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Abstract

In earlier work we have developed methods for
analysing decision problems based on multi-attribute
utility hierarchies, structured by mutual utility inde-
pendence, which are not precisely specified due to un-
willingness or inability of an individual or group to
agree on precise values for the trade-offs between the
various attributes. Our analysis is based on what-
ever limited collection of preferences we may assert
between attribute collections. In this paper we show
how to assess the robustness of our selected decision
using the properties of boundary linear utility.

Keywords. Robust decisions, imprecise utili-
ties, utility hierarchies, mutual utility independence,
boundary linear utility, sensitivity analysis.

1 Introduction

In two earlier papers we have developed a method-
ology for decision analysis with multi-attribute util-
ities which does not require the specification of pre-
cise trade-offs between different risks. Multi-attribute
utilities may be imprecisely specified, due to an un-
willingness or inability on the part of a client to spec-
ify fixed risk trade-offs or because of disagreement
within a group with responsibility for the decision.

In [3] we introduced our approach to constructing im-
precise multi-attribute utility hierarchies and finding
the Pareto optimal rules. We described the structure
which we use, which is based on a utility hierarchy
with utility independence at each node, explained the
notion of imprecise utility trade-offs for such a hierar-
chy, based on limited collections of stated preferences
between outcomes, and used Pareto optimality, over
the set of possible trade-off specifications, to reduce
the set of alternatives. These methods and some as-
sociated theory are summarised in Section 2 of this

paper.

We are particularly concerned with problems where
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the number of alternatives among which we must
choose is large. Many real decision problems, for ex-
ample in experimental design, have very large spaces
of possible choices. Relaxing the requirement for pre-
cise trade-off specification reduces our ability to elim-
inate rules, i.e. choices, by dominance and can leave
us with a large class of rules, none of which is dom-
inated by any other over the whole range of possible
trade-offs allowed by the imprecise specification. We
are therefore faced with the need for practical ways
to reduce the decision space which are tractable even
when the decision space is very large and there is a
complicated multi-attribute utility structure to con-
sider. In [4] we described ways to reduce further the
class of alternatives that we must consider, by elimi-
nating rules which are “c-dominated” and combining
rules which are “c-equivalent.” We explored the ef-
fects of different values of € and of different parts of
the hierarchy to see when and why rules are elimi-
nated.

To choose a single rule d* from our reduced list, we can
use the boundary linear utility approach described in
[3], or choose the rule which is the last to be elimi-
nated as we increase the value of our € criterion as
described in [4]. We can then find the set D* of rules
which are “almost equivalent” to d* and perhaps use
secondary considerations to choose among them. We
review boundary linear utility in Section 3 of this pa-
per.

In Section 4 we describe methods, based on the
boundary linear utility, for exploring the sensitivity
of possible choices to variation in the utility trade-
offs. This helps us to find a decision which, as far
as possible, is a good choice over the whole range of
possible trade-offs.

The practical implementation of our approach is il-
lustrated throughout by an example concerning the
introduction of a new course module at a university,
which we first described in [4].



2 Mutually utility independent
hierarchies and imprecise utility
tradeoffs

2.1 Mutually utility independent hierarchies

In [3] we proposed a general class of multi-attribute
utility functions. This uses the concept of mutual
utility independence among sets of attributes in or-
der to impose a structure on the utility function. At-
tributes Y = (Y1, ..., Y%) are utility independent of the
attributes Z = (74, ..., Z,) if conditional preferences
over lotteries with differing values of Y but fixed val-
ues, z, of Z, do not depend on the particular choice of
z. Attributes X = (X7, ..., X;) are mutually utility in-
dependent if every subset of X is utility independent
of its complement. If attributes X are mutually util-
ity independent, then the utility function for X must
be given by the multiplicative form

S
UX)=B" {H[l + ka; Ui (X;)] — 1} , (D)
i=1
where B does not depend on Uy (Xy),...,Us(Xs), or
the additive form

UX) =Y ali(X), (2)
i=1

(see [6]) where U;(X;) is a conditional utility function
for attribute X;, namely an evaluation of the utility
of X; for fixed values of the other attributes. The
coefficients in (1) and (2) are the trade-off parameters;
the a; reflect the relative importance of the attributes
and k reflects the degree to which rewards may be
regarded as complementary, if k > 0, or as substitutes,
if k£ <0.

The assumption of mutual utility independence,
which many people would often be prepared to make,
is enough in itself to reduce the problem to one of
considering a finite number of parameters.

