
require that adding anything desirable (be it constant or
not) to f should make the resulting gamble desirable. Weak
desirability is better behaved under updating: we shall see
in Proposition 12 that it makes sure that the exchangeability
of a set of desirable gambles, whose definition hinges on
the notion of weak desirability, is preserved under updating
after observing a sample. This is not necessarily true if
weak desirability is replaced by almost-desirability in the
definition of exchangeability, as was for instance done in
our earlier work [1].

Definition 2 (Weak desirability). Consider a coherent set
R of desirable gambles. Then a gamble f is called weakly
desirable if f + f ′ is desirable for all desirable f ′, i.e., if
f + f ′ ∈ R for all f ′ in R. We denote the set of weakly
desirable gambles by DR:

DR = { f ∈ G (Ω) : f +R ⊆R} . (3)

In particular, every desirable gamble is also weakly desir-
able, so R ⊆DR .

Proposition 2. Let R be a coherent set of desirable
gambles, and let DR be the associated set of weakly desir-
able gambles. Then DR has the following properties, for
all gambles f1 and f2 in G (Ω) and all real λ ≥ 0:



WD1. if f < 0 then f /∈DR [avoiding partial loss];5

WD2. if f ≥ 0 then f ∈DR [accepting partial gain];
WD3. if f ∈DR then λ f ∈DR [scaling];
WD4. if f1, f2 ∈DR then f1 + f2 ∈DR [combination].

DR DR

Like R, DR is a cone, but it al-
ways includes all cone surface
gambles (excluding those that in-
cur a partial loss). We have applied this to the earlier illus-
trations; take note of border changes.

With a set of gambles A , we associate a lower prevision
PA and an upper prevision PA by letting

PA ( f ) = sup{µ ∈ R : f −µ ∈A } (4)

PA ( f ) = inf{µ ∈ R : µ− f ∈A } (5)

for all gambles f . Observe that PA and PA always satisfy
the conjugacy relation PA (− f ) =−PA ( f ). We call a real
functional P on G (Ω) a coherent lower prevision if and
only if there is some coherent set of desirable gambles R
on G (Ω) such that P = PR .
Theorem 3. Let R be a coherent set of desirable gambles.
Then PR is real-valued, PR = PDR

, PR( f ) ≥ 0 for all
f ∈DR . Moreover, a real functional P is a coherent lower
prevision iff it satisfies the following properties, for all
gambles f1 and f2 in G (Ω) and all real λ ≥ 0:

P1. P( f )≥ inf f [accepting sure gain];
P2. P( f1 + f2)≥ P( f1)+P( f2) [super-additivity];
P3. P(λ f ) = λP( f ) [non-negative homogeneity].

Finally, we turn to marginal desirability. Given a coherent
set of desirable gambles R, we define the associated set of
marginally desirable gambles as

MR := { f −PR( f ) : f ∈ G (Ω)} . (6)

The set of marginally desirable gambles MR is completely
determined by the lower prevision PR . The converse is also
true:
Proposition 4. Let R be a coherent set of desirable
gambles. Then PMR

= PR and

MR = MPR
:= { f ∈ G (Ω) : PR( f ) = 0} . (7)

MR
MR

The set of marginally desirable
gambles MR is the entire cone
surface of R and DR , possibly in-
cluding gambles that incur a partial (but not a sure) loss.

2.3 Updating sets of desirable gambles

Consider a set of desirable gambles R on Ω . With a non-
empty subset B of Ω , we associate an updated set of desir-
able gambles on Ω , as defined by Walley [17]:

R‖B := { f ∈ G (Ω) : IB f ∈R} . (8)
5Compare this to the less stringent requirement for almost-desirability

[16, Section 3.7.3]: if f ∈DR then sup f ≥ 0 [avoiding sure loss].

We find it more convenient to work with the following,
slightly different but completely equivalent, version:

R|B :={ f ∈R : IB f = f}= R ∩G (Ω)|B, (9)

which completely determines R‖B: for all f ∈ G (Ω),

f ∈R‖B⇔ IB f ∈R|B. (10)

In our version, updating corresponds to intersecting the
cone R with the linear subspace G (Ω)|B, which results in
a cone R|B of lower dimension. And since we can uniquely
identify a gamble f = IB f in G (Ω)|B with a gamble on B,
namely its restriction fB to B, and vice versa, we can also
identify R|B with a set of desirable gambles on B:

RcB := { fB : f ∈R|B}= { fB : f ∈R‖B}⊆G (B). (11)

Proposition 5. If R is a coherent set of desirable gambles
on Ω , then R|B is coherent relative to G (Ω)|B, or equival-
ently, RcB is a coherent set of desirable gambles on B.

Our subject takes R|B (or RcB) as his set of desirable
gambles contingent on observing the event B.

3 Finite exchangeable sequences

Now that we have become better versed in the theory of sets
of desirable gambles, we are going to focus on the main
topic: reasoning about finite exchangeable sequences. We
first show how they are related to count vectors (Sec. 3.1).
Then we are ready to give a desirability-based definition of
exchangeability (Sec. 3.2) and treat natural extension and
updating under exchangeability (Secs. 3.3 and 3.4). After
presenting our Finite Representation Theorem (Sec. 3.5),
we can show what natural extension and updating under
exchangeability look like in terms of the count vector rep-
resentation (Secs. 3.6 and 3.7).

