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Abstract

In this paper, we propose a novel approach for quanti-

fying the noise level at each location of a digital signal.

This method is based on replacing the conventional kernel-

based approach extensively used in signal filtering by an

approach involving another kind of kernel: a possibility

distribution. Such an approach leads to interval-valued re-

sulting methods instead of point-valued ones. We show,

on real and artificial data sets, that the length of the ob-

tained interval and the local noise level are highly corre-

lated. This method is non-parametric and advantageous

over other methods since no assumption about the nature

of the noise has to be made, except its local ergodicity.

Keywords. Signal processing, kernel methods, possibility

distribution, noise quantization, Choquet integral.

1 Introduction

The reliability of a great number of signal processing

methods inherently relies on the possibility of adjusting

their parameters to account for noise level over the input

signal. Examples of such procedures are image restora-

tion, edge detection [18], motion estimation [1], denoising

[26, 27], super-resolution [14], shape-from-shading [34],

sensor fusion [3, 29] and feature extraction or segmenta-

tion [22].

Noise in a signal is usually referred to random variations of

the measured signal. These variations can be produced by

several factors including thermal effect, saturation, sam-

pling, quantization and transmission. Since repeating the

acquisition process is usually not possible, the noise level

has to be estimated by means of a single signal occurrence.

Noise is generally considered as being independent from

the signal level and added to it. One of the most widely

encountered model assumes this random noise as being

centered and normally distributed. However, phenomena

like film grain, speckle, impulse noise, sampling effect,

quantization or saturation induce a fluctuation of signal’s

value that cannot be modelled by a Gaussian zero mean

process. For example, in medical images produced by a

gamma camera, the noise is rather described by a Poisson

process (i.e. the noise level depends on the signal level).

In early approaches (see e.g [25]), noise estimation con-

sisted in assuming stationarity of the random variations of

the signal. The computation of the standard deviation of

the noise were performed by analyzing the signal obtained

by high-pass filtering of the original signal. The main chal-

lenge in these estimations is to be able to tell whether a

signal variation is due to the noise or to the signal itself,

which can involve significant variations.

In more recent papers, some authors propose to abandon

either stationarity or additivity of the noise. Rangayyan

et al. [28] consider an adaptive neighbourhood approach

that is able to account for an additive non-stationary noise.

Corner et al. show that analyzing the Laplacian of the

signal allows to deal with both additive and multiplicative

noise [5].

Unfortunately, neither additive nor multiplicative random

noise are good models for real signal contamination, even

for instance, for conventional CCD sensor [18]. There-

fore, many approaches [18, 16, 23] propose to model the

acquisition noise as being Poisson distributed.

In these model-based approaches, the noise is assumed to

follow a hypothetically known distribution and noise level

estimation consists in estimating the different parameters

on which the variance of the assumed distribution depends.

Moreover, any model-based method assumes the type of

the acquisition machine to be known.

If nothing can be assumed about the nature of the noise,

except its local ergodicity, only a very local approach has

to be considered to estimate the noise level for each lo-

cation or, at least, for each user-selected homogeneous

region of the signal. Moreover, since signal processing

mainly consists of extracting or estimating some physi-

cally meaningful characteristics from intensity values of

the signal, it should be important to understand how

the uncertainty due to random perturbation propagates

through any algorithm step.



A wide range of those signal processing methods relies

on a kernel-based approach [20] for direct or iterative,

linear or non-linear algorithms and for filtering (stochas-

tic, band pass, anti-aliasing, ...), geometrical transforma-

tions (rescaling, rotations, homographies, anamorphosis,

...), sampling rate conversion, fusion, for enhancing or

removing details, etc. The kernels usually encountered

are probability distributions: they are positive functions

whose total weight (their integral in the infinite domain

and their sum in the finite domain) sums to 1. The main

difficulty in these kernel-based methods is that the nature

of both signal and perturbation can change during the com-

plete analysis, from step to step.

