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Abstract
This paper analyzes the construction of con�dence in-
tervals for a parameter �0 that is �interval identi�ed,�
that is, the sampling process only reveals upper and
lower bounds on �0 even in the limit. Analysis of in-
ference for such parameters requires one to reconsider
some fundamental issues. To begin, it is not clear
which object � the parameter or the set of parame-
ter values characterized by the bounds � should be
asymptotically covered by a con�dence region. Next,
some straightforwardly constructed con�dence inter-
vals encounter problems because sampling distribu-
tions of relevant quantities can change discontinuously
as parameter values change, leading to problems that
are familiar from the pre-testing and model selection
literatures. I carry out the relevant analyses for the
simple model under consideration, but also empha-
size the generality of problems encountered and con-
nect developments to general themes in the rapidly
developing literature on inference under partial iden-
ti�cation. Results are illustrated with an application
to the Survey of Economic Expectations.

Keywords. Partial identi�cation, bounds, con�-
dence regions, hypothesis testing, uniform inference,
moment inequalities, subjective expectations.

1 Introduction

Analysis of partial identi�cation is an area of recent
growth in statistics and econometrics. To understand
its premise, recall the classic de�nition of identi�ca-
tion [16]: A parameter is identi�ed if the mapping
from its true value to population distributions of ob-
servables is invertible; thus, if we knew the latter dis-
tribution, we could back out the parameter value. In
benevolent settings like those of this paper, identi-
�cation implies that the parameter�s true value can
be learned as data accumulate.1 In contrast, par-

1 In general, identi�ability is a necessary but not su¢ cient
condition for learnability; e.g., consider incidental parameters

tial identi�cation means that even in the limit, one
will only learn some restrictions on this value. Some-
what more formally, if the parameter of interest is �0
and is contained in some parameter set �, then par-
tial identi�cation means that the population distrib-
ution of observables is consistent with any parameter
value � 2 �0, where �0 is an identi�ed set contain-
ing �0. Conventional identi�cation (�point identi�ca-
tion�) obtains when �0 = f�0g; the data generating
process reveals nothing of interest if �0 = �. Par-
tial identi�cation (�set identi�cation�) obtains in be-
tween.

Standard theories of (frequentist) estimation and in-
ference presuppose point identi�cation and require
signi�cant adaptation to be applicable to partially
identi�ed models. Estimation is the somewhat easier
case because it is immediately clear that consistent
estimators of �0 are unavailable, whereas the object
�0 itself is identi�ed in the usual sense (if one thinks
of the power set of � as a set of feasible parameter
values). Questions that arise in estimating this set
are typically more of a technical than a conceptual
nature. Indeed, in many applications including this
paper�s, �0 is a well-behaved set whose boundary can
be parametrically characterized, so that consistent es-
timators of �0 obtain straightforwardly. Theories of
estimation for more general cases were provided in [5]
and [9], among others.

The construction of con�dence regions, on the other
hand, raises a fundamental question. Should a con-
�dence interval be constructed to cover (with some
pre-speci�ed probability) �0 or rather �0? Beyond
that, a speci�c technical problem emerges. Construc-
tion of con�dence intervals typically requires estima-
tion of the limiting sampling distribution of some cri-
terion function or test statistic. These limiting dis-
tributions may change discontinuously as the shape
of �0 changes qualitatively, e.g. as �0 loses measure.

or parameters that are discontinuous functions of population
distributions.



To be uniformly valid in such critical regions, con�-
dence regions have to implicitly or explicitly deal with
a �model selection�or �pre-testing�problem.

This paper discusses these issues and illustrates their
impact in a simple but, as it turns out, already quite
subtle problem of inference under partial identi�ca-
tion. I will discuss the methodological di¤erences be-
tween con�dence intervals for �0 and for �0 and, for
either case, provide con�dence regions that deal with
the aforementioned model selection problem as well as
simple ones that do not. I also illustrate all of these in
a simple application to real-world data. Parts of the
paper have survey character; in particular, section 5.2
reprises results that were recently derived by this au-
thor elsewhere [28]. What�s new is some technical
arguments in section 5.1, the methodological discus-
sion, the intuitions in sections 5.2 and 5.3, and the
numerical examples. But to some degree, the pur-
pose of the paper is to provide an entry point to a
rapidly developing literature that might be of interest
to members of the interval probabilities community.

2 The Setting

Consider the real-valued parameter �0 � �(P0) of a
probability distribution P0(X); here P0 is known a
priori to lie in a set P that is characterized by ex
ante constraints (maintained assumptions), and �0 is
known to lie in � � �(P). The nonstandard fea-
ture is that the random variable X is not completely
observable, thus �0 may not be identi�able: even per-
fect knowledge of the observable aspects of P0 might
not reveal it. Assume, however, that those observ-
able aspects identify bounds �l(P0) and �u(P0) s.t.
�u > �l and �0 2 [�l; �u] almost surely. The inter-
val �0 � [�l; �u] will also be called identi�ed set. Let
� � �u � �l denote its length.