Consider random variables X1, . . . , XN taking values in a
non-empty finite set X ,6 where N ∈ N0, i.e., a positive
(non-zero) integer. The possibility space is Ω = X N .

3.1 Count vectors

We denote by x = (x1, . . . ,xN) an arbitrary element
of X N . PN is the set of all permutations π of the in-
dex set {1, . . . ,N}. With any such permutation π , we as-
sociate a permutation of X N , also denoted by π , and
defined by (πx)k = xπ(k), or in other words, π(x1, . . . ,xN) =
(xπ(1), . . . ,xπ(N)). Similarly, we lift π to a permutation π t

of G (X N) by letting π t f = f ◦π , so (π t f )(x) = f (πx).

6A lot of functions and sets introduced below will depend on the
set X . We do not indicate this explicitly, not to overburden the notation
and because we do not consider different sets of values in this paper.



The permutation invariant atoms [x] := {πx : π ∈PN} are
the smallest permutation invariant subsets of X N . We in-
troduce the counting map

T N : X N →N N : x 7→ T N(x) (12)

where T N(x) is the X -tuple with components

T N
z (x) := |{k ∈ {1, . . . ,N} : xk = z}| for all z ∈X , (13)

and the set of possible count vectors is given by

N N :=
{

m ∈ NX : ∑
x∈X

mx = N
}

. (14)

If m = T N(x), then [x] =
{

y ∈X N : T N(y) = m
}

, so the
atom [x] is completely determined by the count vector m of
all its the elements, and is therefore also denoted by [m].

3.2 Defining exchangeability

If a subject assesses that X1, . . . , XN are exchangeable, this
means that for any gamble f and any permutation π , he
finds exchanging π t f for f weakly desirable,7 because he
is indifferent between them [cf. 16, Sec. 4.1.1]. Let

DPN :=
{

f −π
t f : f ∈ G (X N) and π ∈PN

}
, (15)

then we should have that DPN ⊆DR . Before we give use-
ful alternative characterisations of exchangeability, we in-
troduce a few notions that will prove crucial further on.

We begin by defining a special linear transformation exN

of the linear space of gambles G (X N):

exN : G (X N)→ G (X N) : f 7→ exN( f ) :=
1

N! ∑
π∈PN

π
t f .

(16)
Observe that for all gambles f and all permutations π:

exN(π t f ) = exN( f ) and π
t(exN( f )

)
= exN( f ). (17)

So exN( f ) is permutation invariant and therefore constant
on the permutation invariant atoms [m], and it assumes the
same value for all gambles that can be related to each other
through some permutation. What is the value that exN( f )
assumes on [m]? It is not difficult to see that

exN = ∑
m∈N N

MuHyN(·|m)I[m], (18)

where we let

MuHyN( f |m) :=
1
|[m]| ∑

y∈[m]
f (y) (19)

|[m]|=
(

N
m

)
:=

N!
∏z∈X mz!

. (20)

7Note that the gambles in DPN cannot be assumed to be desirable,
because DPN does not avoid non-positivity.

MuHyN(·|m) is the linear expectation operator associated
with the uniform distribution on the invariant atom [m]. It
characterises a multivariate hyper-geometric distribution
[10, Sec. 39.2], associated with random sampling without
replacement from an urn with N balls of types X , whose
composition is characterised by the count vector m. If we
also observe that exN ◦exN = exN , we see that exN is the
linear projection operator of G (X N) to the linear space

GPN (X N) :=
{

f ∈ G (X N) : (∀π ∈PN)π t f = f
}
(21)

of all permutation invariant gambles. We also let

DUN := span(DPN ) (22)

=
{

f − exN( f ) : f ∈ G (X N)
}

(23)

=
{

f ∈ G (X N) : exN( f ) = 0
}

, (24)

where ‘span’ denotes linear span. The linear space DUN is
the kernel of the linear projection operator exN .
Definition 3 (Exchangeability). A coherent set R of desir-
able gambles on X N is called exchangeable if any (and
hence all) of the following equivalent conditions is (are)
satisfied:

(i) any gamble in DPN is weakly desirable: DPN ⊆DR;
(ii) DPN +R ⊆R;

(iii) any gamble in DUN is weakly desirable: DUN ⊆DR;
(iv) DUN +R ⊆R;

We call a lower prevision P on G (X N) exchangeable
if there is some exchangeable coherent set of desirable
gambles R such that P = PR .

The conditions (iii)–(iv) of this definition are quite closely
related to the desirability version of a de Finetti-like rep-
resentation theorem for finite exchangeable sequences in
terms of sampling without replacement from an urn. They
allow us talk about exchangeability without invoking per-
mutations. This is what we will address in Section 3.5.