By switching from probability theory to possibility the-

ory, we propose new methods that take into account a lack

of knowledge on the proper kernel to be used [21]. In-

deed, a possibility distribution represents a convex hull

of probability distributions and hence of kernels. In this

adaptation of the usual kernel methods, the conventional

Lebesgue integral operator is replaced by a pair of Cho-

quet integrals according to the possibility measure and the

necessity measure associated with the chosen possibility

distribution. The resulting interval (and more precisely its

length) reflects the lack of knowledge of the modeller on

the most adequate kernel to use.

As an example, the use of the interval-valued gradient esti-

mation of an image, proposed in [17], leads to a threshold-

free robust edge detector. This robustness is due to the fact

that the length of the interval-valued estimation is highly

correlated with the input image random noise. The infor-

mation (about the noise) contained in the resulting interval

is properly taken into account in the edge detector, thus

enabling an automatic rejection of the “false” edges due to

noise.

In this paper, we propose to study the link between the

length of the interval-valued result of a possibilistic filter-

ing on a signal and the input signal random noise. Actu-

ally, we discuss the fact that this approach is, to our opin-

ion, in its spirit, better founded than the usual noise level

estimators. Furthermore, we propose to highlight the em-

pirical correlation between the length of the output of the

interval-valued filtering and the input signal random noise

on repeated acquisitions of real and synthetic images.

The paper is organized as follows. In section 2, we present

how the digital filtering is performed by means of convolu-

tion kernels with unitary gains. We present the possibility

distribution-based filtering, which is theoretically justified

by Theorem 1. In section 3, we describe our method for

estimating the noise level at each sample location of a sig-

nal. In section 4, we compare our method to three other

usual noise level estimates on synthetic and real noisy im-

ages, before concluding in section 5.

2 A possibilistic extension of convolution

kernel-based linear filtering

2.1 Convolution kernel-based signal filtering

Let S = (Si)i=1,...,N be a digital signal defined on N
locations {ω1, ..., ωN} of an underlying infinite domain Ω.

Note that the locations {ω1, ..., ωN} can be identified with

their indices {1, ..., N}. Processing S by a filter, defined

by its impulse response κ, mathematically corresponds to

the discrete convolution of S by κ. This is why κ can also

be called a convolution kernel. The value Ŝn of the filtered

signal at the nth location of {1, ..., N} is thus obtained by:

Ŝn =

N
∑

i=1

Siκn−i.

κn−• = (κn−i)i=1,...,N is the convolution kernel κ shifted

to the location n of {1, ..., N}. We propose to denote this

particular shifted kernel by κn = (κn
i )i=1,...,N . Ŝn is thus

obtained by:

Ŝn =
N

∑

i=1

Siκ
n
i . (1)

In many applications like low-pass filtering, the used con-

volution kernels are positive and have a unitary gain, i.e.

N
∑

i=1

κi = 1.

In that case, the convolution kernel can be seen as a proba-

bility distribution that induces a discrete probability mea-

sure Pκ, computed in this way:

∀A ⊆ Θ, Pκ(A) =
∑

i∈A

κi.

For each location n, its associated shifted convolution ker-

nel κn is still a probability distribution. Thus, expression

(1) is equivalent to computing the expected value Ŝn of

the signal S at the location n, considering the probability

measure Pκn on {1, ..., N}, i.e.:

Ŝn = EP
κ

n
(S). (2)

In that case, the filtered value of the signal can be inter-

preted as the expected value of the signal, knowing that the

uncertainty concerning the location is modelled by Pκn .

This interpretation is not very relevant because the aim of

the filtering is not to try to evaluate the real value of a sig-

nal under uncertainty. The aim of the filtering is to modify

the input signal according to the practitioner’s needs. The

only reason why we propose to rewrite the linear filtering

with the expectation operator is that it enables us to deal

with a family of convolution kernels by switching from the

usual probability theory to imprecise probability theory.



