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Abstract

The goal of this paper is to introduce a new concept of
conditional independence in evidence theory, to prove
its formal properties, and to show in what sense it
is superior to the concept introduced previously by
other authors.
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1 Introduction

Any application of artificial intelligence models to
practical problems must manage two basic issues: un-
certainty and multidimensionality. The models cur-
rently most widely used to manage these issues are
so-called probabilistic graphical Markov models.

In these models, the problem of multidimensional-
ity is solved using the notion of conditional indepen-
dence, which enables factorisation of a multidimen-
sional probability distribution into small parts, usu-
ally marginal or conditional low-dimensional distri-
butions (or generally into low-dimensional factors).
Such a factorisation not only decreases the storage
requirements for representation of a multidimensional
distribution, but it usually induces efficient computa-
tional procedures allowing inference from these mod-
els as well. Many results analogous to those concern-
ing conditional independence, Markov properties and
factorisation from probabilistic framework were also
achieved in possibility theory [12, 13].

It is easy to realise that our need of efficient meth-
ods for representation of probability and possibility
distributions (requiring an exponential number of pa-
rameters) logically leads us to greater need of an effi-
cient tool for representation of belief functions, which
cannot be represented by a distribution (but only by
a set function), and therefore the space requirements
for their representation are superexponential.

After a thorough study of relationships
among stochastic independence, possibilistic
T -independence, random set independence and
strong independence [14, 15], we came to the con-
clusion that the most proper independence concept
in evidence theory is random set independence.
Therefore, this contribution is fully devoted to two
different generalisations of random set independence
to conditional independence.

The contribution is organised as follows. After a short
overview of necessary terminology and notation (Sec-
tion 2), in Section 3 we introduce a new concept of
conditional independence and show in which sense it
is superior to the previously suggested independence
notions [10, 1]. In Section 4 we prove its formal prop-
erties.

2 Basic Notions

The aim of this section is to introduce as briefly as
possible basic notions and notations necessary for un-
derstanding the following text.

2.1 Set Projections and Extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi. In this paper we will deal with multidi-
mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these sub-
frames, XK will denote a group of variables {Xi}i∈K

throughout the paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e., for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik
) ∈ XK .



Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will
denote a projection of A into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also
need an opposite operation, which will be called an
extension. By an extension of two sets A ⊆ XK and
B ⊆ XL (K, L ⊆ N) we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that if K and L are disjoint, then

A⊗B = A×B.

2.2 Set Functions

In evidence theory (or Dempster-Shafer theory) two
measures are used to model the uncertainty: belief
and plausibility measures. Both of them can be de-
fined with the help of another set function called a
basic (probability or belief) assignment m on XN , i.e.,

m : P(XN ) −→ [0, 1] (1)

for which ∑
A⊆XN

m(A) = 1. (2)

Furthermore, we assume that m(∅) = 0.

Belief and plausibility measures are defined for any
A ⊆ XN by the equalities

Bel(A) =
∑
B⊆A

m(B),

P l(A) =
∑

B∩A6=∅

m(B),

respectively.

It is well-known (and evident from these formulae)
that for any A ∈ P(XN )

Pl(A) = 1−Bel(AC) (3)

holds, where AC is a set complement of A ∈ P(XN ).
Furthermore, basic assignment can be computed from
belief function via Möbius inversion:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B), (4)

i.e., any of these three functions is sufficient to define
values of the remaining two.

1Let us remark that we do not exclude situations when M =
∅. In this case A↓∅ = ∅.

In addition to belief and plausibility measures, com-
monality function can also be obtained from basic as-
signment m:

Q(A) =
∑
B⊇A

m(B).

The last notion plays an important role in the def-
inition of so-called (conditional) noninteractivity of
variables (cf. Section 3.2) and in Shenoy’s valuation-
based systems [10]. Similarly to (4), one can obtain
basic assignment from commonality function via an
analogous formula

m(A) =
∑
B⊇A

(−1)|B\A|Q(B). (5)

A set A ∈ P(XN ) is a focal element if m(A) > 0. A
pair (F , m), where F is the set of all focal elements,
is called a body of evidence. A basic assignment is
called Bayesian if all its focal elements are singletons.
A body of evidence is called consonant if its focal
elements are nested.

For a basic assignment m on XK and M ⊂ K, a
marginal basic assignment of m is defined (for each
A ⊆ XM ):

m↓M (A) =
∑

B⊆XK :B↓M=A

m(B).

Analogously, Bel↓M , Pl↓M and Q↓M will denote the
corresponding marginal belief measure, plausibility
measure and commonality function, respectively.

Having two basic assignments m1 and m2 on XK and
XL, respectively (K, L ⊆ N), we say that these as-
signments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic as-
signment m on XK∪L such that both m1 and m2 are
marginal assignments of m.