A number of useful results follow from this definition:
Proposition 6. Let R be a coherent set of desirable
gambles. If R is exchangeable then it is also permutable:
π t f ∈R for all f ∈R and all π ∈PN .
Proposition 7. Let R be a coherent and exchangeable set
of desirable gambles. For all gambles f and f ′ on X N:

(i) f ∈R⇔ exN( f ) ∈R;
(ii) If exN( f ) = exN( f ′), then f ∈R⇔ f ′ ∈R.

It follows from this last proposition and Eq. (24) that for
any coherent and exchangeable set of desirable gambles R:

R ∩DUN = /0. (25)

Theorem 8. Let P be a coherent lower prevision on
G (X N). Then the following statements are equivalent:8

8This shows that the exchangeability of a lower prevision can also be
expressed using marginally desirable gambles [see 14, Sec. 3.1.1].



(i) P is exchangeable;
(ii) P( f ) = P( f ) = 0 for all f ∈DPN ;

(iii) P( f ) = P( f ) = 0 for all f ∈DUN .

3.3 Exchangeable natural extension

Let us denote the set of all coherent and exchangeable sets
of desirable gambles on X N by

Dex(X N) :=
{
R ∈ D(X N) : DUN +R ⊆R

}
. (26)

This set is closed under arbitrary non-empty intersections.
We shall see further on in Corollary 11 that it is also non-
empty, and therefore has a smallest element.

Suppose our subject has an assessment, or in other words, a
set A of gambles on X N that he finds desirable. Then we
can ask if there is some coherent and exchangeable set of de-
sirable gambles R that includes A . In other words, we want
a set of desirable gambles R to satisfy the requirements:
(i) R is coherent; (ii) A ⊆ R; and (iii) DUN + R ⊆ R.
Clearly, the intersection

⋂
i∈I Ri of an arbitrary non-empty

family of sets of desirable gambles Ri, i ∈ I that satisfy
these requirements, will satisfy these requirements as well.
This is the idea behind the following results.
Proposition 9. We say that a set A of gambles on X N

avoids non-positivity under exchangeability if the set of
gambles [G +

0 (X N) ∪ A ] + DUN avoids non-positivity.
Then: (i) /0 avoids non-positivity under exchangeability;
and (ii) if A is non-empty, then A avoids non-positivity
under exchangeability iff A +DUN avoids non-positivity.
Theorem 10 (Exchangeable natural extension). Consider
a set A of gambles on X N , and define its exchangeable
natural extension E N

ex(A ) by

E N
ex(A ) :=

⋂{
R ∈ Dex(X N) : A ⊆R

}
(27)

= coni
(
DUN +[G +

0 (X N)∪A ]
)

(28)
= DUN +E (A ). (29)

Then the following statements are equivalent:

(i) A avoids non-positivity under exchangeability;
(ii) A is included in some coherent and exchangeable set

of desirable gambles;
(iii) E N

ex(A ) 6= G (X N);
(iv) E N

ex(A ) is a coherent and exchangeable set of desir-
able gambles;

(v) E N
ex(A ) is the smallest coherent and exchangeable

set of desirable gambles that includes A .
Corollary 11. The set Dex(X N) is non-empty, and has a
smallest element

RN
ex,v := E N

ex( /0) = DUN +G +
0 (X N). (30)

3.4 Updating exchangeable models

Consider an exchangeable and coherent set of desirable
gambles R on X N , and assume that we have observed the

values x̌ = (x̌1, x̌2, . . . , x̌ň) of the first ň variables X1, . . . , Xň,
and that we want to make inferences about the remaining
n̂ := N− ň variables. To do this, we simply update the set
R with the set Cx̌ = {x̌}×X n̂, to obtain the set R|Cx̌, also
denoted as R|x̌ =

{
f ∈R : f ICx̌ = f

}
. As we have seen in

Section 2.3, this set can be identified with a coherent set of
desirable gambles on X n̂, which we denote by Rcx̌. With
obvious notations:9

Rcx̌ =
{

f ∈ G (X n̂) : f ICx̌ ∈R
}

. (31)

We already know that updating preserves coherence. We
now see that this type of updating on an observed sample
also preserves exchangeability.

Proposition 12. Consider x̌ ∈X ň and a coherent and ex-
changeable set of desirable gambles R on X N . Then Rcx̌
is a coherent and exchangeable set of desirable gambles
on X n̂.

We also introduce another type of updating, where we ob-
serve a count vector m̌ ∈ N ň, and we update the set R
with the set Cm̌ = [m̌]×X n̂, to obtain the set R|Cm̌, also
denoted as R|m̌ =

{
f ∈R : f ICm̌ = f

}
. This set can be

identified with a coherent set of desirable gambles on X n̂,
which we also denote by Rcm̌. With obvious notations:

Rcm̌ =
{

f ∈ G (X n̂) : f ICm̌ ∈R
}

. (32)

Proposition 13 (Sufficiency of observed count vectors).
Consider x̌, y̌ ∈X ň and a coherent and exchangeable set
of desirable gambles R on X N . If y̌ ∈ [x̌], or in other
words if T ň(x̌) = T ň(y̌) =: m̌, then Rcx̌ = Rcy̌ = Rcm̌.