2.2 Extension of signal filtering to possibility theory

By writing the linear filtering with a unitary gain filter

as an expectation according to a probability measure, we

open new perspectives to this approach by repositioning

it in the field of new uncertainty theories. Instead of us-

ing an additive measure for each neighbourhood of a sam-

ple location, i.e. a probability measure, we propose to use

the simple non-additive confidence measure called a pos-

sibility measure [9]. We propose to use this theory among

others because of its computational simplicity. First, the

possibility distribution is a tool that can be simply mod-

elled by just a set of N weights on the locations {1, ..., N},

whereas most of the other imprecise probability theories

[33] require more assessments. Besides, we propose to

use the Choquet integral, that extends the usual linear ex-

pectation operator, by extending the convolution operator

to possibility measures in place of probability measures.

This tool is well know and very simply computed.

This section presents and interprets this new filtering ap-

proach, based on possibility measures and Choquet inte-

grals, that enables a signal to be filtered by means of a

family of convolution kernels.

2.2.1 A possibility distribution is a family of filters

A possibility measure is non-additive and possesses a dual

confidence measure, called a necessity measure, denoted

by N and computed in this way:

∀A ⊆ Θ, N(A) = 1 − Π(Ac). (3)

The two measures, Π and N , encode a family of probabil-

ity measures, denoted by M(Π), and defined by:

M(Π) = {P | ∀A ⊆ Θ, N(A) ≤ P (A) ≤ Π(A)}.

This encoding property is due to the sensitivity analysis

interpretation [32] of possibility theory.

A possibility measure can be defined from a possibility

distribution πn. Such a distribution is normalized in the

sense that

max
i∈Θ

πn
i = 1.

Its associated possibility measure is obtained by:

∀A ⊆ Θ, Ππn(A) = max
i∈A

πn
i .

Thus a unique possibility distribution πn can encode a

whole family of convolution kernels κn with unitary gain,

denoted by M(πn) and defined by:

M(πn) = {κn | ∀A ⊆ Θ, Nπn(A) ≤ Pκn(A) ≤ Ππn(A)}.

This family of convolution kernels being defined, the ex-

tension of the convolution (or expectation) operator has to

be studied.

2.2.2 The possibilistic extension of the linear filtering

Since a possibility measure is non-additive, the conven-

tional expectation operator cannot be used for filtering.

The expectation operator must be replaced by its general-

ization, called the Choquet integral [6]. Using a Choquet

integral and a possibility distribution leads to an interval-

valued expectation, instead of a single value, whose upper

and lower bounds are given by:

Sn = CΠ
π

n
(S), (4)

Sn = CN
π

n
(S). (5)

The Choquet integral can be considered as a generalization

of the conventional expectation operator since, when the

used confidence measure is a probability measure, expres-

sions (4) and (5) coincide and are equal to the conventional

expectation operator (2).

The key point of this approach is that the interval-valued

expectation obtained by means of a possibility distribution

is the set of all the single-valued expectations obtained by

using all the convolution kernels encoded by the consid-

ered possibility distribution.

As a preliminary to the theorem (and its proof) justify-

ing this assertion, some notations are necessary. Let us

denote by L({1, ..., N}) the set of bounded sequences

of weights on {1, ..., N}, i.e. ∀I = (Ii)i=1,...,N ∈
L({1, ..., N}), maxi=1,...,N |Ii| < ∞. In [32], this

set is called the set of bounded gambles on {1, ..., N}.

Denote B({1, ..., N}), the set of binary (i.e. {0, 1}-

valued) sequences of weights on {1, ..., N}. Obviously,

B({1, ..., N}) ⊂ L({1, ..., N}). B({1, ..., N}) can be

seen as the set of events on {1, ..., N}.

Theorem 1. Let πn be a possibility distribution. ∀S ∈
L({1, ..., N}), ∀κn ∈ M(πn),

CN
π

n
(S) ≤ EP

κ
n
(S) ≤ CΠ

π
n
(S). (6)

Moreover, the bounds are reached: ∀S ∈ L({1, ..., N}),
∃κn

1 , κn
2 ∈ M(πn), such that

CN
π

n
(S) = EP

κ
n

1

(S),

CΠ
π

n
(S) = EP

κ
n

2

(S).