Keeney and Raiffa [6] also describe the idea of a hier-
archy of utilities, as follows. We form an overall multi-
attribute utility from marginal utilities for the various
attributes by a hierarchical structure in which, at each
node, several utilities are merged into a combined util-
ity. This combined utility is merged with others at a
node in the next level until, finally, one overall utility
function is formed. If, at each node, we have mutual
utility independence for the utilities combined at that
node, then we term such a utility function a Mutually
Utility Independent Hierarchic (MUIH) utility. Thus,
in a MUIH utility, at each node we combine utilities
using either (1) or (2).

Our hierarchical structure allows us to relax the re-
quirement for overall mutual utility independence by
allowing the user to specify utility independence just
at the nodes of the hierarchy and, of course, the user
can choose this structure.

In our utility hierarchy we consider the overall util-
ity node to be at the “top” level and the predeces-
sors of a node to be at “lower” levels. We refer to
the nodes corresponding to the individual attributes,
that is nodes which have no predecessors, as marginal
nodes. We refer to a direct predecessor of a node as
a parent and a direct successor as a child. For each
node n, we denote by H(n), the sub-hierarchy under
n, where H(n) is the set of nodes containing n and all
of its predecessors. We divide the child nodes in the
hierarchy into the following three types:

1. an additive node, where utilities are combined
as in (2) with >0 ;a; = 1 and a; > 0 for
1=1,...,s;

2. a binary node, where precisely two utilities are
combined, where we rescale the combined utility
as

U =a1U; + axUs + hU Us (3)
where 0 < a; < 1 and —a; < h < 1 — a4, for
1= 1,2, and a1 + az + h = 1. Note that (3) is
derived by setting s = 2 and h = kajag in (1).

3. a multiplicative node, where more than two utili-
ties are combined and the parameter & in (1) may
be nonzero. We scale the utility using

B=]]0+ka)-1 (4)
i=1
with a1 = 1,k > —1 and, for i = 1,...
have a; > 0 and ka; > —1.

, S, we

For each child node n, we denote by Qn =
(@n,1s- -+ s Pnm(n)) the collection of trade-off parame-
ters which determine how the parent utilities at node
n are combined to give the value at the child node.
Thus, each ¢, ; corresponds to an a; in (2) an a; or h
term in (3), or an a; or k in (1). If there are N child
nodes, then we denote by 6 = (¢ ..., ¢,) the collec-
tion of all the trade-off parameters in the hierarchy.
If we allow imprecision in some of the elements of 6,
then we refer to the resulting utility specification as
an imprecise independence hierarchy (IIH). If the hi-
erarchy contains only additive and binary nodes, then
we refer to the specification as a simple imprecise in-
dependence hierarchy (SIIH)

The utility at each child node is determined both by
the values of the utilities at the marginal nodes and



also by the choice of trade-off parameters. As we shall
vary the trade-off parameters, and thus the utilities
at the child nodes, we require a standard scale for
all utilities in the ITH, whose interpretation does not
depend on the choice of trade-off parameters. This is
constructed as follows.

As the marginal utility at each marginal node is ex-
pressed in a utility scale, we norm all the marginal
utilities to lie between 0, the worst outcome that we
shall consider for the problem, and 1, the best out-
come. The effect of the scalings that we have chosen
for additive, binary and multiplicative nodes is that,
at each node n in the hierarchy, the utilities of C,,
and ¢, are 1 and 0 respectively, where C), is an out-
come such that all marginal predecessor nodes have
utility 1, and ¢, is an outcome such that all marginal
predecessor nodes have utility 0. Therefore, a utility
value of u at node n may always be interpreted as
the utility of a gamble giving C,, with probability u
and ¢, with probability 1 —w, irrespective of the chain
of trade-off parameters in the hierarchy. This utility
scale is termed the standard scale for the hierarchy.
Throughout this paper, all utilities are assumed to be
on the standard scale.

2.2 Example: Designing a new course
module at a university

In [4] we introduced an example concerning the design
of a new course module at a university. We use the
same example here to illustrate our approach. The
module is to contain six units, or topics, each of which
may, for the purpose of this example, be considered to
be of the same size in the sense that, given the same
teaching method, they would require the same length
of time. Each topic could be taught by any one of
three teaching methods, denoted as follows:

Lect : a traditional course of lectures and tutorials.

Lab : a laboratory-based course using a computer
algebra package.

OL : an “open learning” course without lectures or
formal laboratory sessions.

Thus we have 3% = 729 possible choices of combina-
tions of teaching methods. We can denote a choice
(1, ..., pe) where p; = 1,2 or 3 according to which
method is used for unit 7. (In practice there are ad-
ditional choices to be made, but we do not wish to
introduce unnecessary complexity into this example).
The attributes which we consider in our analysis are
as follows. Further details are given in [4].

e For students:

S %
T T
Sh S2 S3 Vi Va Vs

Figure 1: Utility hierarchy for the course design ex-
ample.