3 Random Set Independence and Its
Generalisations

3.1 Marginal Case

Let us start this section by recalling the notion of
random sets independence [2].2

Definition 1 Let m be a basic assignment on XN

and K, L ⊂ N be disjoint. We say that groups of

2Klir [6] uses the notion noninteractivity.



variables XK and XL are independent with respect to
basic assignment m (and denote it by K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L) (6)

for all A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise.

It has been shown in [14] that application of Defini-
tion 1 to two consonant bodies of evidence leads to a
body of evidence which is no longer consonant.

It seemed that this problem could be avoided if we
took into account the fact that both evidence and pos-
sibility theories could be considered as special kinds
of imprecise probabilities. Nevertheless, in [15] we
showed that the application of strong independence to
two general bodies of evidence (neither Bayesian nor
consonant) leads to models beyond the framework of
evidence theory.

From these examples one can see that although mod-
els based on possibility measures, belief measures and
credal sets can be linearly ordered with respect to
their generality, nothing similar holds for the corre-
sponding independence concepts.

Therefore, random sets independence presently seems
to be the most appropriate independence concept
within the framework of evidence theory from the
viewpoint of multidimensional models.3 For this rea-
son in this section we will deal with two generalisa-
tions of this concept.

Before doing that, let us present an assertion show-
ing that conditional noninteractivity and conditional
independence (presented in the following two subsec-
tions) are identical if the condition is empty.

Lemma 1 Let K, L be disjoint, then K ⊥⊥ L [m] if
and only if

Q↓K∪L(A) = Q↓K(A↓K) ·Q↓L(A↓L) (7)

for all A ⊆ XK∪L.

Proof can be found in [5].

From this lemma one can conjecture why the gener-
alisation of (7) to the conditional case became widely
used, while, as far as we know, no direct generalisation
of (6) has been suggested up to now.

In the following example we will show that nothing
similar holds for beliefs and plausibilities; more ex-
actly, application of formulae analogous to (7) leads
to models beyond the theory of evidence.

3Let us note that there exist different independence concepts
suitable in other situations, for details the reader is referred to
[3]

Table 1: Basic assignments mX and mY .

A ⊆ X mX(A) BelX(A) PlX(A)
{x} 0.3 0.3 0.8
{x̄} 0.2 0.2 0.7
X 0.5 1 1

A ⊆ Y mY (A) BelY (A) PlY (A)
{y} 0.6 0.6 0.9
{ȳ} 0.1 0.1 0.4
Y 0.3 1 1

Table 2: Results of application of formula (8).

C ⊆ X×Y BelXY (C) mXY (C)
{xy} 0.18 0.18
{xȳ} 0.03 0.03
{x̄y} 0.12 0.12

{x̄ȳ} 0.02 0.02

{x} ×Y 0.3 0.09
{x̄} ×Y 0.2 0.06
X× {y} 0.6 0.3
X× {ȳ} 0.1 0.05
{xy, x̄ȳ} 1 0.8
{xȳ, x̄y} 1 0.85

X×Y \ {x̄ȳ} 1 −1.08
X×Y \ {x̄y} 1 −0.43
X×Y \ {xȳ} 1 −0.92
X×Y \ {xy} 1 −0.52

X×Y 1 0.45

Example 1 Consider two basic assignments mX and
mY on X = {x, x̄} Y = {y, ȳ} specified in Table 1
together with their beliefs and plausibilities.

Let us compute joint beliefs and plausibilities via for-
mulae

Bel↓K∪L(A) = Bel↓K(A↓K) ·Bel↓L(A↓L), (8)
Pl↓K∪L(A) = Pl↓K(A↓K) · Pl↓L(A↓L). (9)

Their values are contained in Tables 2 and 3, respec-
tively, together with the corresponding values of basic
assignments computed via (4) (and also (3), in the
latter case). As some values of the “joint basic as-
signments” are negative, which contradicts to (1) it is
evident that these models are beyond the framework
of evidence theory. ♦

Therefore, it seems that a definition of independence
in terms of beliefs or plausibilities would be much



Table 3: Results of application of formula (9).

C ⊆ X×Y PlXY (C) BelXY (C) mXY (C)
{xy} 0.72 0 0
{xȳ} 0.32 0 0
{x̄y} 0.63 0 0

{x̄ȳ} 0.28 0 0

{x} ×Y 0.8 0.3 0.3
{x̄} ×Y 0.7 0.2 0.2
X× {y} 0.9 0.6 0.6
X× {ȳ} 0.4 0.1 0.1
{xy, x̄ȳ} 1 0 0
{xȳ, x̄y} 1 0 0

X×Y \ {x̄ȳ} 1 0.72 −0.18
X×Y \ {x̄y} 1 0.37 0.07
X×Y \ {xȳ} 1 0.68 −0.12
X×Y \ {xy} 1 0.28 −0.02

X×Y 1 1 0.05

more complicated than Definition 1.