3.5 Finite representation

We now introduce the linear map MuHyN from the linear
space G (X N) to the linear space G (N N), as follows:

MuHyN : G (X N)→ G (N N) :

f 7→MuHyN( f ) := MuHyN( f |·), (33)

so MuHyN( f ) is the gamble on N N that assumes the value
MuHyN( f |m) in the count vector m ∈N N . We also define
the linear map TN from the linear space G (N N) to the
linear space GPN (X N) as follows:

TN : G (N N)→ GPN (X N) : g 7→ TN(g) := g◦T N , (34)

so TN(g) is the permutation invariant gamble on X N that
assumes the constant value g(m) on the invariant atom [m].
For all f ∈ G (X N), exN( f ) = TN(MuHyN( f )

)
, and sim-

ilarly, for all g ∈ G (N N), MuHyN(TN(g)
)

= g. Hence:

exN = TN ◦MuHyN and MuHyN ◦TN = idG (N N) . (35)

9Here and further on we silently use cylindrical extension on gambles,
i.e., let them ‘depend’ on extra variables whose value does not influence
the value they take.



If we invoke Eq. (17) we find that

MuHyN(π t f ) = MuHyN( f ). (36)

Also taking into account the linearity of MuHyN and
Eq. (16), this leads to

MuHyN(exN( f )) = MuHyN( f ). (37)

The relationships between the three important linear maps
we have introduced above are clarified by the commutative
diagram in Fig. 1.

G (X N) GPN (X N)

G (N N)

exN

MuHyN TN

Figure 1: Single sequence length commutative diagram.
Double arrows indicate a linear isomorphism.

For every gamble f on X N , f = exN( f )+[ f −exN( f )], so
it can be decomposed as a sum of a permutation invariant
gamble exN( f ) and an element f − exN( f ) of the kernel
DUN of the linear projection operator exN . Since we know
that MuHyN is a linear isomorphism between the spaces
GPN (X N) and G (N N), we now investigate whether we
can represent coherent and exchangeable R by some set of
desirable count gambles on N N .

Theorem 14 (Finite Representation). A set of desirable
gambles R on X N is coherent and exchangeable iff there
is some coherent set S of desirable gambles on N N such
that

R = (MuHyN)−1(S ), (38)

and in that case this S is uniquely determined by

S =
{

g ∈ G (N N) : TN(g) ∈R
}

= MuHyN(R). (39)

Corollary 15. A lower prevision P on G (X N) is coherent
and exchangeable iff there is some coherent lower prevision
Q on G (N N) such that P = Q◦MuHyN . In that case Q is
uniquely determined by Q = P◦TN .

We call the set S and the lower prevision Q the count rep-
resentations of the exchangeable set R and the exchange-
able lower prevision P, respectively. Our Finite Represent-
ation Theorem allows us to give an appealing geometrical
interpretation to the notions of exchangeability and repres-
entation. The exchangeability of R means that it is com-
pletely determined by its count representation MuHyN(R),
or what amounts to the same thing since TN is a linear
isomorphism: by its projection exN(R) on the linear space

of all permutation invariant gambles. This turns count vec-
tors into useful sufficient statistics (compare with Propos-
ition 13), because the dimension of G (N N) is typically
much smaller than that of G (X N).

3.6 Exchangeable natural extension and
representation

The exchangeable natural extension is easy to calculate
using natural extension in terms of count representations,
and the following simple result therefore has important
consequences for practical implementations of reasoning
and inference under exchangeability.

Theorem 16. Let A be a set of gambles on X N , then

(i) A avoids non-positivity under exchangeability iff
MuHyN(A ) avoids non-positivity.

(ii) MuHyN(E N
ex(A )) = E (MuHyN(A )).

3.7 Updating and representation

Suppose, as in Section 3.4, that we update a coherent and
exchangeable set of desirable gambles R after observing
a sample x̌ with count vector m̌. This leads to an up-
dated coherent and exchangeable set of desirable gambles
Rcx̌ = Rcm̌ on X n̂. Here, we take a closer look at the
corresponding set of desirable gambles on N n̂, which we
denote (symbolically) by S cm̌ (but we do not want to sug-
gest with this notation that this is in some way an updated
set of gambles!). The Finite Representation Theorem 14
tells us that S cm̌ = MuHyn̂(Rcm̌), but is there a direct
way to infer the count representation S cm̌ of Rcm̌ from
the count representation S = MuHyN(R) of R?

To show that there is, we need to introduce two new notions:
the likelihood function

Lm̌ : N n̂→ R : m̂ 7→ Lm̌(m̂) :=
|[m̌]| |[m̂]|
|[m̌+ m̂]|

, (40)

associated with sampling without replacement, and the lin-
ear map +m̌ from the linear space G (N n̂) to the linear
space G (N N) given by

+m̌ : G (N n̂)→ G (N N) : g 7→+m̌g (41)

where

+m̌ g(M) =

{
g(M− m̌) if M ≥ m̌
0 otherwise.