S1  short term learning,
So  longer-term learning,
S3  satisfaction,

e For the university and staff:

V1 staff satisfaction,

Vo institutional benefits,
V3 staff development,

C  financial cost.

As for many decision problems, the attributes of in-
terest are in very different units and it may be difficult
to establish precise trade-offs between the attributes
in order to rank the various teaching choices.

2.3 Example: Utility hierarchy

The utility hierarchy is shown in Figure 1.

The overall utility node U is a binary node, combining
the utility Uc for cost and the utility Ug for quality.
So the overall utility is

U=ayqUqg + avcUc + hyUgUc.
The “module quality” utility Ug is formed at a binary
node and is given by

Ug = agsUs + agyvUy + hoUsUy,

where Ug and Uy are the utilities for “Students” and
“University”. Each of these is an additive node which
depends on three marginal utilities:

Us = as1Us1+ ag2Usa + as3Uss,
Uy

av1Uyv1 + ayaUya + ay3Uys.



Vertex
P51 Pgr Doy
as1 | 0.2 0.2 0.5 ] 0.3
aso | 0.4 0.7 04 | 05
ass3 | 04 0.1 0.1 ] 0.2

Node S (Students).

Vertex

o1 % %05 %qi | g0

as | 0.890 0.500 0.890 0.500 | 0.695
ay | 0.110 0.500 0.305 0.305 | 0.305
hg | 0.000 0.000 -0.196 0.195 | 0.000

Node @ (Module Quality).

Vertex
ém 9V2 st ?Vo
ay1 | 0.05 0.05 0.20 | 0.10
ayso | 0.50 0.75 0.55 | 0.60
ays | 0.45 0.20 0.25 | 0.30

Node V' (University).

Vertex
?Ul ?UQ QUS éU4
ac | 0.7 05 07 05| 0.6
ag | 0.3 05 04 04 | 04
hy | 0.0 00 -0.1 0.1 | 0.0

Node U (Overall Utility).

Table 1: Trade-off parameter values.

The marginal utilities Ugy, Uga, Uss, Uy1, Uya, Uys
are associated with the attributes S, Sa, S3, Vi, Vo,
V3. Details of the evaluation of expected marginal util-
ities are given in [4].

The utility function is fully specified when we assign
values to all of the trade-off parameters in the above
relations. In this paper, we shall consider how to anal-
yse the problem as an SITH, when we are unwilling to
give precise values to these trade-offs.

2.4 Using Imprecise Trade-off Parameters

One of the most difficult tasks in specifying a mutu-
ally utility independent structure is the quantification
of the various trade-off parameters in the forms (2),
(3) and (1), as this typically requires the comparison
of intrinsically different types of costs and benefits.
Therefore, it is of fundamental interest to consider
problems where we are unwilling to fix on particular
trade-off values or where a group of individuals must
make a joint decision, and there is broad agreement
on the marginal utilities, but different members of the
group have different priorities when trading risks.

Although we are unwilling to place strict values on
the trade-offs, there will be certain combinations of
outcomes over which we are prepared to state pref-
erences and these comparisons establish the region of
the space of trade-off parameters which we must con-
sider. We choose to elicit our imprecision in the values
of the trade-off parameters 6 based on our stated pref-
erences over utility combinations for outcomes, as this
is usually more meaningful than considering directly
the imprecision in the elements of 8. So, for each
child node, we make a collection of pairwise compar-

isons between vectors of values of parent utilities (or,
equivalently, the corresponding vectors of attribute
values). Details are given in [3].

Some authors also consider imprecision in the
marginal utility functions. Recent examples include
[7] who describe a decision support system in which
the imprecise multi-attribute utility function is addi-
tive and [5], who allow a multiplicative function in
which a range for the value of & in (1) is determined
by considering the values implied by ranges given for
ai,...,as. In both cases ranges for the trade-off pa-
rameters are combined to form a rectangular space.
In this paper we only consider imprecision in trade-
offs and assume that the necessary expectations of
marginal utilities, and in some cases their products,
can be agreed. However we do not impose an arbitrary
probability distribution over ranges of imprecision, or
over attributes, nor do we assume a rectangular shape
for the space of trade-off parameters allowed by the
imprecise specification resulting from a careful elici-
tation process.