3.2 Conditional Noninteractivity

Ben Yaghlane et al. [1] generalised the notion of non-
interactivity in the following way: Let m be a ba-
sic assignment on XN and K, L,M ⊂ N be disjoint,
K 6= ∅ 6= L. Groups of variables XK and XL are
conditionally noninteractive given XM with respect to
m if and only if the equality

Q↓K∪L∪M (A) ·Q↓M (A↓M )
= Q↓K∪M (A↓K∪M ) ·Q↓L∪M (A↓L∪M ) (10)

holds for any A ⊆ XK∪L∪M .

Let us note that the definition presented in [1] is
based on conjunctive Dempster’s rule, but the authors
proved its equivalence with (10). Let us also note that
(10) is a special case of the definition of conditional
independence in valuation-based systems4 introduced
by Shenoy [10].

The cited authors proved in [1] that conditional nonin-
teractivity satisfies the so-called graphoid properties.5

Nevertheless, this notion of independence does not
seem to be appropriate for construction of multidi-
mensional models. As already mentioned by Studený

4Nevertheless, in valuation-based systems commonality
function is a primitive concept (and basic assignment is derived
by formula (5)).

5The reader not familiar with graphoid axioms is referred to
the beginning of Section 4.

[11], it is not consistent with marginalisation. What
that means can be seen from the following definition
and illustrated by a simple example from [1] (origi-
nally suggested by Studený).

An independence concept is consistent with marginal-
isation iff for arbitrary projective basic assignments
(probability distributions, possibility distributions,
etc.) m1 on XK and m2 on XL there exists a basic
assignment (probability distribution, possibility dis-
tribution, etc.) on XK∪L satisfying this independence
concept and having m1 and m2 as its marginals.

Example 2 Let X1, X2 and X3 be three binary vari-
ables with values in X1 = {a1, ā1}, X2 = {a2, ā2},
X3 = {a3, ā3} and m1 and m2 be two basic assign-
ments on X1 ×X3 and X2 ×X3 respectively, both of
them having only two focal elements:

m1({(a1, ā3), (ā1, ā3)}) = .5,
m1({(a1, ā3), (ā1, a3)}) = .5,
m2({(a2, ā3), (ā2, ā3)}) = .5,
m2({(a2, ā3), (ā2, a3)}) = .5.

(11)

Since their marginals are projective

m
↓3

1 ({ā3}) = m
↓3

2 ({ā3}) = .5,

m
↓3

1 ({a3, ā3}) = m
↓3

2 ({a3, ā3}) = .5,

there exists (at least one) common extension of both
of them, but none of them is such that it would im-
ply conditional noninteractivity of X1 and X2 given
X3. Namely, the application of equality (10) to basic
assignments m1 and m2 leads to the following values
of the joint “basic assignment”:

m̄(X1 ×X2 × {ā3}) = .25,
m̄(X1 × {a2} × {ā3}) = .25,
m̄({a1} ×X2 × {ā3}) = .25,
m̄({(a1, a2, ā3), (ā1, ā2, a3)}) = .5,
m̄({(a1, a2, ā3)}) = −.25,

which is outside of evidence theory. ♦

Therefore, instead of the conditional noninteractivity,
in [5] we proposed to use another notion of condi-
tional independence which will be introduced in the
following subsection.

3.3 Conditional Independence

Definition 2 Let m be a basic assignment on XN

and K, L,M ⊂ N be disjoint, K 6= ∅ 6= L. We say
that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote
it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M ) (12)
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )



holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ⊗
A↓L∪M , and m(A) = 0 otherwise.

Let us note that for M = ∅ the concept coincides
with Definition 1, which enables us to use the term
conditional independence. Let us also note that (12)
resembles, from the formal point of view, the defini-
tion of stochastic conditional independence [7].

The following assertion expresses the fact (already
mentioned above) that this concept of conditional in-
dependence is consistent with marginalisation. More-
over, it presents a form expressing the joint basic as-
signment by means of its marginals.

Theorem 1 Let m1 and m2 be projective basic as-
signments on XK and XL, respectively. Let us define
a basic assignment m on XK∪L by the formula

m(A) =
m1(A↓K) ·m2(A↓L)

m↓K∩L
2 (A↓K∩L)

(13)

for A = A↓K ⊗ A↓L such that m↓K∩L
1 (A↓K∩L) > 0

and m(A) = 0 otherwise. Then

m↓K(B) = m1(B), (14)
m↓L(C) = m2(C) (15)

for any B ∈ XK and C ∈ XL, respectively, and (K \
L) ⊥⊥ (L \ K)|(K ∩ L) [m]. Furthermore, m is the
only basic assignment possessing these properties.