Proof. The natural extension principle [32] is required to

prove Theorem 1. Note that the natural extension of a

probability measure P , defined for all the events A of

B({1, ..., N}), is the expectation according to P , defined

for all S of L({1, ..., N}). Similarly, the natural extension

of a possibility measure Π, defined for all the events A of

B({1, ..., N}), is the Choquet integral with respect to Π,

defined for all S of L({1, ..., N})1.

1This remark is true for the more general belief functions



The natural extension, as defined by Walley, is conserva-

tive concerning the imprecision of a possibility measure.

The family of natural extensions of the probability mea-

sures of the family M(πn), noted E(M(πn)), is the same

as the family of expectations dominated by the Choquet in-

tegral according to πn, noted M(CΠ
π

n
). This property

of the natural extension can be found in Walley’s book

[32] for an upper prevision P and its associated set of

linear previsions M(P ). It is enough to conclude that

∀S ∈ L({1, ..., N}), ∀κn ∈ M(πn),

CN
π

n
(S) = min{EP

κ
n
(S) : κn ∈ M(πn)},

CΠ
π

n
(S) = max{EP

κ
n
(S) : κn ∈ M(πn)}.

This theorem is also valid for infinite domains. The proof

is derived from domination theorems proved by Den-

neberg [7], proposition 10.3 and Schmeidler [30], propo-

sition 3.

This propagation of the imprecision in the choice of the

possibility distribution representing a family of kernels to

the result of this new possibilistic filtering operation is

very interesting. Using a possibility distribution allows the

modelling of a lack of knowledge on the proper convolu-

tion kernel to be used. Using the generalized expectation

operator (4) and (5) directly impacts this ill-knowledge on

the output.

Note that in the case of a positive signal S (which is the

case of the images that will be processed in section 4), the

Choquet integrals, forming the upper and lower expecta-

tions, can be explicitely computed by :

Sn = CΠ
π

n
(S) =

N
∑

i=1

Ππn(A(i))(S(i) − S(i−1)), (7)

Sn = CN
π

n
(S) =

N
∑

i=1

Nπn(A(i))(S(i) − S(i−1)). (8)

The index notation (.) indicates a permutation that sorts

the sample locations such that S(1) ≤ S(2) ≤ ... ≤ S(N)

and A(i) is a set of samples locations whose value is

greater than S(i), i.e. A(i) = {j ∈ {1, ..., N}|Sj > S(i)}.

By convention, S(0) = 0.

2.2.3 How to choose the possibilistic filter?

The use of a possibility distribution as a family of linear

filters is new in signal processing. This approach does

not offer clues (especially to possibility theory novices) for

choosing the possibility distribution that matches the prac-

titioner’s knowledge on the proper convolution kernel to

be used. Two hints for helping him to choose a possibility

distribution are explored and provided in this paragraph.

First, we propose to use the triangular possibility distri-

bution since it encodes (among others) all the symmetric

convolution kernels with the same support [13]. Indeed,

many algorithms (for example low-pass filtering) exten-

sively use symmetric convolution kernels.

Second, probability/possibility transformations studied by

Dubois et al. [13] can be used, when the practitioner has a

vague idea of the convolution kernel to be used. The possi-

bility distributions obtained by these transformations form

families of convolution kernels including the kernel to ap-

proximate [10, 8]. The objective transformation results in

the smallest family containing the original kernel and the

subjective transformation [11, 12] results in a larger family

of convolution kernels. The latter transformation should

be preferred in case of little confidence in the choice of

the original convolution kernel.

3 Noise estimation

3.1 Nuggets effect and local estimation by

neighbourhood

Geostatistic is the branch of applied statistics that concen-

trates on the description of spatial patterns [4, 24, 15]. The

central tool of geostatistic is the random function which

describes the uncertainty of a given spatial characteristic

over a domain. The structural assumption underlying most

of the geostatistical methods is based on the intuitive idea

that, the closer are the regions of interest, the more similar

are their associated characteristic values.

However, this intuitive idea is no more so obvious when

looking at the closest pairs of sample locations of a spa-

tial data set. Indeed, in general, when plotting the em-

pirical increment of a particular observed property, func-

tion of the distance, between different sample locations,

this increment2 does not seem to vanish when the distance

tends to 0. This discontinuity, which is supposedly due to

geostatical noise, is called the “nuggets effect”. This de-

nomination comes from the fact that in gold deposits, gold

commonly occurs as nuggets of pure gold that are much

smaller than the size of a sample.