For each additive or binary child node, we state
whichever preferences we wish between pairs of utility
vectors for the parent nodes. Each stated preference
places a linear constraint on the allowable choices for
the trade-off parameters ¢;. We term the collection,
R, of all sets of trade-off parameters consistent with
each of the stated preferences the feasible region of
choices for the trade-off parameters. In [3] we showed
that the shape of the region of trade-off parameters re-
sulting from the above elicitation scheme for an SITH
is as follows. At each additive or binary node n, we
obtain a convex polyhedron R,, for the allowable val-
ues of ¢ . The regions Ry,..., Ry together define a



d |1, 3, 1, 1, 3, 2
d |2 3 1, 3, 3 2
ds |1, 3, 1, 3, 3, 2
di |1, 3, 1, 1, 1, 3
ds |1, 3, 1, 1, 3, 3
ds |2, 3, 1, 1, 3, 2

Table 2: Alternatives for comparison.

region R in the combined space of parameters 8, where
6 € R if and only if¢ € R, forn=1,...,N. The

vertices of R, are denoted ¢(1 .,(bfj") and those

of R are denoted Q . 9(” Let P be the set of
vertices of R and P,, be the set of vertices of R,,.

We explained in [3] that, in the case of an ITH contain-
ing multiplicative nodes where the utilities are com-
bined using (1) and (4), we must modify the elicita-
tion procedure. We also described the shape of the
resulting feasible set. If we are willing to choose a
fixed value for k then, at each multiplicative node n,
we obtain a bounded rectangular region R, (k), with
vertices QS), ey 95:"), for the remaining elements of
Qn. The shape is somewhat more complicated if the
value of k is also treated as imprecise.

2.5 Example: Imprecise trade-offs

The specification of imprecise utility trade-offs in this
example was described in more detail in [4]. Table
1 gives the vertex set P; for the feasible region RZ,
at each node . For each node, a central value ng
also listed, which is the average of the values at each
vertex.

In [4] we found that there were 50 Pareto optimal
choices in this example. Of these, 37 could be elim-
inated because they were equivalent to other choices
which were retained. We chose the value ¢ = 0.012
and, by applying our ideas of almost-preference with
this value of ¢, reduced the list to the six alternatives
listed in Table 2. These are ordered according to our
e-preference procedure, dg being eliminated before ds
and so on. The last remaining choice is d; .

3 Boundary linear utility

3.1 Definitions and motivation

The feasible region for the trade-off parameters in a
SIIH is the convex hull of a finite collection of trade-
off parameters Q(i) € Pt =1,...,7. We now need
a way to compare non-dominated choices over this
region. Let U; be the utility function determined by
the choice of trade-offs 89 € Pi=1,...,r. Any

function of the form

Uy = XT: AiUs (5)
=1

where A = (Aq,...,\.) are non-negative constants
such that Y/, A\; = 1 is termed a boundary linear
utility. For any such Uy, we may identify the rule
which maximises Uy = >.;_, \iUq, where Uy, is
the utility of alternative d with trade-off 0.

In [3] the boundary linear form is motivated by vari-
ous axiomatic and natural requirements for the com-
bination of group preferences. In addition to such
theoretical support, the boundary linear form is easy
to interpret, gives a clear comparison between differ-
ent choices and leads to tractable procedures even for
large numbers of alternative decisions. The choice
of the \ weights can be used to emphasise or de-
emphasise the importance of a particular attribute by
putting more or less weight on vertices corresponding
to different values for a particular trade-off.

While the set of A weights is formally equivalent to a
probability distribution over the points in P, our in-
terpretation of the A weights is not probabilistic but is
in terms of the properties of the boundary linear util-
ity described below and as a means for exploring the
robustness of alternatives. A probability distribution
over possible sets of attribute weights is used in [1] as
a means of exploring sensitivity. In [2] a weight speci-
fication, known as a second order belief specification,
over the ranges of imprecisely specified probabilities
and expected utilities in a decision tree is used to help
make a unique choice of alternative.

3.2 Properties of the boundary linear utility

Let us consider first the case of a SITH.

There is a natural relation between Pareto optimality
and Bayes rules for boundary linear utilities. In [3] we
showed that, for a SITH, a decision which is either (i)
a unique Bayes decision for some Uy, or (ii) a Bayes
decision for some Uy with A\; > 0 for i = 1,...,r, is
Pareto optimal over R.