Proof. To prove equality (14) we have to show that
for any B ⊆ XK∑

A⊆XK∪L:A↓K=B

m(A) = m1(B). (16)

Since, due to the definition of m, m(A) = 0 for any
A ⊆ XK∪L for which A 6= A↓K ⊗A↓L, we see that∑

A⊆XK∪L:A↓K=B

m(A)

=
∑

A⊆XK∪L:A↓K=B

A=A↓K⊗A↓L

m(A)

=
∑

C⊆XL

C↓K∩L=B↓K∩L

m(B ⊗ C).

To prove formula (16), we have to distinguish be-
tween two situations depending on the value of
m↓K∩L

2 (B↓K∩L). If this value is positive then

∑
A⊆XK∪L:A↓K=B

m(A)

=
∑

C⊆XL

C↓K∩L=B↓K∩L

m1(B) ·m2(C)

m↓K∩L
2 (B↓K∩L)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

∑
C⊆XL

C↓K∩L=B↓K∩L

m2(C)

=
m1(B)

m↓K∩L
2 (B↓K∩L)

m↓K∩L
2 (B↓K∩L) = m1(B).

If m↓K∩L
2 (B↓K∩L) = 0 then, according to the defini-

tion of m, m(A) = 0. But m↓K∩L
1 (B↓K∩L) = 0 also,

due to the projectivity of m1 and m2, and therefore
also m1(B) = 0.

The proof of equality (15) is completely analogous due
to the projectivity of m1 and m2.

Now, let us prove that XK\L and XL\K are condition-
ally independent given XK∩L with respect to a basic
assignment m defined via (13) for any A ⊆ XK∪L,
such that A = A↓K ⊗ A↓L and m↓K∩L(A↓K∩L) > 0
and m(A) = 0 otherwise. First let us show, that

m↓K∪L(A) ·m↓K∩L(A↓K∩L) (17)
= m↓K(A↓K) ·m↓L(A↓L),

holds for all A = A↓K ⊗A↓L. If m↓K∩L(A↓K∩L) > 0,
then multiplying both sides of the formula (13) by
m↓K∩L(A↓K∩L) we obtain the equality (17), as (14)
and (15) are satisfied and m↓K∪L(A) = m(A) for any
A ⊆ XK∪L. If m↓K∩L(A↓K∩L) = 0 then m↓L(A↓L) =
0 also, and therefore both sides of (17) equal 0. If
A 6= A↓K ⊗A↓L, then m(A) = 0 by assumption.

Let XK\L and XL\K be conditionally independent
given XK∩L with respect to a basic assignment m,
and A ⊆ XK∪L be such that A = A↓K ⊗ A↓L and
m↓K∩L(A↓K∩L) > 0. Then (17) holds and therefore

m↓K∪L(A) =
m↓K(A↓K) ·m↓L(A↓L)

m↓K∩L(A↓K∩L)
,

i.e., (13) holds due to (14) and (15) and the fact
that m↓K∪L(A) = m(A) for any A ⊆ XK∪L.
If m↓K∩L(A↓K∩L) = 0 then also m↓K(A↓K) =
0, m↓K∩L(A↓L) = 0 and m(A) = 0. If A 6= A↓K⊗A↓L

then m(A) = 0, which directly follows from Defini-
tion 2. ut

Let us close this section by demonstrating application
of the conditional independence notion (and Theo-
rem 1) to Example 2.



Example 2 (Continued) Let us go back to the prob-
lem of finding a common extension of basic assign-
ments m1 and m2 defined by (11). Theorem 1 says
that for basic assignment m defined as follows

m(X1 ×X2 × {ā3}) = .5,
m({(a1, a2, ā3), (ā1, ā2, a3)}) = .5,

variables X1 and X3 are conditionally independent
given X2. ♦

4 Formal Properties of Conditional
Independence

Among the properties satisfied by the ternary relation
K ⊥⊥ L|M [m], the following are of principal impor-
tance:

(A1) K ⊥⊥ L|M [m] ⇒ L ⊥⊥ K|M [m],

(A2) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥M |I [m],

(A3) K ⊥⊥ L ∪M |I [m] ⇒ K ⊥⊥ L|M ∪ I [m],

(A4) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |I [m]
=⇒ K ⊥⊥ L ∪M |I [m],

(A5) K ⊥⊥ L|M ∪ I [m] ∧ K ⊥⊥M |L ∪ I [m]
=⇒ K ⊥⊥ L ∪M |I [m].

Let us recall that stochastic conditional independence
satisfies the so-called semigraphoid properties (A1)–
(A4) for any probability distribution, while axiom
(A5) is satisfied only for strictly positive probability
distributions. Conditional noninteractivity referred to
in Section 3.2, on the other hand, satisfies axioms
(A1)–(A5) for general basic assignment m, as proven
in [1].

Before formulating an important theorem justifying
the definition of conditional independence, let us for-
mulate and prove an assertion concerning set exten-
sions.

Lemma 2 Let K ∩ L ⊆M ⊆ L ⊆ N . Then, for any
C ⊆ XK∪L, condition (a) holds if and only if both
conditions (b) and (c) hold true.