When translating this concept from geostatistics to signal

processing, the nuggets effect can be illustrated as follows:

the variability of a subset A of the signal domain is sup-

posed to reflect the co-occurrence of the intrinsic local

variability of the supposed continuous signal underlying

the samples and a measurement error. This measurement

error sums up the systematic error due to the impulse re-

sponse of the sensor, the imprecision due to sampling and

quantization of the signal and a random variability due to

noise. Typically, the variability due to signal increases

with the radius ∆ of the subset A. On the contrary, the

2Generally, the curve of the halve squared increments is plotted. This

curve is called the sample variogram [4]
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Figure 1: Qualitative example of variogram.

variability due to the measurement error is usually sup-

posed not to depend on ∆. This assumption is reasonable

when the sampling is regular and the random noise is sup-

posed to be locally stationary. Thus, if An
∆ is a neigh-

bourhood of radius ∆ of the nth location ωn, V (An
∆), the

variability of An
∆ is such that :

lim
∆→0

V (An
∆) = vn, (9)

with vn being the variability due to measurement error at

location n. This limit is known as the nuggets effect in

the geostatistic field [15]. However, due to sampling, vn

cannot be computed because the local variability cannot be

estimated for a scale smaller than the sampling distance h.

A standard technique for catching this variability is to plot

a variogram, i.e. to plot the variability of all the sampling

locations of n ∈ {1, ..., N}, V (An
∆), as a function of ∆.

A manual fitting3 is generally performed to provide an es-

timation of the nuggets effect, which is the value of the

regression equation for a radius ∆ = 0. This estimation is

denoted by v.

However, this method presupposes that the error is station-

ary all over the signal. Moreover, the choice to be made for

a particular variogram equation is not generally justified in

signal processing. The expert’s knowledge is generally not

available in this scientific domain to evaluate local depen-

dencies, whereas in geostatistic, the expert, according to

the physical nature of the studied area, can provide such

information.

A more pointwise estimation of these measurement er-

rors can be obtained by means of a small neighbourhood

around each sampled location. This approach is based on

assuming local ergodicity. Local ergodicity states that the

local variability of the signal in a small neighbourhood of

a sampling point reflects the statistical variations of the

signal at this location, due to measurement errors. The

neighbourhood commonly used is a probability distribu-

tion defined over the set of pixels by κn = (κn
i )i=1,...,N .

3Sometimes, automatic fitting procedures (which are not recom-

manded by geostatisticians), as regression analysis, are performed

The local variability computation leads to a weighted sum

due to the additivity of the probability measure. Estima-

tions of the nuggets effect are given by:

vn =

√

√

√

√

N
∑

k=1

(Sk − Ŝn)2κn
k , (10)

if variability is measured by the standard deviation. And:

vn =

N
∑

k=1

|Sk − Ŝn|κ
n
k , (11)

if variability is measured by the mean error.

Most of the kernels used to perform this estimation are

unimodal, centered and symmetric around the sample lo-

cation n.

3.2 Noise quantization via possibilistic filtering

Our approach is also based on the assumption of local er-

godicity. On top of that, it exploits the domination proper-

ties presented in section 2, i.e. of the fact that a possibility

distribution can be seen as a family of convolution kernels.

Suppose you want to low-pass filter a signal with two dif-

ferent filters having the same cutoff frequency fc. Such a

filter eliminates from the input signal its component with

a frequency higher than the cutoff frequency fc (this is the

explanation for the origin of the denomination “low-pass

filter”). Suppose that the maximal frequency of the input

signal is lower than fc. Then the two output signals will

be approximately equal. Now, suppose that we apply this

same filtering procedure to an input signal having frequen-

cies beyond fc. Then, generally, the output signals will be

different, depending on the shape of the convolution ker-

nel.