(42)

Proposition 17. Consider a coherent and exchangeable
set of desirable gambles R on X N , with count repres-
entation S . Let S cm̌ be the count representation of the
coherent and exchangeable set of desirable gambles Rcm̌,
obtained after updating R with a sample x̌ with count vec-
tor m̌. Then

S cm̌ =
{

g ∈ G (N n̂) : +m̌ (Lm̌g) ∈S
}

. (43)



4 Conclusions

We have shown that modelling an exchangeability assess-
ment using sets of desirable gambles is not only possible,
but also elegant.

Our results indicate that, using sets of desirable gambles,
it is conceptually easy to reason about exchangeable se-
quences. Calculating the natural extension and updating are
but simple geometrical operations: taking unions, sums and
conical hulls and taking intersections, respectively. This
approach has the added advantage that the exchangeability
assessment is preserved under updating, also when the con-
ditioning event has lower probability zero, which does not
hold when using (lower) previsions (although this might be
remedied by using full conditional measures).

Moreover, using our Finite Representation Theorem, reas-
oning about exchangeable sequences can be reduced to
reasoning about count vectors. Working with this repres-
entation automatically guarantees that exchangeability is
satisfied. The representation for the natural extension and
for updated models can be derived directly from the rep-
resentation of the original model, without having to go
back to the (more complex) world of sequences. We have
also looked at the problem of representation for infinite
sequences, but will report this elsewhere.

The conceptual techniques employed in this paper are not
restricted in use to a treatment of exchangeability. They
could be applied to other structural assessments, e.g., in-
variance assessments, as long as this assessment allows us
to identify a characterising set of weakly desirable gambles
that is sufficiently well-behaved (cf. the first paragraph of
Sec. 3.2). This idea was briefly taken up by one of us in
another paper [1], but clearly merits further attention.

Thinking in even broader terms, we feel that using sets
of desirable gambles can provide a refreshing and fruitful
approach to many problems in uncertainty modelling, not
only those related to structural assessments.
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A Proofs

We provide proofs for the more involved results.

Proof of Proposition 4. Since it follows from Theorem 3
that PR( f − PR( f )) = PR( f ) − PR( f ) = 0 for all
gambles f , it follows that MR ⊆{ f ∈ G (Ω) : PR( f ) = 0}.
For the converse inequality, assume that PR( f ) = 0 holds;
then f = f −PR( f ) ∈MR .

This also means that PR(g) = 0 iff g ∈MR , so for every
gamble f we can write:

PMR
( f ) = sup{µ ∈ R : f −µ ∈MR} (44)

= sup{µ ∈ R : PR( f −µ) = 0} (45)
= sup{µ ∈ R : µ = PR( f )}= PR( f ), (46)

which proves the equality of PMR
and PR .

Proof of Proposition 5. We need to prove that D1–D4
hold for R|B. For D1, consider f ∈ G (Ω)|B and assume
that f = 0. Then by coherence f 6∈R and hence f 6∈R|B.
For D2, consider f ∈ G (Ω)|B and assume that f > 0. Then
by coherence f ∈R and hence f ∈R|B. The proof for D3
is similar to the one for D4. For D4, consider f1, f2 ∈R|B,
then on the one hand f1, f2 ∈R and therefore f1 + f2 ∈R
by coherence; and on the other hand f1, f2 ∈ G (Ω)|B
and therefore f1 + f2 = IB f1 + IB f2 = IB( f1 + f2), so
f1 + f2 ∈ G (Ω)|B and hence f1 + f2 ∈R|B.

Proof of the equivalences in Definition 3. That (i)⇔(ii)
and (iii)⇔(iv) is an immediate consequence of the defin-
ition of weak desirability. We continue to show that
(i)⇔(iii). For the ‘⇒’ part, observe that f − exN( f ) =
1

N! ∑π∈PN [ f −π t f ] ∈ DR , since DR is a convex cone by

Proposition 2. For the ‘⇐’ part, consider any f ∈ G (X N)
and π ∈PN . Consider any f ′ ∈R. Then by assumption
both f−exN( f )+ f ′/2 and π t(− f )− exN(π t(− f ))+ f ′/2
belong to R. Hence, because R is closed under addition,
their sum f −π t f + f ′, obtained using Eq. (17), also be-
longs to R. Hence f −π t f is weakly desirable.

Proof of Proposition 6. Consider f ∈R. Since π t f − f =
(− f )−π t(− f ) ∈ DPN , we see that π t f = f + π t f − f ∈
R + DPN ⊆ R, using the exchangeability condition of
Def. 3(ii).

Proof of Proposition 7. The first statement is a con-
sequence of the second, with f ′ = exN( f ), because then
exN( f ′) = exN(exN( f )) = exN( f ). For the second state-
ment, consider arbitrary gambles f and f ′ on X N such that
exN( f ) = exN( f ′), and assume that f ∈R. We prove that
then also f ′ ∈R. Since exN( f )− f = (− f )− exN(− f ) ∈
DR and f ′− exN( f ′) ∈DR , we see that f ′− f ∈ DR by
WD4, and therefore f ′ = f + f ′− f ∈R +DR ⊆R.