Each weight \; corresponds to a complete parameter
specification 0. Tt is useful to be able to relate this
to weights applied to parameter speciﬁcations at in-
dividual nodes. Denote by A(iq,.. ) the Weight
applied to the combination of vertlces (b ey ¢ in)
at nodes 1,..., N respectively. Denote by Anyi t
weight apphed to vertex qS( ) at node n. If we require
that the weights applied to vertices at node n should
not change if we combine this vertex with a different
vertex at another node then we require



Ai1y e ying ooy in) _ An
Aty sty oyin) At

for two different vertices i,, and ¢/, at node n, with
Anir # 0. It follows that A(i1,...,in) = [[0_; Ansin-
Such a weight specification is called a multiplicative
weighting. For such a specification, we may vary the
weights at each node separately.

It is often helpful to equate the boundary linear form
with the utility at interior trade-off values. It fol-
lows directly from the fact that R; is a convex poly-
hedron that, for any 6 in R, there exists a multi-
plicative weighting A such that § = §, and, for any
multiplicative weighting A, there exists a 6 in R such
that § = @,, where 0, = > 2,09 and the sum is
taken over all of the vertices of R. In [3] we showed
that, in a SIIH, if A\ is a multiplicative weighting
then Uy = U(@,). This result establishes a correspon-
dence between the elements of R and the multiplica-
tive boundary linear utilities.

From this we know that, for any 6 in R, we can find
A1,...,Ar such that U(0) = >, \iU;. Values of 0
not on the boundary of R will give A values satisfying
Ai > 0fori=1,...,r. Rules which are Bayes for such
internal 6 values will therefore be Pareto optimal over
R.

For illustration of the multiplicative weighting, con-
sider a simple example with three marginal utilities
and two additive nodes where

Uo = ¢01U1 + ¢o2Us, Uy = ¢13U3 + ¢14Us

and at each of the two nodes we have two alternative
parameter specifications, corresponding to the vertex
values. The two values for ¢g; are ¢g11 and ¢g12 etc.
Thus R has four vertices. Assign weight ;i to the
vertex where node 0 takes parameter specification j
and node 1 takes parameter specification k. The co-
efficient of Us in Uy is now

O3 = {(M1+ Ai2)do11 + (A2 + Aa2)do12}

X {(A11 + Ao1)d131 + (M2 + Aa2)dis2} .

Now introduce weights on the parameter values at
the individual nodes and calculate the overall weights
from these so that A1 = A§; AT, A1z = A§;1 ATg, Ao1 =
A§aAT1, Aoz = A§y ATy, where Aj; is the weight on the
first parameter set at node 0 etc. and the weights at
each node sum to 1. The coefficient of U3z now sim-
plifies to

O3 = {A§1%011 + Agado12} {A]10131 + Aladi32}
= A A1P0119131 + A5 A 1200110132
+A02A11 00120131 + AjaAl2P012¢132
= A1¢o119131 + A1200110132 + A21 00120131
+A2200120132

a weighted average of the coefficients at the four ver-
tices, as required.

3.3 Boundary linear utility in a general ITH

The boundary linear utility is easily extended to the
case where a hierarchy contains multiplicative nodes
where the utilities are combined as in (1) and (4)
provided that a precise value of the parameter k is
used. The extension to the case where k is imprecisely
specified is discussed in [3] where we showed that, in
any ITH, for any @ in R there exists a multiplicative
weighting A such that U(f) = Uy, thus generalising
the correspondence between the elements of R and
the multiplicative boundary linear utilities.

3.4 Example: Boundary linear utility

With equal A weights on all vertices, the alternative
which maximises E(U)) is rule d; which gives E(Uy) =
0.5120. The central point 8, at which U () = Uy, is
given by the centres of each range as given in Table
1.

The )\ weights could be varied to change the empha-
sis on different attributes. For example, at node U
the coefficient of financial cost varies between 0.5 and
0.7. Putting more weight on all vertices where the
coefficient was 0.7 would emphasise this attribute,
whereas more on all vertices where it was 0.5 would
de-emphasise it. For illustration we changed the
weights to 2:1 in favour of 0.7 and 2:1 in favour of
0.5. In each case rule d; maximised E(Uy) giving val-
ues of 0.5096 and 0.5144 respectively. This increases
our confidence in the choice of d;.

Sometimes, we may uniquely choose a collection of
A weights under the guidance of one of the formal
arguments in [3]. However, usually we will want to
consider the robustness of our choice to variation in
A, which we now address more formally.

4 Exploring sensitivity
4.1 General comments

The boundary linear utility gives us an approach to
choosing between alternative rules. However, while



any given boundary linear utility function identifies
a “best” alternative, we would usually prefer an al-
ternative which is robust in the sense that it behaves
well compared to most alternatives over most of the
range of trade-off parameters. We now consider how
such robustness may be assessed.