Here is a motivating example that will later be ana-
lyzed numerically. Between 1994 and 1998, the Sur-
vey of Economic Expectations elicited worker expec-
tations of job loss by asking the following question:

I would like you to think about your employment
prospects over the next 12 months. What do you think
is the percent chance that you will lose your job during
the next 12 months?

Responses could be any number in [0; 100]; with ex-
tremely few exceptions near the extremal values, inte-
gers were chosen. The survey also elicited covariates,
which will be ignored here. The quantity of interest is
the population average of subjectively expected prob-
ability of job loss, a number that can alternatively be
read as the aggregate expected fraction of jobs lost.
3688 of n = 3860 sample subjects answered the ques-

tion, and the average subjective probability expressed
by them was 14:8%. However, there was signi�cant
item nonresponse: 172 respondents refused to pro-
vide an answer. Their subjective expectations of job
loss are naturally unknown, although they must lie
between 0 and 100 percent. One could pin down an
aggregate job loss expectation by making su¢ ciently
strong assumptions about the missing data. For ex-
ample, if it is assumed that data are missing com-
pletely at random, i.e. nonresponders entirely resem-
ble responders other than by not responding, then
the aggregate expectation is estimated as 14:8%. As
the original data set contains covariates, one could �
somewhat more sophisticatedly � assume that data
are missing at random conditional on observables.
Propensity score or other estimation methods would
then lead to a somewhat di¤erent estimate that takes
into account the distribution of covariates among non-
responders.2 While they lead to sharp conclusions,
these assumptions are very strong and may be ac-
cordingly controversial. Partial identi�cation analysis
seeks to avoid them, accepting that conclusions may
become weaker as a result. An extreme example of
this are worst-case bounds. In the present example,
one could estimate such bounds on aggregate expec-
tations by imputing answers of 0 respectively 100 for
all missing data. Numerically, this leads to a lower
bound of 14:1% and an upper one of 18:6%. In a next
step, these bounds can be re�ned by re-introducing
additional (but not fully identifying) information, and
analyses of this kind now constitute a lively literature
(see [18] or [19] for surveys). Worst-case bounds suf-
�ce to exhibit the inference problem, though, and I
will be content with doing that here.

The example is an instance of the �mean with missing
data� problem, about the simplest scenario of par-
tial identi�cation that one can think up.3 In gen-
eral, assume that X is supported on [0; 1] and that
the quantity of interest is EX, but X is observable
only if a second, binary random variable D 2 f0; 1g
equals 1. Technically, the sampling process generates
a random sample not of realizations xi, but of realiza-
tions (di; xidi) which are informative about xi only if
di = 1. This sampling process identi�es the following
worst-case bounds:

E (XjD = 1)Pr(D = 1) � EX �
E (XjD = 1)Pr(D = 1) + 1� Pr(D = 1):

These bounds are best possible without further as-

2The classic reference on these assumptions is [26]; for a
textbook treatment, see [25].

3There are many natural examples in which pure identi�ca-
tion analysis, i.e. characterization of bounds that are implied
by identi�able quantities, amounts to a nontrivial optimization
problem ([6], [12], [14], [27]).



sumptions; they are attained if all missing data equal
0 respectively 1.4

It is obvious that �0 cannot be estimated consistently.
At the same time, I will impose assumptions that ren-
der trivial the problem of estimating �0. Speci�cally,
assume that estimators b�l and b�u exist and are uni-
formly jointly asymptotically normal:

p
n

" b�l � �lb�u � �u
#

d! N

��
0
0

�
;

�
�2l ��l�u

��l�u �2u

��

uniformly in P 2 P, where
�
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2
u; �
�
is known. Also,

let b� � b�u � b�l,
The full strength of

p
n-consistency and asymptotic

joint normality of
�b�l;b�u� is required only to sim-

plify the presentation. For example,
�b�l;b�u� could

also converge at a nonparametric rate, and it would
su¢ ce for its distribution to be consistently estimated
by the bootstrap. Similarly, assuming that

�
�2l ; �

2
u; �
�

is unknown but can be uniformly consistently esti-
mated (as is the case in the numerical example) would
only add notation and require some additional reg-
ularity conditions exhibited in [28]. The important
substantive assumption that I do make is that the
problem of estimating the asymptotic distribution of
p
n
hb�l � �l;b�u � �ui has been solved. This assumes

away many issues which are not particular to partial
identi�cation problems. Note right away that in the
motivating example, if one assumes that E (XjD = 1)
and Pr(D = 1) are boundedly away from f0; 1g, then
the Berry-Esseen theorem implies uniform joint nor-
mality of the obvious estimators

b�l =
1

n

nX
i=1

yidi

b�u =
1

n

nX
i=1

(yidi + 1� di)

b� = 1� 1

n

nX
i=1

di:

In this application, �0 would naturally be estimated

by the plug-in estimator b� � hb�l;b�ui, which was al-
ready discovered to numerically equal [14:1%; 18:6%].
I now turn to the di¢ cult problem, namely how to
compute con�dence regions.