Now, consider the same procedure with a family of low-

pass filters (instead of just two). The previous remark still

holds. Moreover, the dispersion in the outputs of this fam-

ily of low-pass filters is a direct consequence of the high

frequency level of the input signal. If we now suppose

that the high frequencies of the input signal are only due

to noise4, then the dispersion in the outputs of this fam-

ily of low-pass filters can be considered as a marker of the

variability of the input signal.

As mentioned before, the impulse responses of the usual

linear low-pass filters are convolution kernels (uniform,

Gaussian filters...). Since a possibility distribution is

equivalent to a family of convolution kernels, we propose

to replace the usual low-pass filtering based on a convo-

lution kernel by a possibility distribution-based low-pass

filtering procedure.

4This is the hypothesis underlying the low-pass filters



The imprecision or the dispersion in the result of a pos-

sibility distribution-based filtering is quantified by the

length of the interval [Sn, Sn], as defined by expressions

(8) and (7).

Therefore, under the assumption of local ergodicity, we

propose to estimate the noise level by :

λn = Sn − Sn. (12)

As the most usual low-pass filters have impulse responses,

which are unimodal and symmetric convolution kernels

around n, the triangular possibility distribution plays a

central role in possibility-distribution-based filtering. In-

deed, as already mentionned, the triangular possibility dis-

tribution is the most specific possibility distribution that

dominates the class of all unimodal symmetric convolu-

tion kernels with the same mode and support.

In the case of image processing, i.e. with a 2D signal, the

used triangular neighbourhood of each pixel can be simply

represented by the possibilistic 3 × 3 matrix:

π3×3 =





0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25



 (13)

In the case of 1D signal processing, the used triangular

neighbourhood of each sample location can be simply rep-

resented by the vector:

π3 =





0.5
1

0.5



 (14)

In order to weaken the influence of the signal variations

on the noise level estimator that we propose, we have to

choose the smallest possible neighbourhood. Under a π3

or a π3×3 possibilistic neighbourhood, is only the Kro-

necker possibility distribution that is equal to 1 on the es-

timation’s location that would have led to a canonical es-

timation of Sn on the location n. This is why we propose

to use π3 or π3×3 to estimate the noise level.

We conjecture that the length of the interval-valued esti-

mate [Sn, Sn] obtained with π3×3 or with π3 is an esti-

mate of the noise level at the location n. This conjecture

is illustrated by the experiments in section 4.

4 Experiments

4.1 Simulated noise experiment

For this first experiment, we synthesized a set of noisy im-

ages from the benchmark image Lena. A Gaussian noise

is simulated for standard deviations ranging from 0 to 60
and added to the original Lena image. With this set of

Figure 2: images of Lena with simulated Gaussian noise

with standard deviations of 0, 30 and 60.

Figure 3: Usual and possibilistic local estimates of the

noise level.

noisy images, we can directly compare the noise level es-

timates presented in this paper (10), (11) and (12) with the

simulated added noise.

This experiment attempts to show the ability of the pos-

sibility distribution based approach, presented in subsec-

tion 3.2, to quantify the noise level on an image when the

noise is supposed to be locally ergodic. The noise level

is known and represented by the standard deviation of the

added Gaussian noise.

The average over all the pixels of the noisy images of the

noise level estimates (10), (11) and (12) is plotted on Fig-

ure 3 versus the level of the simulated added noise. The

highest curve corresponds to the standard deviation esti-

mate, i.e. expression (10) with a 3 × 3 convolution ker-

nel, the curve in the middle, corresponds to the mean error

estimate, i.e. expression (11) with a 3 × 3 convolution

kernel and the lowest curve corresponds to the possibil-

ity distribution-based noise level estimate, i.e. expression

(12).

As can be seen on Figure 3, all these estimators are good

markers of the noise level, since the three plotted curves

are linear functions of the noise level. The part of the

curves with small simulated noise levels (i.e. with stan-

dard deviation lower than 5) is not fully in agreement with

this remark. This is due to the fact that for low noise levels,



Figure 4: six images of the 1000 HBP direct acquisitions.

the signal to noise ratio is high and the observed variations

of the noisy image are mainly due to the image, and not to

the noise.