When we have chosen a multiplicative boundary lin-
ear utility Uy = >.;_, \;U;, we find the decision
d* which maximises expected utility, under Uy. We
also define a ‘central’ parameter specification 6, =
PP Y 6" where this sum is taken over the elements
of P. From Section 3.2 we know that, in a SITH, when
A is a multiplicative weighting, U(8,) = U,. Thus, we
can explore sensitivity in two ways. First, we can see
how much we must change the A weightings in order
to alter our choice of best decision and secondly, at
least in a SIIH, we can see how far we must move
away from the central value 6y, to alter our choice.
Effectively, this establishes two separate but related
sensitivity metrics. The former is concerned solely
with the relative importance of the various vertices
of the trade-off space, irrespective of their Euclidean
values, while the latter reflects the actual Euclidean
distances between alternative trade-off parameters.

The investigations described below are designed to
assess the robustness of our decision to the choice of
trade-off. At each step, if the analysis suggests that
there are other alternatives which perform substan-
tially better than our selected rule over much of the
trade-off space, then we may repeat the steps, sub-
stituting the suggested alternatives, to see whether a
more robust choice of rule may be found.

Suppose, in what follows, that we have a set D of
alternatives for comparison with d*. This set may be a
subset of the Pareto optimal choices formed using the
methods in [4]. Suppose also that we have chosen a
small increment € > 0 which we tolerate in comparing
utilities, as discussed in [4].

4.2 Volume sensitivity

A first general robustness measure is as follows. For
each alternative in D, we compute the volume of \-
space, as a proportion of the total volume within
which )" \; = 1, over which the difference in util-
ity between that alternative and d* is at least . If
this proportion is very small, then this suggests that
d* is robust against that alternative.

Having assessed global sensitivity over the whole hi-
erarchy, we may repeat the analysis in any sub-
hierarchy. For any child node ¢, with utility U;, we
may find the proportion of the permissible A-space
for the vertices of the feasible region of parameters in

the sub-hierarchy under ¢ in which the difference in
expectations of U; between an alternative and d* is at
least €.

To do these analyses we need to be able to compute
the volume of A-space which satisfies a condition
g(dh d2) =

Ux(dy) — Ux(dg) > z (6)

for some specified x, where d; and ds are two
choices. Let d = (di,...,d.) and U(n)(d) =
O (dy), ..., 0 (d,)), where U™ (d;) is the bound-
ary linear utility evaluated at node n with weights A
over the subhierarchy H(n) under n. To evaluate the
volume satisfying (6), we can make use of the follow-
ing analogy.

If we gave A a uniform distribution over its feasible
region then the required volume would be the prob-
ability that (6) is satisfied. The utility hierarchy can
then be interpreted as a graph in which the probabil-
ity distribution of the utility difference between any
two decisions at a child node, given the values of the
parent utilities, would depend only on the distribution
of the tradeoff parameters at the child node. Thus we
can evaluate the distribution of U( )(d) higher in the
hierarchy through a chain of conditional distributions.
See, e.g., [9].

Specifically, the density of U) (m) (d), the values at a
child node n with parents nq,...,ns, is

fO(d / / {fnmn)U )| TV (@)
H L T (@) } dos" ) (7)

and

Pr(g, > 1) = / / {Pr[gnmw&"*)(d)]

Hfm U } dus"(d) (8)

where Q&n*)(d) = U&nl)(d) U(nb)(d) and
FnlH®n) [QE\ @) | U(n )(7)] is the conditional density
given the values of the boundary linear utilities eval-
uated at the parent nodes for the elements of d.

Starting with the children of the marginal nodes, the
distribution of U E\n) (d) is evaluated node-by-node up



the hierarchy using (7). At a child node n with r,
vertices we have, from (5) and (6),

gnldr,d) = 3 A s [U (dy) — U (do)]
=1

where Ui(n) (d) is evaluated at vertex ¢ of node n. Thus
gn(di,d2) = x defines a plane in A-space which may
cut the feasible fegion. The conditional probability
Prig, > = | Q&n )(d)] in (8) is then a proportion of
the volume of the feasible polyhedron which can be
determined by finding where g,, = x cuts the edges.

Similarly, the conditional probability Pr[U{™ (dy) <
x| Q&n*)(d)} is the proportion of the volume of the
feasible polyhedron at node n cut off by U /g") (dy) = =z,
with the parent utilities fixed. Differentiating this
probability with respect to x gives the conditional
density of Ui") (d1). Then fixing U}(\")(dl) = z; im-
poses a linear constraint on A, 1,...,A,,, and re-
duces the dimension of the feasible region by 1. By
considering the intersection of U /gn)(dg) = 1z with
this reduced region we can find the conditional distri-
bution of U)(\n)(dg) given U/gn) (d1) = z1. If required,
we can continue this process for ds,...,d,, —1. For
j> -1, U/&")(dj) is then a deterministic func-
tion of Q&n)(dl, ...ydyr —1). In this way we can find
the conditional density fy, m(n) [Q&”) (d) | an)(d)] in
(7).