4 In the speci�c example, the identi�ed bounds can be seen
as characterizing an interval probability for X. This generally
occurs with missing data problems because these identify prob-
ability distributions up to contamination neighborhoods, and
also in many but not all other settings of partial identi�cation.

3 What Should a Con�dence Region
Cover?

If a parameter �0 is conventionally identi�ed, one
would like a con�dence region CI to ful�l

Pr(�0 2 CI) � 1� �

for some pre-speci�ed �, at least asymptotically as
n ! 1. Subject to this constraint, con�dence re-
gions should be short or ful�l some other desiderata.
However, it is not obvious how to generalize this con-
dition to situations of partial identi�cation. The ear-
lier strand of this literature aimed at the coverage
condition

Pr(�0 � CI) � 1� �;
thus the idea was to cover the identi�ed set. The
methodological contribution of [15] was to rather de-
�ne coverage by

inf
�02�0

Pr(�0 2 CI) � 1� �;

i.e. to attempt coverage of the parameter. This has to
be expressed in terms of an in�mum over �0 because
it is not generally feasible to make coverage probabili-
ties constant over �0. For example, if �0 has an inte-
rior, then under regularity conditions any reasonable
(i.e. consistent in the Hausdor¤ metric) estimator b�
of �0 covers any point in this interior with a limiting
probability of 1. The probability limit of (1��) must,
therefore, apply only in some least favorable case that
is typically attained on the boundary of �0. Note the
following, one-sided implication:

[�0 � CI =) �0 2 CI] ;8�0 2 �0:

Thus, if one is content with coverage of the parameter,
then a con�dence region for the identi�ed set will be
valid but generally conservative and therefore need-
lessly large. On the other hand, if one strives for cov-
erage of the set, coverage of the parameter is simply
not su¢ cient.

Before even attempting to de�ne a con�dence region,
a researcher must decide which type of coverage is
desired. The answer seems to be that it depends on
whether �0 or �0 is the ultimate object of interest. A
reasonable case can be made for either, and I will now
attempt to do so.5

5A super�cial answer to this question would be that �it de-
pends on the loss function.� In general, one will want to cover
the parameter if in the corresponding hypothesis testing prob-
lem, loss is incurred from falsely rejecting a null hypothesis
about �0 as opposed to �0. However, the analogy is not quite
precise because coverage of �0 can be justi�ed from testing of
compound nulls about �0, especially if one is interested in fam-
ilywise control of the error rate. Also, this would only push
back the methodological question by one level. Why, after all,
is �0 and not �0 in the loss function?



An interest in covering �0 seems to hinge on the
premise that �0 is indeed a true parameter value in
the sense of being descriptive of some feature of the
real world in a way that other, observationally equiv-
alent values � 2 �0 are not. This presupposes what
one might call a realist interpretation of one�s statisti-
cal model, meaning that (i) di¤erent parameter values
correspond to substantially di¤erent facts about the
real world, (ii) we can on principle learn, at least in
some approximate way, the truth about these facts,
even though the data set at hand allow this only to
a degree that is limited even beyond the usual issues
of sampling variation. An analogy from physics for
this setting might be that observations generated by
a particular experiment generate very imprecise in-
formation about some object of interest, but this is
because of limitations of measurement, e.g. the res-
olution of telescopes, and it is accepted that better
experimental methods could on principle lead to more
precise learning. Among the schools of thought that
can be found within the interval probabilities com-
munity, this attitude might particularly appeal to re-
searchers who think of interval probabilities mainly as
a robustness or sensitivity tool.

In contrast, a statistician who accepts that �0 is all
that could ever be learned might �nd specious the
aim of covering �0. This attitude would seem espe-
cially apt if the underspeci�ed (e.g., interval) proba-
bilities that partially identi�ed models reveal in the
limit correspond to fundamental limits to our ability
to model underlying phenomena. An analogy from
physics might be that observations are imprecise due
to fundamental limitations as famously encountered
in quantum physics. I conjecture that this attitude
might particularly appeal to researchers who think of
interval probabilities as a philosophical alternative to
conventional probabilities, which they may think of
as hopelessly optimistic.

I generally believe that both approaches have merit,
and I will discuss both types of con�dence regions
below. In this paper�s speci�c example, it is this au-
thor�s feeling that coverage of �0 might have special
merit. With item nonresponse in surveys, there is of-
ten a clear sense in which some precise answer to the
item is a matter of fact; sometimes, this answer could
even be gleaned from alternative data sources except
for legal or practical reasons. (Income and age are
salient examples.) In these cases, underidenti�cation
of �0 seems to stem from practical as opposed to epis-
temological problems; losses incurred by future policy
decisions might well depend on �0 rather than �0; and
it might be reasonable to think of �0 as the quantity
of ultimate interest.