Proof of Theorem 8. We give a circular proof. We first
show that (ii) holds if P is exchangeable, i.e., if there is
some coherent and exchangeable R such that P = PR . We
already know from Theorem 3 that P = PR satisfies P1–
P3, because R is coherent. Consider any f ∈DPN . Since
DPN ⊆DR , it also follows from Theorem 3 that PR( f )≥ 0
and similarly −PR( f ) = PR(− f )≥ 0 because also − f ∈
DPN . Hence indeed 0 ≤ PR( f ) ≤ PR( f ) ≤ 0, where the
second inequality is a consequence of P1 and P2.

That (ii) implies (iii) follows the super-additivity of P and
the sub-additivity of P.

Finally, we show that (iii) implies that P is exchangeable.
The standard argument in [17, Section 6] tells us that
R ′ :=

{
f ∈ G (X N) : f > 0 or P( f ) > 0

}
is a coherent set

of desirable gambles such that PR′ = P. Now consider the
set R := R ′+DUN . We show that this R is a coherent and
exchangeable set of desirable gambles, and that PR = P.
It is clear from its definition that R satisfies D2, D3 and
D4, so let us assume ex absurdo that 0 ∈R, meaning that
there is some f ∈ R ′ such that f ′ := − f ∈ DUN . There
are two possibilities. Either f > 0, so f ′ < 0, which con-
tradicts Lemma 18. Or P( f ) > 0. But it follows from the
coherence of the lower prevision P and the assumption that
0 = P( f + f ′) = P( f ) > 0, a contradiction too. So R sat-
isfies D1 as well, and is therefore coherent. It is obvious
that R is exchangeable: R +DUN = R ′+DUN +DUN =
R ′+DUN = R. The proof is complete if we can show that
P = PR . Fix any gamble f . Observe that f −α ∈ R iff
there are f ′ ∈R and f ′′ ∈DUN such that f −α = f ′+ f ′′.
But then it follows from the coherence of P and the as-
sumption that P( f ) = α + P( f ′+ f ′′) = α + P( f ′) ≥ α ,
and therefore PR( f ) ≤ P( f ) = PR′( f ). For the converse



inequality, we infer from 0 ∈DUN that R ′ ⊆R, and there-
fore PR′ ≤ PR .

Lemma 18. For all f in DUN , f 6< 0.

Proof. First of all, observe that for any gamble f ′ on X N ,
if f ′ > 0 then also exN( f ′) > 0. Now consider f ∈DUN and
assume ex absurdo that f < 0. Then − f > 0 and therefore
−exN( f ) = exN(− f ) > 0, whence exN( f ) < 0. But since
f ∈DUN we also have that exN( f ) = 0, a contradiction.

Proof of Proposition 9. For the first statement, we have to
prove that G +

0 (X N)+DUN avoids non-positivity. Consider
any f ′ ∈ DUN and any f ′′ ∈ G +

0 (X N), then we have to
prove that f := f ′+ f ′′ 6≤ 0. There are two possibilities.
Either f ′ = 0 and then f = f ′′ > 0. Or f ′ 6= 0, and then
Lemma 18 tells us that f ′ 6< 0, whence f ′ 6≤ 0 and therefore
a fortiori f 6≤ 0.

For the second statement, it clearly suffices to prove the ‘if’
part. Assume therefore that A +DUN avoids non-positivity.
Consider any f in coni([G +

0 (X N)∪A ]+DUN ), so there
are n ≥ 1, λk ∈ R+, f ′ ∈ DUN , fk ∈ G +

0 (X N)∪A such
that f = f ′+∑

n
k=1 λk fk. Let I := {k ∈ {1, . . . ,n} : fk > 0}

then f` ∈A for all ` /∈ I. By assumption f ′+∑`/∈I λ` f` 6≤ 0,
and therefore a fortiori f 6≤ 0.

Proof of Theorem 10. It is immediately clear from the fact
that Dex(X N) is closed under arbitrary non-empty intersec-
tions, the definition of E N

ex(A ), and the fact that G (X N)
is not a coherent set of desirable gambles, that the last four
statements are equivalent. We now prove (i)⇔(ii).

First, assume that A , and therefore also G +
0 (X N)∪A ,

is included in some coherent and exchangeable set of de-
sirable gambles R. By exchangeability, [G +

0 (X N)∪A ]+
DUN ⊆ R + DUN ⊆ R. Since coni(R) = R avoids non-
positivity, so does any of its subsets, and therefore in par-
ticular [G +

0 (X N)∪A ]+DUN . This means that A indeed
avoids non-positivity under exchangeability.

Conversely, assume that A avoids non-positivity under ex-
changeability. For the sake of convenience, denote the set
on the right-hand side of Eq. (28) by R∗. It is clear that
R∗ satisfies D2, D3 and D4. Consider any f ∈R∗, then
f 6≤ 0, precisely because A avoids non-positivity under ex-
changeability. Hence R∗ also satisfies D1, and is therefore
coherent. To show that R∗ is exchangeable, again con-
sider any f ∈R∗, so there are n≥ 1, λk ∈ R+, f ′ ∈DUN ,
fk ∈ G +

0 (X N)∪A such that f = f ′+∑
n
k=1 λk fk. Then for

any f ′′ ∈ DUN we see that f ′+ f ′′ ∈ DUN and therefore
indeed f + f ′′ = ( f ′+ f ′′)+∑

n
k=1 λk fk ∈R∗.