4.3 Example: Volume sensitivity

We have identified the choice dy under the utility with
equal weightings at each vertex in P. We now consider
the sensitivity of that choice, following the steps in
Section 4.

We computed the volume of A-space, as a propor-
tion of the total volume within which > \; =1, over
which the difference in utility between alternative dy
and each of the other retained alternatives is at least
—eg, at our chosen value of 0.012. We concluded that
the volume over which the difference in favour of any
alternative over d; is greater than ¢ is less than 0.01%
of the total volume and therefore that d; is a robust
choice. (The proportion is nonzero, since we know
that the difference is greater than e at some of the
vertices. However the region of A\ space which we are
exploring is a simplex of very high dimension and the
neighbourhoods of the vertices of this simplex con-
tribute only a tiny fraction of the total volume.)

Next we computed the proportions of A-volume over
which each alternative’s boundary linear utility ex-
ceeded that of d; by at least ¢ for each of the non-
marginal nodes in the hierarchy. Table 3 gives the re-

Node
U Q S 1%
do | 0.000 1.000 0.103 1.000
dsz | 0.000 0.001 0.000 1.000
Rule d4 | 0.000 0.000 0.000 0.000
ds | 0.000 0.000 0.000 0.000
dg | 0.000 1.000 1.000 1.000

Table 3: Proportions of A volume where the utility
difference is at least ¢ at non-marginal nodes.

Choice
dy do ds dy ds dg
C | 0484 0416 0.476 0.544 0.536 0.424
S1 ] 0.497 0.447 0.463 0.433 0.400 0.480
Ss | 0.578 0.577 0.528 0.420 0.370 0.627
Sz | 0.800 0.900 0.800 0.800 0.800 0.900
Vi | 0.533 0.467 0.433 0.500 0.400 0.567
Vo | 0.433 0.667 0.533 0.300 0.400 0.567
Vs | 0.467 0.717 0.583 0.333 0.450 0.600

Table 4: Values of expected utilities at the marginal
nodes.

sults. The results show that the challenge to d; seems
to be based in node V. The apparent main challengers,
rules dy and dg, differ only in Unit 4 which is given by
lectures in dg and open learning in ds. According to
the elicited expectations, dg thus favours the students
more.

4.4 Distances in A-space

Next, for each alternative in D, we identify those
vertices where the difference in utility between that
choice and d* is at least . For each of these vertices,
we find the distance, in A-space, in the direction of
the vertex, between )y, our original A specification,
and the point where the difference in boundary lin-
ear utility between that choice and d* first reaches
e. Let || A |l= v/A'A, where )\ is the transpose of \.
We find ¢ || A, — Ay ||, where A, is the A vector for a
vertex, t = {0(Ag) +}/{d(Xg) — I(A,)} and 6(}) is
the difference in boundary linear utility at A. Large
values of these distances suggest robustness of d*. In
this metric, the distance between any two vertices is

V2.

4.5 Example: Distances in A-space

Table 4 shows the values of the expected marginal-
node utilities for the members of D and Table 6 shows
at which marginal node each alternative is superior
to d*. Table 5 lists the vertices where the difference
in utility between one of the other alternatives and



d* is at least €. The vertices are numbered for easy
reference. The vertices can be identified using the
numbering of the vertices at each node, which is the
same as in Table 1. Table 5 then gives the distances,
from the original A specification towards these ver-
tices, to reach points where the difference in utility
between one of the other alternatives and d* is at
least €. Most of the distances are large. There are a
few exceptions, notably for rule dy at vertices 46 and
47. Rule ds is the retained option with the least de-
pendence on traditional lectures and at these vertices
relatively little weight is placed on financial cost but
relatively great weight is placed on institutional bene-
fit. To put the distances in context, observe that each
original A value is approximately 0.007. The move re-
quired for vertex 46 changes A4 to approximately 0.6
and therefore the average of the other A\ values is less
than 0.003 or 0.5% of Ass. There seems to be little
reason here to change our conclusion that d; is a ro-
bust choice. Notice also how the pattern of marginal
nodes in common between rules in Table 6 tends to
be repeated with vertices in common in Table 5.