4 A (Too) Straightforward Approach

The simplest extension of Wald-type con�dence re-
gions to inference on �0 is the following construction
which has been used frequently in the literature:

CI1��(�) =

�b�l � c��lp
n
;b�u + c��up

n

�
;

where c� = ��1(1� �=2) and � is the standard nor-
mal c.d.f.; e.g. c� � 1:96 for a 95%-con�dence inter-
val. In words, just enlarge the plug-in- estimator of
�0 by the usual number of standard errors. A Bon-
ferroni argument establishes that

lim
n!1

Pr(�0  CI1��(�))

= lim
n!1

Pr

�b�l � c��lp
n
> �l _ b�u + c��up

n
< �u

�
� lim

n!1

�
Pr

�b�l � c��lp
n
> �l

�
+ Pr

�b�u + c��up
n
< �u

��
= lim

n!1
Pr

�p
n

�l

�b�l � �l� < c��
+ lim
n!1

Pr

�p
n

�l

�b�u � �u� < �c��
! 1� � (c�) + � (�c�) = �;

thus this interval appears valid (if potentially conser-
vative). By the preceding section�s reasoning, it must
then be conservative for �0. Indeed, one can de�ne a
con�dence region for �0 by using the above construc-
tion but lowering its con�dence level. To see this,
observe that

lim
n!1

Pr(�0 =2 CI1��(�))

= lim
n!1

Pr

�b�l � c��lp
n
> �0 _ b�u + c��up

n
< �0

�
:

If �l < �0 < �u, then both Pr
�b�l � c��l=pn > �0�

and Pr
�b�u + c��u=pn < �0� vanish at exponential

rate as n!1, thus

lim
n!1

Pr(�0 =2 CI1��(�)) = 0:

If �0 = �l, then this reasoning still holds for

Pr
�b�u + c��u=pn < �0�, but one has

lim
n!1

Pr(�l =2 CI1��(�))

= lim
n!1

Pr

�b�l � c�b�lp
n
> �0

�
= �=2.

A similar reasoning applies if �0 = �u, thus

lim
n!1

inf
�02�0

Pr(�0 =2 CI1��(�)) = �=2;



and CI1��(�) is a (non-conservative) (1� �=2) con-
�dence interval for �0. Thus one can simply gener-
ate a (1 � �) con�dence interval for �0 by writing
CI1��(�) = CI1�2�(�). The intuition for this trick
is that in the limit as n!1, at least one end of the
true identi�ed set is far away from the true parameter
value, so the hypothesis testing problem that corre-
sponds to the con�dence region is really one-sided.

5 Uniform Con�dence Regions

The preceding, simple constructions may be com-
pelling at �rst look, but they su¤er from a severe
problem: Coverage fails to be uniform over interesting
regions of parameter space. This is especially easy to
see with respect to coverage of �0. While it is true
for any �xed (P0;�0) that limn!1 inf�02�0 Pr(�0 2
CI1��(�)) = 1 � �=2, one also �nds that Pr(�0 2
CI1��(�))! 1�� along any local sequence of para-
meters where � = o(n�1=2), i.e. when � is asymptot-
ically small relative to sampling error. The algebraic
reason is a failure, under this condition, of the above

observation that Pr
�b�u + c��u=pn < �l� ! 0. The

intuitive reason is that the testing problem remains
two-sided in the limit. In any case, the con�dence
region fails to be valid precisely when conventional
identi�ability of �0 is approached, i.e. when the un-
derlying problem actually becomes easier.

Uniformity failures are standard in statistics. Indeed,
they are unavoidable if the set of distributions P is
large enough so that the information contained in a
sample cannot be bounded away from zero, as fa-
mously demonstrated in [4]. The assumption of uni-
form joint normality is more than su¢ cient to exclude
such situations, however. Accordingly, the present
uniformly failure has a much more avoidable cause,
namely that � is assumed to be large relative to stan-
dard errors. If cases of near point identi�cation are
of substantive interest, as they often will be, this as-
sumption plainly reveals an inappropriate asymptotic
framework. Indeed, were one to neglect this unifor-
mity failure, one would be led to construct con�dence
intervals that shrink as a parameter moves from point
identi�cation to slight underidenti�cation. I therefore
now turn to constructions that are valid uniformly
over possible values of �.

The uniformity failure in the coverage argument for
�0, and di¤erent ways to �x the construction, have re-
ceived signi�cant attention in the literature, and rele-
vant results will be reported. Somewhat surprisingly,
CI1��(�) has seen application even though it is not
uniformly valid either. The problem can be intuitively
seen as follows. Suppose that �l = 1 but �u = 10. An
oracle version of CI95%(�) that uses infeasible knowl-

edge of these values would be

CI95%(�) =

�b�l � 1:96p
n
;b�u + 19:6p

n

�
;

but for � small enough, this interval is strictly con-
tained in the standard Wald con�dence region for �u,�b�u � 19:6p

n
;b�u + 19:6p

n

�
;

thus it cannot possibly be valid for �0 in such
cases. The upshot is that CI1��(�0) is simultane-
ously conservative, and hence potentially too large,
under pointwise asymptotics and invalid under uni-
form ones, a rather unsatisfactory state of a¤airs.