Since A ⊆R∗, the proof of the equivalences is complete.
We now turn to the proof of Eq. (28), i.e., we prove that
E N

ex(A ) = R∗. It is clear that any coherent and exchange-
able set of desirable gambles that includes A , must also
include R∗, by the axioms D2, D3, and D4. Since we have

just proved that R∗ is coherent and exchangeable, it is
the smallest coherent and exchangeable set of desirable
gambles that includes A . The desired equality now follows
because we have assumed that (i) holds, and we have just
proved that (i) implies (v).

Eq. (29) follows from Eq. (28) and Theorem 1, since DUN
is a cone.

Proof of Corollary 11. This is an immediate consequence
of Proposition 9(i) and Theorem 10.

Proof of Proposition 12. The coherence of Rcx̌ is guar-
anteed by Proposition 5. We show that Rcx̌ is exchange-
able. Consider arbitrary f ∈G (X n̂), π̂ ∈Pn̂ and f1 ∈Rcx̌.
Then we must show that f1 + f − π̂ t f ∈Rcx̌, or in other
words that ICx̌ [ f1 + f − π̂ t f ] ∈R. But since f1 ∈Rcx̌, we
know that ICx̌ f1 ∈R. And if we consider the permutation
π ∈PN defined by

π(k) :=

{
k 1≤ k ≤ ň
ň+ π̂(k− ň) ň+1≤ k ≤ N,

(47)

then clearly ICx̌ π̂ t f = π t(ICx̌ f ) and therefore
ICx̌ [ f1 + f − π̂ t f ] = ICx̌ f1 + ICx̌ f − π t(ICx̌ f ) and this
gamble belongs to R because R is exchangeable.

Proof of Proposition 13. Consider π̌ ∈ Pň and any
gamble f on X n̂. Assume that ICx̌ f ∈R.

We first prove that ICπ̌ x̌ f ∈ R. Consider the permutation
π ∈PN defined by

π(k) :=

{
π̌−1(k) 1≤ k ≤ ň
k ň+1≤ k ≤ N,

(48)

then clearly π t(ICx̌ f ) = (ICx̌ f )◦π = (ICx̌ ◦ π̌−1) f = ICπ̌ x̌ f ,
so it follows from Proposition 6 that indeed ICπ̌ x̌ f ∈R. This
already implies that Rcx̌ = Rcπ̌ x̌, and therefore also that
Rcx̌ = Rcy̌.

Since R is coherent, it also follows from ICx̌ f ∈ R and
the reasoning above that ICm̌ f = ∑y̌∈[m̌] ICy̌ f ∈R, whence
Rcx̌ ⊆ Rcm̌. To prove the converse inequality, assume
that ICm̌ f ∈ R. We know that [m̌] = {π̌ x̌ : π̌ ∈Pň}, and
therefore for any y̌ ∈ [m̌] we can pick a π̌y̌ ∈Pň such that
π̌y̌x̌ = y̌. With this π̌y̌ we construct a permutation πy̌ ∈PN
in the manner described above, which satisfies π t

y̌(ICx̌ f ) =
ICy̌ f . But then the exchangeability and coherence of R tell
us that

ICm̌ f + ∑
y̌∈[m̌]

[(ICx̌ f )−π
t
y̌(ICx̌ f )] = ICm̌ f + f ∑

y̌∈[m̌]
[ICx̌ − ICy̌ ]

= |[m̌]| f ICx̌ (49)

belongs to R, whence also ICx̌ f ∈R, by coherence.



Proof of Theorem 14. We begin with the sufficiency part.
Assume that there is some coherent set S of desirable
gambles on N N such that R = (MuHyN)−1(S ). We
show that R is coherent and exchangeable, and that S =
MuHyN(R).

We first show that R is coherent. For D1, consider f ∈
G (X N) with f = 0. Then obviously also MuHyN( f ) = 0
and therefore MuHyN( f ) 6∈S . Hence f /∈R. For D2, let
f > 0. Then obviously also MuHyN( f ) > 0, and there-
fore MuHyN( f ) ∈ S . Hence f ∈ R. The proof for D3
is similar to the one for D4. For D4, let f1, f2 ∈R. Then
g1 := MuHyN( f1) ∈S and g2 := MuHyN( f2) ∈S . This
implies that MuHyN( f1 + f2) = g1 + g2 ∈ S , so again
f1 + f2 ∈R.

To show that R is exchangeable, consider any f ∈R and
f ′ ∈ DUN . We have to show that f + f ′ ∈ R. It is clear
that MuHyN( f + f ′) = MuHyN( f )+0 = MuHyN( f )∈S .
Hence f + f ′ ∈ (MuHyN)−1(S ), so indeed f + f ′ ∈R.