(a) C = C↓K ⊗ C↓L;

(b) C↓K∪M = C↓K ⊗ C↓M ;

(c) C = C↓K∪M ⊗ C↓L.

Proof. Before proving the required implications let us
note that C ⊆ C↓K ⊗C↓L, therefore C = C↓K ⊗C↓L

is equivalent to

∀x ∈ XK∪L

(
x↓K ∈ C↓K & x↓L ∈ C↓L =⇒ x ∈ C

)
.

(a) =⇒ (b). Consider x ∈ XK∪M , such that x↓K ∈
C↓K and x↓M ∈ C↓M . Since x↓M ∈ C↓M there must
exist (at least one) y ∈ C↓L, for which y↓M = x↓M .
Now construct z ∈ XK∪L for which z↓K = x↓K and
z↓L = y (it is possible because y↓M = x↓M ). From
this construction we see that z↓K∪M = x. Therefore
z↓K = x↓K ∈ C↓K and z↓L = y ∈ C↓L from which,
because we assume that (a) holds, we get that z ∈ C,
and therefore also x = z↓K∪M ∈ C↓K∪M .

(a) =⇒ (c). Consider now x ∈ XK∪L, with pro-
jections x↓K∪M ∈ C↓K∪M and x↓L ∈ C↓L. From
x↓K∪M ∈ C↓K∪M we immediately get that x↓K ∈
C↓K , which in combination with x↓L ∈ C↓L (due to
the assumption (a)) yields that x ∈ C.

(b) & (c) =⇒ (a). Consider x ∈ XK∪L such that
x↓K ∈ C↓K and x↓L ∈ C↓L. From the latter prop-
erty one also gets x↓M ∈ C↓M , which, in combination
with x↓K ∈ C↓K gives, because (b) holds true, that
x↓K∪M ∈ C↓K∪M . And the last property in combi-
nation with x↓L ∈ C↓L yields the required x ∈ C. ut

Since all I, K, L,M are disjoint, we will omit symbol
∪ and use, for example, KLM instead of K ∪ L ∪M
in the rest of the paper.

Theorem 2 Conditional independence satisfies
(A1)–(A4).

Proof. ad (A1) The validity of the implication im-
mediately follows from the commutativity of multipli-
cation.

ad (A2) The assumption K ⊥⊥ LM |I [m] means that
for any A ⊆ XKLMI such that A = A↓KI ⊗ A↓LMI

the equality

m↓KLMI(A) ·m↓I(A↓I) (18)
= m↓KI(A↓KI) ·m↓LMI(A↓LMI)

holds, and if A 6= A↓KI⊗A↓LMI , then m(A) = 0. Let
us prove first that also for any B ⊆ XKMI such that
B = B↓KI ⊗B↓MI , the equality

m↓KMI(B) ·m↓I(B↓I) (19)
= m↓KI(B↓KI) ·m↓MI(B↓MI)

is valid. To do so, let us compute

m↓KMI(B) ·m↓I(B↓I)

=
∑

A⊆XKLMI

A↓KMI=B↓KI⊗B↓MI

m↓KLMI(A) ·m↓I(A↓I)

=
∑

A⊆XKLMI

A=A↓KI⊗A↓LMI

A↓KMI=B↓KI⊗B↓MI

m↓KLMI(A) ·m↓I(A↓I)



=
∑

A⊆XKLMI

A=A↓KI⊗A↓LMI

A↓KMI=B↓KI⊗B↓MI

m↓KI(A↓KI) ·m↓LMI(A↓LMI)

= m↓KI(A↓KI) ·
∑

C⊆XLMI

C↓MI=B↓MI

m↓LMI(C)

= m↓KI(B↓KI) ·m↓MI(B↓MI),

as

m↓I(B↓I) = m↓I(A↓I),
m↓KI(B↓KI) = m↓KI(A↓KI).

So, to finish this step we still must prove that if B 6=
B↓KI⊗B↓MI then m↓KMI(B) = 0. Also, in this case

m↓KMI(B) =
∑

A⊆XKLMI

A↓KMI=B

m↓KLMI(A),

but since B = A↓KMI 6= A↓KI ⊗A↓MI then, because
of Lemma 2, also A 6= A↓KI ⊗A↓LMI for any A such
that A↓KMI = B. But for these A’s, m↓KLMI(A) = 0
and therefore also m↓KMI(B) = 0.

ad (A3) Again, let us suppose validity of K ⊥⊥
LM |I [m], i.e., for any A ⊆ XKLMI such that A =
A↓KI⊗A↓LMI equality (18) holds, and m↓KLMI(A) =
0 otherwise. Our aim is to prove that for any C ⊆
XKLMI such that C = C↓KMI ⊗C↓LMI , the equality

m↓KLMI(C) ·m↓MI(C↓MI) (20)
= m↓KMI(C↓KMI) ·m↓LMI(C↓LMI)

is satisfied as well, and m↓KLMI(C) = 0 otherwise.
Let C be such that m

↓I
(C
↓I

) > 0. Since we assume
that K ⊥⊥ LM |I [m] holds, we have for such a C

m↓KLMI(C) ·m↓I(C↓I)
= m↓KI(C↓KI) ·m↓LMI(C↓LMI),

and therefore we can compute

m↓KLMI(C) ·m↓MI(C↓MI)