5.1 A Con�dence Region for �0

If CI� is interpreted as con�dence region for �0, the
root cause of its uniformity failure is the same one
that underlies its potential conservativeness: Its con-
struction fails to properly account for the fact that the
underlying estimation problem is bivariate. This can
be �xed by an alternative construction that takes just
that bivariate problem �i.e., estimation of (�l; �u) �as
its starting point. Thus, de�ne an arbitrary joint con-
�dence region CI1��(�l; �u) for f�l; �ug. Denote by
�l � R the projection of this con�dence region onto
the �l-axis and by �u � R its projection onto the �u-
axis. Then limn!1 Pr(�l 2 �l; �u 2 �u) � 1��. Let
CI 01�� be the convex hull of �l [ �u, then it follows
that

lim
n!1

Pr(�l 2 CI 01�� ^ �u 2 CI 01��) � 1� �

=) lim
n!1

Pr([�l; �u] 2 CI 01��) � 1� �;

where the conclusion uses convexity of CI 01��.

This construction will be uniformly valid as long as
normal approximations apply uniformly. Of course,
due to the two steps of �rst forming projections and
then computing convex hulls, it is in general conserva-
tive, and potentially very much so. This conservatism
can be avoided by appropriately choosing the initial
con�dence region CI1��(�l; �u). In particular, one
should not pick the con�dence region of smallest area,
i.e. the usual con�dence ellipse for bivariate normal
means. A better choice is the con�dence region that
minimizes the length of the convex hull of its projec-
tions onto the axes. This con�dence region is easily
identi�ed as the smallest one to be expressed as [a; b]2

for a; b 2 R, i.e. the optimal choice for CI1��(�l; �u)
is

CI�1��(�l; �u) = argminfb� ag

s.t.
Z
[a;b]2

dFN

�b�l;b�u; �ln�1=2; �un�1=2; �� = 1� �;



where FN (�1; �2; �1; �2; �) denotes a bivariate nor-
mal distribution with the speci�ed parameters. Write
CI�1��(�l; �u) = [a

�; b�]2, then the convex hull of the
projection of this region onto the axes is CI�1�� (�) =
[a�; b�], and one obtains

lim
n!1

Pr([�l; �u] � CI�1�� (�)) = 1� �

uniformly. This construction does not seem to appear
in the relevant literature, although projection tech-
niques were used before. In particular, [8] propose to
make the initial con�dence region CI1��(�l; �u) bal-
anced, that is, to equalize each parameter�s contri-
bution to noncoverage risk. A new justi�cation for
this idea in the present context will be encountered
below.6

5.2 A Con�dence Region for �0

Uniform con�dence regions for �0 were recently devel-
oped in the literature, with an initial proposal by [15],
some issues with which were diagnosed and alleviated
in [28]. I will here provide an intuitive development
that di¤ers from the original one but connects this
section to the preceding one.

The basic idea is the same as before, namely to start
from the bivariate problem of estimating (�l; �u). The
di¤erence is that as interest is in covering �0 and not
�0, the intuitive starting point would be an inter-
val that exhibits pre-speci�ed coverage probability for
both �l and �u, but not necessarily jointly. Some te-
dious algebra reveals that the shortest such construc-
tion is

CI�1��(�) �
�b�l � �lclp

n
;b�u + �ucup

n

�
;

where (cl; cu) minimize the length of CI�1��(�) s.t.Z cl

�1
�

 
�z + cu +

p
n�
�up

1� �2

!
d� (z) � 1� � (1)

Z cu

�1
�

 
�z + cl +

p
n�
�lp

1� �2

!
d� (z) � 1� �: (2)

(These expressions simplify if � = �1.) The con-
straints separately calibrate coverage probabilities at
�l and �u and can be generated by writing out bivari-
ate normal approximations to sampling distributions.

There is a catch however: Expression (1-2) includes
�, which is not known, thus I just de�ned an infea-
sible or �oracle� con�dence region. In more elemen-
tary inference problems, it is routine to initially do

6 [13] also propose a similar construction but make it sym-

metric about
nb�l;b�uo. [15] and [28] mention CI1��(�) as

con�dence region for �0; in fairness, their focus is squarely
elsewhere.

just that and then show that estimators can be sub-
stituted for unknown population quantities. But this
does not work out here. Under the joint normality

assumption, one generally has
�b���� = O(n�1=2),

thus
p
nb� does not converge to

p
n�. This will not

matter if
p
n� diverges, in which case

p
nb� diverges

as well, but it renders CI�1��(�) invalid along local
parameter sequences where

p
n� converges.