From this experiment, we can not pretend that our esti-

mator is better than the other existing local estimators to

quantify the noise level, since the three curves are very

similar. However, put in a more general context, our ap-

proach looks more appropriate to handle the noise in fur-

ther processing. In any usual method, an additional step

is necessary to handle the noise in the processing. The

advantage of the possibilistic approach is that noise level

quantization is part of the processing (in that case the fil-

tering) of the data without any additional computation.

4.2 Real noise experiment

A Hoffman 2D brain phantom (Data Spectrum Cor-

poration) was filled with a 99m technetium solution

(148MBq/L) and placed in front of one of the detec-

tors of a dual-head gamma camera using a low-energy

high-resolution parallel-hole collimator (INFINIA, Gen-

eral Electric Healthcare). A dynamic study was performed

to provide 1000 planar acquisitions (acquisition time: 1

second; average count per image 1.5 kcounts, 128 × 128
images to satisfy the Shannon condition), representing

1000 measures of a random 2D image supposedly ruled

by a Poisson process.

The acquisition time being very short, the images are very

noisy, i.e. the signal to noise ratio is very low. More pre-

cisely, the average pixel value in the brain corresponds to

a coefficient of variation of the Poisson noise of 69%. In,p

is the measured activity of the nth pixel within the pth ac-

quired image. Note that Figure 4 only shows the 40 × 35
central parts of the images that contains the HBP projec-

tion.

This experiment attempts to show that the possibility

distribution-based noise level estimator (12) is more cor-

related to the statistical variations of the image than the

standard deviation noise estimation approach.

The randomness of the radioactive decay being statisti-

cally described by the Poisson probability, it cannot really

be assumed to be stationary all over the image. Since the

signal to noise ratio is very low, the local variation of the

activity level, in the neighbourhood of each pixel, is still

highly correlated with the statistical variations due to ac-

quisition noise.

On the one hand, the statistical variation of the activity of

the nth pixel can be estimated by its standard deviation σn

all over its different realizations:

σn =

√

√

√

√

1

999

1000
∑

p=1

(In,p − mn)2, (15)

with mn, the weighted mean of the image at the nth pixel:

mn =
1

1000

1000
∑

p=1

In,p. (16)

On the other hand, the local variation of the measurement

in the neighbourhood of the nth pixel within the pth im-

age can be estimated by computing the standard deviation

via the expression (10) with a highly specific kernel (the

same experiment made with expression (11) led to similar

results). In this experiment, we propose two estimates of

this standard deviation: γn,p is computed by using a 3× 3
uniform neighbourhood, and δn,p is computed by using a

Gaussian kernel with a standard deviation equal to 1.6, i.e.

a kernel whose bandwidth has been adapted to equal the

bandwidth of the uniform kernel [20, 31].

In the meantime, we compute, for each image, an interval

valued activity [In,p, In,p] by using the possibility distri-

bution based method described in subsection 3.2. The lo-

cal variation in the neighbourhood of the nth pixel within

the pth image is estimated by the length λn,p of each in-

terval:

λn,p = In,p − In,p. (17)

We aim at testing whether the distribution of the estimated

standard deviation σn is correlated or not with γn,p, δn,p

and λn,p. To provide a clear illustration, we compute, for

each n, the mean of the distributions of the deviation mea-

sures: γ̃n = 1
1000

∑1000
p=1 γn,p, δ̃n = 1

1000

∑1000
p=1 δn,p and

λ̃n = 1
1000

∑1000
p=1 λn,p.

Figure 5 plots γ̃n versus σn, as well as the straight line of

equation σn = γ̃n, figure 6 plots δ̃n versus σn, as well as

the straight line of equation σn = δ̃n and figure 7 plots λ̃n

versus σn, as well as the straight line of equation σn = λ̃n.

These figures clearly show that all these estimations are,

on average, correlated with σn. The choice of the value



Figure 5: local variation measured by using a 3×3 uniform

kernel versus the statistical variation.

Figure 6: local variation measured by using a Gaussian

kernel with a 1.6 standard deviation versus the statistical

variation.