= m↓KLMI(C) ·m↓I(C↓I) · m
↓MI(C↓MI)
m↓I(C↓I)

= m↓KI(C↓KI) ·m↓LMI(C↓LMI) · m
↓MI(C↓MI)
m↓I(C↓I)

=
m↓KI(C↓KI) ·m↓MI(C↓MI)

m↓I(C↓I)
·m↓LMI(C↓LMI)

= m↓KMI(C↓KMI) ·m↓LMI(C↓LMI),

where the last equality is satisfied due to (A2) and
the fact that m↓I(C↓I) > 0. If m↓I(C↓I) = 0 then
also m↓KMI(C↓KMI) = 0, m↓LMI(C↓LMI) = 0 and
m↓KLMI(C) = 0 and therefore (20) also holds true.

It remains to be proven that m(C) = 0 for all C 6=
C↓KMI ⊗ C↓LMI . But in this case, as a consequence
of Lemma 2, also C 6= C↓KI ⊗ C↓LMI , and therefore
m(C) = 0 due to the assumption.

ad (A4) First, supposing K ⊥⊥ L|MI [m] and
K ⊥⊥M |I [m], let us prove that for any A ⊆ XKLMI

such that A = A↓KI⊗A↓LMI , the equality (18) holds.
Since from A = A↓KI ⊗ A↓LMI it also follows due to
Lemma 2 that A = A↓KMI ⊗ A↓LMI , and therefore
(since we assume K ⊥⊥ L|MI [m])

m↓KLMI(A) ·m↓MI(A↓MI) (21)
= m↓KMI(A↓KMI) ·m↓LMI(A↓LMI).

Now, let us further assume that m↓MI(A↓MI) > 0
(and thus also m↓I(A↓I) > 0). Since from A =
A↓KI ⊗ A↓LMI Lemma 2 implies A↓KMI = A↓KI ⊗
A↓MI , one gets from K ⊥⊥M |I [m] that

m↓KMI(A↓KMI) ·m↓I(A↓I)
= m↓KI(A↓KI) ·m↓MI(A↓MI),

which, in combination with equality (22), yields

m↓KLMI(A) ·m↓MI(A↓MI)

=
m↓KI(A↓KI) ·m↓MI(A↓MI)

m↓I(A↓I)
·m↓LMI(A↓LMI),

which is (for positive m↓MI(A↓MI)) evidently equiva-
lent to (18). If, on the other hand, m↓MI(A↓MI) = 0,
then also m↓LMI(A↓LMI) = 0 and m↓KLMI(A) = 0
and both sides of (18) equal 0.

It remains to prove that m↓KLMI(A) = 0 for all
A 6= A↓KI ⊗ A↓LMI . But m↓KLMI(A) = 0 because
Lemma 2 says that either A 6= A↓KMI ⊗A↓LMI (and
therefore m↓KLMI(A) = 0 from the assumption that
K ⊥⊥ L|MI [m]) or A↓KMI 6= A↓KI ⊗ A↓MI (and
then m↓KMI(A↓KMI) = 0 due to the assumption
K ⊥⊥M |I [m]), and therefore also m↓KLMI(A) = 0).

ut

Analogous to a probabilistic case, conditional inde-
pendence K ⊥⊥ L|MI [m] does not generally satisfy
(A5), as can be seen from the following simple exam-
ple.

Example 3 Let X1, X2 and X3 be three variables
with values in X1, X2 and X3 respectively, Xi =
{ai, āi}, i = 1, 2, 3, and their joint basic assignment
is defined as follows:

m({(x1, x2, x3}) = 1
16 ,

m(X1 ×X2 ×X3) = 1
2 ,

for xi = ai, āi, values of m on the remaining sets being
0. Its marginal basic assignments on X1 ×X2, X1 ×



X3, X2 ×X3 and Xi, i = 1, 2, 3 are

m↓12({x1, x2}) = 1
8 ,

m↓12(X1 ×X2) = 1
2 ,

m↓13({x1, x3}) = 1
8 ,

m↓13(X1 ×X3) = 1
2 ,

m↓23({x2, x3}) = 1
8 ,

m↓23(X2 ×X3) = 1
2 ,

and
m↓i(xi) = 1

4 ,

m↓i(Xi) = 1
2 ,

respectively. It is easy (but somewhat time-
consuming) to check that

m(A↓13 ⊗A↓23) ·m↓3(A↓3)
= m↓13(A↓13) ·m↓23(A↓23)

and

m(A↓12 ⊗A↓23) ·m↓2(A↓2)
= m↓12(A↓12) ·m↓23(A↓23),

the values of remaining sets being zero, while e.g.