To resolve this issue, one must ensure that the estima-
tor �� of � substituted into (1-2) is supere¢ cient at
zero. More precisely, �� must have the property that
there exists some sequence fang that vanishes slowly
(i.e., an ! 0 but

p
nan ! 1) s.t. if the sequence

f�ng is dominated by fang, then
p
n (�� ��n)! 0.

Verbally, �� converges at a faster rate than n�1=2 for
parameter sequences �n that vanish su¢ ciently fast,
including all sequences s.t. �n � O(n�1=2).

A striking �nding in [28] is that b� � b�u � b�l itself
ful�ls just this condition in a rather wide set of appli-

cations, namely whenever (i)
�b�l;b�u� are uniformly

jointly asymptotically normal, as assumed here, and
(ii) b� � 0 almost surely, e.g. b�l � b�u by construc-
tion. Thus, if estimators of upper and lower bounds
are jointly asymptotically normal and are necessarily
ordered in the right way, then the implied estimator
of the di¤erence between the bounds is supere¢ cient
at zero. This condition turns out to have reasonably
wide applicability. Among other things, it means that
the estimator b� in this paper�s example �the mean
with missing data �is supere¢ cient.7

However, there are also many cases (e.g. in [22] and
[24]) where supere¢ ciency of b� will not obtain natu-
rally. It must then be induced arti�cially. A simple
way to do this is to shrink b� toward zero, writing

�� = b� � Ifb� � ang; (3)

where If�g is the indicator function and an is a user-
speci�ed sequence of numbers s.t. an ! 0 butp
nan ! 1. One of the main results in [28] is that

CI�1��(�) is uniformly valid for �0 upon substitution
of �� for � in (1-2):

A second, less troublesome issue with CI�1��(�) is
that it may not be well de�ned as written, namely ifb�l��lcl=pn > b�u+�ucu=pn, which absent supere¢ -
ciency of b� is an event with nonvanishing (more pre-
cisely: not uniformly vanishing) �nite sample prob-
ability. This author�s proposal is to leave the in-
terval empty in such cases. This does not a¤ect its

7 In the speci�c example, supere¢ ciency of b� can also be
seen heuristically. The estimator b� is the sample analog of a
population probability � = Pr(D = 0), thus it has variance
�(1��)=N , the numerator of which vanishes as �! 0.



validity; hence, any other �x will lead to a need-
lessly long interval. It can also be interpreted as an
embedded speci�cation test: Samples which induceb�l � �lcl=pn > b�u + �ucu=pn really cast doubt on
the maintained hypothesis that �u � �l. Having said
that, some users might not like con�dence sets that
can be empty. They could de�ne CI�1��(�) in an arbi-
trary manner whenever b�l��lcl=pn > b�u+�ucu=pn.
A natural solution might be to proceed as if one had
learned that �u = �l, thus one could write

CI�1��(�) =

�b� � c��p
n
;b� + �c�p

n

�
;

where b� �
�b�l=�2l + b�u=�2u� = �1=�2l + 1=�2u� is a

variance weighted average of b�l and b�u and �2 �
1=
�
1=�2l + 1=�

2
u

�
is its sampling variance.

5.3 Relation to Model Selection and to
Moment Inequalities

To understand the workings of CI�1��(�), it is in-
structive to emphasize the model selection, or �pre-
testing,�issue that is lurking below the surface here.
Recall that con�dence regions typically correspond to
hypothesis tests, that is, they can be thought of as
lower contour set of some test statistic, thus collecting
parameter values � for which the data do not reject
the null hypothesis H0 : �0 = �. When construct-
ing a con�dence region for �0, the corresponding hy-
pothesis test appears one-sided in the pointwise limit
as n ! 1 for any � > 0, thus one seemingly gets
away with lower cuto¤ values c� than would be re-
quired for two-sided tests. Yet the test remains two-
sided if � = 0, in which case the con�dence region
would surely have to be a standard Wald con�dence
region. The pointwise limit distributions of relevant
test statistics thus change discontinuously as �! 0.
Of course, their true �nite sampling distribution are
continuous in � for any n. It follows that for any n,
the pointwise approximations must be misleading for
some �. This is why C1��(�) fails to be uniformly
valid.

This type of problem is familiar to researchers investi-
gating model selection or pre-testing. Essentially the
same issues occur at the boundary between models
that a pre-test or model selection procedure aims to
separate. Indeed, one can think of the present prob-
lem as one of model selection, namely as deciding
whether a point identi�ed (� = 0) or partially iden-
ti�ed (� > 0) model better describes the data. The
shrinkage step (3) can then be interpreted as a pre-test
that decides among these models, with �� = 0 indi-
cating that point identi�cation should be presumed.8

8 In the speci�c example, the discontinuity issue could also

A general problem with pre-tests is that their sam-
pling error must be taken into account in subsequent
inference and will frequently invalidate it. To avoid
this, the test underlying CI�1��(�) has a conservative
slant. Point identi�cation requires more conservative
inference in the sense of larger cuto¤ values, therefore
one can achieve validity (at cost of having longer con-
�dence intervals) by erring in favor of presuming point
identi�cation. This is here implemented because the
sequence an vanishes at a rate slower than O(n�1=2),
thus along any local sequence where � � O(n�1=2),
point identi�cation will eventually be presumed with
probability 1. The price is that CI�1��(�) will be uni-
formly valid (i.e. valid along all moving parameter
sequences) and pointwise exact (i.e., not conservative
under asymptotics that hold true parameter values
�xed), but conservative along certain local sequences.
Some features of this sort are essentially unavoidable
when working with pre-tests; the question is mainly
whether researchers acknowledge them or not, an is-
sue on which [17] o¤er some cautionary tales.