4.6 Sensitivity in the 6-metric

We can quantify sensitivity in the #-metric by looking
at the effect of general movement away from 6, as
follows. Let the elements of P be Q(l), .. 7Q(T). Define
the scaled range R; to be the convex hull of P, the
elements of which are given by Q,(f) =0+ t(Q(i) —0y)
for ¢ > 0. We may think of this as expanding a volume
(in the f-metric) centred on #, until a boundary of
the region of optimality of d* is reached. An obvious
extension of Lemma 2 in [3] shows that this boundary
will be reached first at an element of P; so we only
need to make comparisons at the vertices. For each
element of D we evaluate, at each of a range of values
of t up to 1, the maximum over P; of the difference
in expected utility compared with d* and plot these
values against ¢. This plot will serve as an indication
of over how large a range around #, we can judge
d* to be robust. This approach may be compared
with that of [8] in which the sensitivity of a preferred
alternative is measured using the minimum distance
(in some metric) to a point in the parameter space at
which another alternative becomes preferable.

4.7 Example: Sensitivity in the 6-metric

Figure 2, shows one of the range expansion plots. The
horizontal axis is the expansion factor ¢. The vertical
axis is the difference in expected utility between an
alternative, in this case ds, and d*, in this case d;.
At each value of the expansion factor the values at
the 144 vertices of the range were calculated and the
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Figure 2: Expansion with respect to all parameters.
Maximum, quartiles and minimum of the difference
in expected utility between dy and d; at 144 vertices,
against expansion factor ¢. Reference lines are given
at zero and =+e.

Choice Marginal Node

dy S3 Vo V3
ds Vo V3
dy C

ds C

dg Sy S3 Vi WV W3

Table 6: Marginal nodes at which alternatives are
superior to dj.

maximum, minimum, median and upper and lower
quartiles of these 144 values are plotted.

From Figure 2, we see that dy does substantially worse
than d; over most of the range but possibly better for
large t. Similar plots for the other alternatives show
that none of the other rules does much better than d;
over any of the range and some do much worse in some
of the range. Generally the maximum difference only
exceeds € towards the end of the range. We conclude
that do is the only alternative to d; worth further
consideration.

5 Conclusion

In [3], [4] and this paper we have described an ap-
proach to multi-attribute decision analysis where the
trade-offs between attributes are not precisely speci-
fied. Imposing the condition of utility independence
makes the dimensionality of the trade-off specifica-
tion finite and allows us to work in terms of ranges
for trade-off parameters. However, by imposing this
condition only at the nodes of a utility hierarchy we
can relax the requirement for mutual utility indepen-



Vertex for Distance for Vertex for Distance for
Node Alternative Node Alternative

Vertex | U @Q S V dy ds || Vertex | U @Q S V do ds dg

111 1 1 10591 4612 2 1 1 1]0.354 0.815 0.710

211 1 1 210.591 4712 2 1 210371 0.919 0.710

311 1 1 3]0.567 4812 2 1 310672 0.967

711 1 3 1 ]0.954 4912 2 2 10518 0.978

811 1 3 20954 5012 2 2 2| 0.548 0.978
911 1 3 3| 0.906 5212 2 3 1 |0.638
01 2 1 1 0.698 5312 2 3 2]0.681

1mj1 2 1 2 0.732 642 4 1 10468 0.779

1211 2 1 3 |0.843 0.867 652 4 1 20492 0.782
6|1 2 3 1 0.994 66 | 2 4 1 3 |0.892
19|11 3 1 1]0.654 6712 4 2 10929
2001 3 1 2 |0.656 6812 4 2 20992
211 3 1 30605 1181 4 2 1 1| 0.637
281 4 1 1 |0.942 0.809 11914 2 1 2| 0.673
29 | 1 4 1 2 |0.938 0.840 12114 2 2 1 | 0.991
301 4 1 3 ]0.782 0.983 136 | 4 4 1 1| 0.878
13714 4 1 210930

Table 5: Distances to points where the utility difference is at least ¢.

dence between all attributes. In our earlier papers we
discussed how to reduce the number of alternatives
for consideration and how to make a robust choice. In
this paper we have considered the examination of sen-
sitivity of our choice, in particular using the boundary
linear utility.

The example illustrated the use of our methods. We
gained a better understanding of the issues which are
important in making our choice and greater confi-
dence in our selection of dy. We saw that do posed
the most important challenge to the choice of d; and
identified node V as the main basis for this challenge.

We believe that, in many difficult decision problems
where a range of trade-off specifications must be con-
sidered, our methods could lead to the selection of a
choice which is, in practical terms, close to optimal
everywhere in the range.
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