m({(a1, ā2, ā3)}) =
1
16

6= 1
4
· 1

8
= m↓1({a1}) ·m↓23({(ā2, ā3)}),

i.e., {1} ⊥⊥ {2}|{3} [m] and {1} ⊥⊥ {3}|{2} [m] hold,
but {1} ⊥⊥ {2, 3}|∅ [m] does not. ♦

This fact perfectly corresponds to the properties of
stochastic conditional independence. In probability
theory (A5) need not be satisfied if the joint prob-
ability distribution is not strictly positive. But the
counterpart of strict positivity of probability distri-
bution for basic assignments is not straightforward.
It is evident that it does not mean strict positivity on
all subsets of the frame of discernment in question —
in this case variables are not (conditionally) indepen-
dent (cf. Definitions 1 and 2). On the other hand,
it can be seen from Example 3 that strict positivity
on singletons is not sufficient (and, surprisingly, as we
shall see later, also not necessary). At present we are
able to formulate Theorem 3. To prove it, we need
the following lemma.

Lemma 3 Let K, L,M be disjoint subsets of N ,
K, L 6= ∅ and m be a joint basic assignment on XN .
Then the following statements are equivalent:

(i) K ⊥⊥ L|M [m].

(ii) The basic assignment m↓KLM on XKLM has for
A = A↓KM ⊗A↓LM the form

m↓KLM (A) = f1(A↓KM ) · f2(A↓LM ), (22)

where f1 and f2 are set functions on XKM and XLM ,
respectively, and m(A) = 0 otherwise.

Proof. Let (i) be satisfied. Then for any A = A↓KM⊗
A↓LM we have

m↓KLM (A) ·m↓M (A↓M )
= m↓KM (A↓KM ) ·m↓LM (A↓LM ).

If m↓M (A↓M ) > 0, we may divide both sides of the
above equality by it and we obtain

m↓KLM (A)

=
m↓KM (A↓KM ) ·m↓LM (A↓LM )

m↓M (A↓M )
.

Therefore (ii) is obviously fulfilled, e.g. for

f1(A↓KM ) = m↓K∪M (A↓K∪M )

and

f2(A↓LM ) =
m↓L∪M (A↓L∪M )

m↓M (A↓M )
.

If, on the other hand, m↓M (A↓M ) = 0, then
also m↓KM (A↓KM ) = 0, m↓LM (A↓LM ) = 0 and
m↓KLM (A↓KLM ) = 0, and therefore (22) trivially
holds. To finish the proof of this implication we must
prove that m(A) = 0 if A 6= A↓KM ⊗ A↓LM , but it
follows directly from the definition.

Let (ii) be satisfied. Then denoting

f↓M1 (A↓M ) =
∑

C⊆XKM

C↓M=A↓M

f1(C)

and
f↓M2 (A↓M ) =

∑
C⊆XLM

C↓M=A↓M

f2(C),

we have

m↓KM (A↓KM )

=
∑

C⊆XKLM

C↓KM=A↓KM

m↓KLM (C)

=
∑

C⊆XKLM

C↓KM=A↓KM

f1(C↓KM ) · f2(C↓LM )

= f1(A↓KM ) ·
∑

D⊆XLM

D↓M=A↓M

f2(D)

= f1(A↓KM ) · f↓M2 (A↓M )



and similarly

m↓LM (A↓LM ) = f2(A↓LM ) · f↓M1 (A↓M ).

Therefore

m↓M (A↓M )

=
∑

C⊆XKLM

C↓M=A↓M

m↓KLM (C) =
∑

D⊆XKM

D↓M=A↓M

m↓KM (D)

=
∑

D⊆XKM

D↓M=A↓M

f1(D↓KM ) · f↓M2 (D↓M )

= f↓M2 (A↓M ) ·
∑

D⊆XKM

D↓M=A↓M

f1(D↓KM )

= f↓M2 (A↓M ) · f↓M1 (A↓M ).

Hence, multiplying both sides of (22) by m↓M (A↓M )
one has

m(A) ·m↓M (A↓M )

= f1(A↓KM ) · f2(A↓LM ) · f↓M1 (A↓M ) · f↓M2 (A↓M )

= f1(A↓KM ) · f↓M2 (A↓M ) · f2(A↓LM ) · f↓M1 (A↓M )
= m↓KM (A↓KM ) ·m↓LM (A↓LM ),

i.e., (i) holds (as m(A) = 0 if A 6= A↓KM ⊗ A↓LM by
assumption). ut

Theorem 3 Let m be a basic assignment on XN such
that m(A) > 0 if and only if A =×i∈NAi, where Ai

is a focal element on Xi. Then (A5) is satisfied.