It is also noted that upper and lower bounds on a
real-valued parameter �0 are a special case of mo-
ment inequalities, a rather general framework that
recently attracted much interest ([1], [2], [3], [7], [10],
[21]). Moment inequalities occur when a true para-
meter value �0 is incompletely characterized by a set
of inequalities

E(mj(xi; �0)) � 0; j = 1; : : : ; J;

where the expectations are population expectations
and the mj are known functions. Clearly such a set
of conditions generally identi�es a set, e.g. a poly-
hedron if the mj are linear. This paper�s scenario
�ts this framework as the special case of two moment
inequalities

E(�0 � dixi) � 0

E(dixi + 1� di � �0) � 0:

Many of the problems encountered for moment in-
equalities are just more intricate versions of the ones
analyzed here. In particular, the adequate de�nition
of con�dence regions will depend on which moment in-
equalities bind, which can potentially be determined
via a pre-test; but this will encounter the problem just
described. Sure enough, numerous papers on moment
inequalities ([2], [3], [7], [10], [21]; see also [11] for re-
lated ideas about compound hypothesis testing more
generally) contain a step in which sample analogs of
moment inequalities are shrunk toward zero, i.e. they

be avoided by calibrating cuto¤ values through subsampling
[23] although not through the bootstrap [7]. See [1] for a more
general analysis of subsampling and its limits in cases of partial
identi�cation.



perform the exact trick introduced in the previous
subsection.9

5.4 Unbiasedness of Con�dence Regions

I conclude the theoretical analysis with some remarks
about unbiasedness of con�dence intervals under par-
tial identi�cation.10 Recall that a con�dence region
CI for �0 is unbiased if Pr(� 2 CI), seen as a function
of �, is maximized at �0. The corresponding concept
for hypothesis tests is that the probability of rejection
should be minimized on the null.11

Unbiasedness in this sense will not apply here. Con-
sider �rst coverage of �0 when the identi�ed set is
[�l; �u]. Any reasonable con�dence region will cover
points in the interior of this set with probability ap-
proaching one and thus cannot be unbiased when the
truth is �0 = �u. The situation is not better regard-
ing coverage of �0. Clearly any subset of �0 will be
covered more frequently than �0 itself. Even exclud-
ing subsets from the comparison, problems with small
sets remain. For example, as long as some noncover-
age risk stems from the lower end of [�l; �u], some set
of the form [�u�

p
n; �u+

p
n] will be covered more

frequently than [�l; �u].

It seems more promising to take a cue from compound
hypothesis testing and be content with the require-
ment that �0 is an upper contour set of Pr(� 2 CI).
Yet even this aim seems unrealistic when � is allowed
to be small. For example, if � = n�1=2 and �u suf-
�ciently exceeds �l, then any convex 95% con�dence
region for �u is conservative for �l and hence for a
parameter value locally below �l. Unbiasedness could
then only be achieved at the price of substantial con-
servatism, if at all. Thus, one might further weaken
the unbiasedness criterion by requiring it only to hold
along parameter sequences that hold (�; �l; �u) �xed.

With these adjustments in place, CI�1��(�) is (asymp-
totically) unbiased. In particular, (1-2) bind with
probability approaching 1, and in the limit, Pr(� 2
CI�1��(�)) � 1 � � on �0 but Pr(� 2 CI�1��(�)) <
1 � � otherwise. CI�1��(�), on the other hand, does
not ful�l the requirement because it is based on an un-
balanced simultaneous con�dence region for (�l; �u).
If these parameters are measured with di¤erent preci-
sion, then CI�1��(�) will be more likely to cover the
more precisely measured one because some such al-

9Note that � = E(1�di), thus shrinking b� amounts to arti-
�cially tightening the second of the above moment inequalities.
10 I thank a referee for raising this question.
11None of this can here be shown for �nite samples because

this paper�s assumptions do not restrict �nite sample distrib-
utions. I therefore mean unbiasedness to apply asymptotically
as n!1; this is a nontrivial requirement because it is under-
stood to apply to (

p
n-)local alternatives.

location of noncoverage risk minimizes length. As a
result, if �u > �l, say, then some local value of the
form �l �

p
n is covered more frequently than �u.

This may be acceptable because it is not obvious that
a con�dence region designed for �0 as object of inter-
est need be unbiased for �0. Having said that, such
unbiasedness is achieved by the balanced construction
in [8], so one arguably encounters a trade-o¤ between
unbiasedness and length of con�dence regions.