1.6 for the Gaussian kernel is appropriate since the esti-

mated local standard deviations δ̃n are in the same range

as the statistical standard deviations σn. Indeed, the points

(σn, δ̃n) are close to the straight line σn = δ̃n. Actu-

ally for values smaller than 1.6, nothing is caught by the

Gaussian neighbourhood for this estimation, whereas for

greater values, the estimation depends more on the signal

than on the variability. The same remarks can be made

about the choice of the size of the uniform kernel that

seems to be appropriate. When comparing Figure 7 with

both Figure 5 and 6, it can be seen that the range of λ̃n is

slightly higher than the range of γ̃n and δ̃n. This is due to

the fact that the measure λ̃n is just correlated to the noise

level and is not an estimation of the standard deviation.

To objectively compare those three dispersion measures,

we compute three correlation coefficients: Pearson, Spear-

man and Kendall. As can be seen in Table 1, the three

averaged variability measures γ̃n, δ̃n and λ̃n are highly

Figure 7: local variation measured by the length of the

interval provided by the possibility distribution based

method versus the statistical variation.

γn,p γ̃n δn,p δ̃n λn,p λ̃n

Pearson 0.70 0.93 0.64 0.90 0.71 0.96

Spearman 0.64 0.92 0.63 0.90 0.67 0.95

Kendall 0.47 0.77 0.47 0.75 0.51 0.81

Table 1: Correlation coefficients between the statistical

standard deviation and the different measures of disper-

sion.

correlated with σn. The correlations between σn and the

variability measures γn,p, δn,p and λn,p are lower but are

sufficient to show a dependency between these measures

and the statistical variations of the set of images. We can

notice that λn,p is always more correlated with σn than

the other variability measures γn,p and δn,p. The same re-

mark is also true for γ̃n, δ̃n and λ̃n. We can conclude that,

in this experiment, the possibilistic approach that we pro-

pose seems to better quantify the noise level than the usual

local approach.

As we conjecture that λn,p could be regarded as a spread

factor measuring the local noise level, we expect that two

intervals [In,p, In,p] and [In,q, In,q] intersect for most of

pairs (p, q) of images. We propose to complete this ex-

perimentation, by computing, for each pixel n, the ratio

of the intervals that intersect versus the total number of

tested intervals. We compute the same ratio using γn,p

and δn,p considered as spread factors measuring statistical

standard deviations: we then test each couple of intervals

[In,p−3γn,p, In,p+3γn,p] and [In,p−3δn,p, In,p+3δn,p].
Since the 3σ interval is usually assumed to be the 99%
confidence interval, one can expect a high rate of overlap-

ping. Table 2 presents the average ratio for all the pixels

of the image and for only the pixels with a value greater

than three.



with all pixels only with pixels

such that In > 3
Uniform kernel 0.11 0.88

gaussian kernel 0.13 0.89

possibility distribution 0.98 0.92

Table 2: Ratio of intersecting confidence intervals.

As can be seen easily on Table 2, the possibility distri-

bution based confidence interval fulfils a 98% intersecting

intervals while the usual probabilistic based confidence in-

tervals are far from this 99% ratio. The bad ratio of the

other methods is mainly due to the fact that the spread fac-

tor is underestimated by these methods for low values (as

it can be easily seen on Figures 5 to 7). In fact, select-

ing only the pixels whose level always exceeds a certain

level over the different realizations increases the score of

the probabilistic based methods. In fact, by assuming that

the measured values are Poisson distributed, a local Gaus-

sian approximation can be valid except for small values of

the illumination signal.

5 Conclusion

In this article, we have presented a method for quantifying

the noise level at each sample location of a signal. This

method is based on replacing the conventional probabilis-

tic by a possibilistic filtering approach. One of the main

advantage of this method is the fact that nothing has to be

assumed on the nature of the noise except its local ergod-

icity. Moreover, when a possibilistic approach is used in

signal processing, the noise estimation is propagated all

along the different steps of the algorithm by the model it-

self, which is an advantage compared to usual kernel based

approaches, where the noise estimation requires a parallel

computation.
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