Proof. Let K ⊥⊥ L|MI [m] and K ⊥⊥ M |LI [m].
Then by Lemma 3 there exist functions f1, f2, g1 and
g2 such that

m↓KLMI(A) = f1(A↓KMI) · f2(A↓LMI)
m↓KLMI(A) = g1(A↓KLI) · g2(A↓LMI)

for any A = A↓KMI ⊗ A↓LMI and any A = A↓KLI ⊗
A↓LMI , respectively.

If m(A) > 0 we can write

f1(A↓KMI) =
g1(A↓KLI) · g2(A↓LMI)

f2(A↓LMI)
. (23)

Let us note, that if m(A) > 0, then by assumption
A =×i∈NAi and therefore it can be written as A =
A↓K×A↓L×A↓M×A↓I . Hence (23) may be rewritten
into the form

f1(A↓K ×A↓M ×A↓I) (24)

=
g1(A↓K ×A↓L ×A↓I) · g2(A↓L ×A↓M ×A↓I)

f2(A↓L ×A↓M ×A↓I)
.

Let us choose B ⊆ XL such that B = A↓L. Then (24)
can be written in the form

f1(A↓K ×A↓M ×A↓I) = h1(A↓KI) · h2(A↓MI),

where

h1(A↓KI) = g1(A↓K ×B ×A↓I),

h2(A↓MI) =
g2(B ×A↓M ×A↓I)
f2(B ×A↓M ×A↓I)

.

Therefore

m↓KLMI(A) = h1(A↓KI) · h2(A↓MI) · f2(A↓LMI)
= h1(A↓KI) · h′2(A↓LMI). (25)

Now, we shall prove that (25) is valid also for A =
A↓KI ⊗A↓LMI such that m(A) = 0. The validity of

m↓KLMI(A) ·m↓M (A↓MI)
= m↓KMI(A↓KMI) ·m↓LMI(A↓LMI)

for A = A↓KMI ⊗ A↓LMI implies that at least one of
m↓LMI(A↓LMI) and m↓KMI(A↓KMI) must also equal
zero. In the first case, (25) holds for h′2(A↓LMI) =
m↓LMI(A↓LMI) and h1 arbitrary.

If, on the other hand, m↓LMI(A↓LMI) > 0, then
m↓KMI(A↓KMI) must equal zero. We also must prove
that in this case m↓KI(A↓KI) = 0, from which (25)
immediately follows. To prove it, let us suppose the
contrary. Since A↓KMI = ×i∈KMIAi, there must
exist at least one j ∈ M such that Aj is not a fo-
cal element on Xj . From this fact it follows that
also m↓LMI(A↓LMI) = 0, as m↓j(Aj) is marginal to
m↓LMI(A↓LMI), and it contradicts the assumption
that m↓LMI(A↓LMI) > 0.

It remains to be proven that m(A) = 0 if A 6= A↓KI⊗
A↓LMI . But it follows directly from the assumption,
as m(A) > 0 only for A =×i∈NAi. ut

Example 3 suggests that the assumption of positivity
of m(A) on any A = ×i∈NAi, where Ai is a focal
element on Xi, is substantial. On the other hand,
the assumption that m(A) = 0 otherwise may not be
so substantial and (A5) may hold for more general
bodies of evidence than those characterised by the
assumption of Theorem 3 (at present we are not able
to find a counterexample).

Let us note that, for Bayesian basic assignments, as-
sumption of Theorem 3 seems to be more general than
that of strict positivity of the probability distribution.
But the generalisation is of no practical consequence
— if probability of a marginal value is equal to zero,
than this value may be omitted.



5 Summary and Conclusions

This paper started with a brief discussion, based on
recently published results, why random sets indepen-
dence is the most appropriate independence concept
(from the viewpoint of multidimensional models) in
evidence theory. Then we compared two generalisa-
tions of random sets independence — conditional non-
interactivity and the new concept of conditional inde-
pendence. We showed that, although from the view-
point of formal properties satisfied by these concepts,
conditional noninteractivity seems to be slightly bet-
ter than conditional independence, from the view-
point of multidimensional models the latter is superior
to the former, as it is consistent with marginalisation.

There is still a problem to be solved, namely: can
the sufficient condition be weakened while keeping the
validity of (A5)?
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and conditional independence in Evidence Theory,
submitted to International Journal of Approxi-
mate Reasoning.

[6] G. J. Klir, Uncertainty and Information. Founda-
tions of Generalized Information Theory. Wiley,
Hoboken, 2006.

[7] S. L. Lauritzen, Graphical Models. Oxford Univer-
sity Press, 1996.

[8] S. Moral, A.Cano, Strong conditional indepen-
dence for credal sets, Ann. of Math. and Artif.
Intell., 35 (2002), 295–321.

[9] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, New Jer-
sey, 1976.

[10] P. P. Shenoy, Conditional independence in
valuation-based systems. Int. J. Approx. reason-
ing, 10 (1994), 203-234.
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