6 Numerical Illustrations

This section illustrates the above �ndings with some
numerical examples. The �rst one is the empirical
application described in section 2; the other two use
arti�cial data. Recall that interest was in an aver-
age subjective probability of one-year-ahead job loss.
Sample size is n = 3860; using the notation from sec-
tion 2, the sample analog of E(XjD = 1) is 14:8%
and the sample analog of Pr(D = 1), i.e. the prob-
ability of response, is 95:5%. These numbers imply
that apart from their asymptotic validity, normal ap-
proximations should be expected to work well for the
given sample. Simple computations establish that fur-
thermore�b�l;b�u; b�; b�l; b�u;b��

= (14:10; 18:55; 4:45; 23:53; 29:22; 0:714) :

The estimator of the identi�ed set and the di¤erent
con�dence regions then compute as follows:b� = [14:10; 18:55]

CI95% (�0) = [13:36; 19:48]

CI95% (�0) = [13:48; 19:33]

CI�95% (�0) = [13:33; 19:45]

CI�95% (�0) = [13:48; 19:33] :

The results show the expected features: CI5% (�0) �
CI5% (�0) (as is the case by construction), and
CI�5% (�0) di¤ers from CI5% (�0) without nesting
it. Having said that, the quantitative di¤erences are
small. This comes from two facts: First, in the exam-
ple, b� is large relative to b�l=pn� 1, so that the uni-
formity issues are not salient and the �xes hence mar-
ginal; indeed CI5% (�0) and CI�5% (�0) cannot be dis-
tinguished numerically. Second, the estimators of the
bounds have strong positive correlation (b� = 0:714),
so that the construction of CI5% (�0) is not all that
conservative.

To bring these issues a bit more to the forefront, I also
generate intervals for a hypothetical dataset in which
n = 100, I continue to assume that b� is supere¢ cient,
and �b�l;b�u; b�; �l; �u; �� = (15; 17; 2; 20; 30;�:3) :



Results then are:

b� = [15; 17]

CI95% (�0) = [11:08; 22:88]

CI95% (�0) = [11:71; 21:93]

CI�95% (�0) = [10:28; 22:63]

CI�95% (�0) = [11:54; 22:01] :

This example is somewhat rigged to showcase the
e¤ect of � being small. The di¤erence between
CI5% (�0) and CI�5% (�0) is much larger. The for-
mer is substantially too small at its left end and must
be extended to account for the large sampling varia-
tion in b�u. At the same time, the negative correlation
means that noncoverage at the upper and lower end
of the interval are likely to occur in the same samples,
thus the overall probability of noncoverage is notice-
ably less than the sum of those two individual prob-
abilities. This can be exploited to make the interval
shorter, and it is this e¤ect that dominates at its right
end. Finally, the higher precision of b�l is exploited by
CI�95% (�0) to minimize interval length at the price
of unbalancedness as discussed above; a balanced ver-
sion of the interval would have a higher minimum as
well as maximum but be longer.

The second hypothetical example features a large �
but a very negative correlation between estimators,
implying that the Bonferroni construction CI95% (�0)
is quite conservative. With n = 100 and�b�l;b�u; b�; �l; �u; �� = (10; 20; 10; 20; 20;�:9) ;
one accordingly gets

b� = [10; 20]

CI95% (�0) = [6:08; 23:92]

CI95% (�0) = [6:71; 23:29]

CI�95% (�0) = [6:40; 23:59]

CI�95% (�0) = [6:71; 23:29]

and CI�95% (�0) is noticeably smaller than
CI95% (�0).

7 Summary and Outlook

Analysis of partial identi�cation aims to provide con-
clusions which are robust, even at the price of not
always being very strong. It is close in spirit and in
methods to much work on interval probabilities (and
also to robust Bayesian approaches). The system-
atic analysis of estimation and inference under partial
identi�cation is the object of a currently active litera-
ture. One general �nding is that compared to well

known methods that apply to conventionally iden-
ti�ed methods, basic questions about inference have
to be asked anew, and �ndings become substantially
more nuanced.

This paper illustrated some of these issues in the very
simple setting of an interval identi�ed real-valued pa-
rameter. Inference toward an expected value when
some data are missing served as motivating example
that was carried out with real-world data. The issues
encountered along the way range from the method-
ological or even philosophical to the pragmatic and
quite technical. In particular, it was seen that sim-
ple asymptotic frameworks can inform misleading re-
sults, and that there are some nontrivial complica-
tions which link the inference problem to the large
and growing literature on post model selection esti-
mation and inference. Work on much more general
settings than the one investigated here is under way;
it encounters essentially the same problems, and then
some. It is hoped that once these general theories are
in place, thinking in terms of partial identi�cation,
rather than assuming away all identi�cation problems,
becomes part of many statisticians� and applies re-
searchers�toolkit.
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