We show that S = MuHyN(R). Consider any g∈G (N N),
then using Eq. (35), MuHyN(TN(g)) = g. Since by assump-
tion R = (MuHyN)−1(S ), we see that

g ∈S ⇔MuHyN(TN(g)) ∈S ⇔ TN(g) ∈R. (50)

This shows that S =
{

g ∈ G (N N) : TN(g) ∈R
}

. We
show that also S = MuHyN(R). Let g ∈ S , then we
have just proved that TN(g) ∈ R, and therefore, using
Eq. (35), g = MuHyN(TN(g)) ∈MuHyN(R). Conversely,
let g ∈MuHyN(R). Then there is some f ∈R such that
g = MuHyN( f ) and therefore TN(g) = TN(MuHyN( f )) =
exN( f ), where the last equality follows from Eq. (35). Now
Proposition 7 tells us that exN( f ) ∈R, because f ∈R and
R is exchangeable. Hence TN(g)∈R and therefore g∈S .

Next, we turn to the necessity part. Suppose that R is co-
herent and exchangeable. It suffices to prove that S :=
MuHyN(R) is a coherent set of desirable gambles on N N ,
and that Eq. (38) is satisfied for this choice of S .

We begin with the coherence of MuHyN(R). For D1, con-
sider g ∈ G (N N) with g = 0. Assume ex absurdo that
g ∈MuHyN(R), meaning that there is some f ∈R such
that 0 = g = MuHyN( f ), or in other words f ∈DUN . This
is impossible, due to Eq. (25). For D2, let g ≥ 0. Then
obviously also f := TN(g)≥ 0. Therefore f ∈R and, be-
cause of Eq. (35), g = MuHyN(TN(g)) = MuHyN( f ) ∈
MuHyN(R). The proof for D3 is similar to the one for D4.
For D4, let g1,g2 ∈ MuHyN(R), so there are f1, f2 ∈ R
such that g1 = MuHyN( f1) and g2 = MuHyN( f2). Then by
coherence of R, f1 + f2 ∈R, and therefore, by linearity of
MuHyN ,

g1 +g2 = MuHyN( f1)+MuHyN( f2)

= MuHyN( f1 + f2) ∈MuHyN(R). (51)

Finally, we show that R = (MuHyN)−1(MuHyN(R)).
Consider f ∈ R, then MuHyN( f ) ∈ MuHyN(R) and

therefore f ∈ (MuHyN)−1(MuHyN(R)). Conversely,
consider f in (MuHyN)−1(MuHyN(R)). Then g :=
MuHyN( f ) ∈MuHyN(R), so we infer that there is some
f ′ ∈R such that g = MuHyN( f ) = MuHyN( f ′). Hence
MuHyN( f − f ′) = 0, so f − f ′ ∈ DUN and therefore f =
f ′+ f − f ′ ∈R +DUN . This implies that f ∈R, since R
is exchangeable.

Proof of Corollary 15. This result can be easily proved as
an immediate consequence of Theorem 14 and Eq. (4). As
an illustration, we give a more direct proof of the necessity
part, based on Theorem 8. This theorem, together with
Eq. (35), tells us that for any gamble f on X N , P( f ) =
P
(
exN( f )

)
= P

(
TN(MuHyN( f ))

)
= Q

(
MuHyN( f )

)
.

Proof of Theorem 16. We begin with the second state-
ment. Recall that E N

ex(A ) = DUN + E N
ex(A ) from The-

orem 10. Since MuHyN is a linear operator, it commutes
with the coni operator, and therefore:

MuHyN(E N
ex(A ))

= MuHyN(DUN )+MuHyN(E N
ex(A ))

= MuHyN(E N
ex(A ))

= coni(MuHyN(G +
0 (X N)∪A ))

= coni(MuHyN(G +
0 (X N))∪MuHyN(A ))

= coni(G +
0 (N N)∪MuHyN(A ))

= E (MuHyN(A )),

where the second equality follows from MuHyN(DUN ) =
{0}, the third from Theorem 10, and the last from The-
orem 1. The first statement is an immediate consequence
of the second and Theorems 1, 10 and 14.

Proof of Proposition 17. Recall that g ∈S cm̌ iff there is
some f ∈G (X n̂) such that at the same time g = MuHyn̂( f )
and IC[m̌] f ∈R, or in other words MuHyN(IC[m̌] f ) ∈S . We
therefore consider M ∈N N and observe that

MuHyN(IC[m̌] f |M) =
1
|[M]| ∑

x∈[M]
(IC[m̌] f )(x) (52)

=
1
|[M]| ∑

x̌∈[m̌],x̂∈X n̂

(x̌,x̂)∈[M]

f (x̂), (53)

so this value is zero unless M ≥ m̌. In that case we can
write M = m̌ + m̂, where m̂ := M− m̌ is a count vector in
N n̂; so we find that

MuHyN(IC[m̌] f |m̌+ m̂) =
1

|[m̌+ m̂]| ∑
x̌∈[m̌],x̂∈[m̂]

f (x̂) (54)

=
|[m̌]| |[m̂]|
|[m̌+ m̂]|

MuHyn̂( f |m̂). (55)

Hence indeed g ∈S cm̌ iff +m̌(Lm̌g) ∈S .
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