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Abstract

In this paper we describe an algorithm for computing
the closure with respect to graphoid properties of a
set of independencies. Since the computation of the
complete closure is infeasible, we provide a procedure,
called FC1, which is based on a unique inference rule
and on the elimination of redundant independencies.
FC1 is able to compute a reduced form of the closure,
called fast closure, which is equivalent to the com-
plete closure, but whose size is much smaller. Some
experimental tests have been performed with an im-
plementation of the procedure in order to show the
computational behavior of the algorithm. We have
also compared the computational cost and the size of
the fast closure with the corresponding data for the
complete closure.
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1 Introduction

Conditional independence structures arise in different
frameworks, in particular, in probability and in mul-
tivariate statistics [11, 14, 15, 18, 20, 23, 31]. It is well
known [14] that for any probability measure P the as-
sociated independence model M, under the classical
definition of independence, is a semi–graphoid (i.e. it
satisfies symmetry, decomposition, weak union, con-
traction) and if P is strictly positive, then M is a
graphoid (also intersection property holds). On the
other hand, other independence notions have been in-
troduced in a probabilistic setting [7, 8, 12, 21, 26]
and under them graphoid properties have been tested.
Moreover, it is well known that graphoid properties
are met also by other relations (see [15]) like separa-
tion property in graph.

The significance of independence models and graphoid
structures is not limited to probabilistic models: in
fact many independence models arising from differ-

ent uncertainty measures are tested on the basis of
graphoid properties (see e.g. [1, 9, 10, 13, 15, 16, 17,
19, 23, 27, 30]) and obviously not all the properties
among those of graphoid hold.

A significant problem is when a field expert provides
an uncertainty measure ϕ (or better a partial uncer-
tainty assessment, e.g. a coherent conditional prob-
ability assessment) and a set J of conditional inde-
pendence statements, in such case it is necessary to
check whether the set J is induced or compatible with
ϕ [29] and then to find all the set of independencies
deducible from J .

Then, the aim of this paper is to consider a set J
of conditional independence statements, compatible
with an uncertainty assessment, and to build in an
efficient way the closure through graphoid properties
of J .

The computation of the closure is infeasible since its
size is exponentially larger than the size of the initial
set J of independence statements (see [23, 24]). Then,
our aim in [3, 4] (as that in [23, 24] essentially for the
case of semi–graphoids) is to build a suitable reduced
set of independence statements (obviously included in
the closure of J with respect to graphoids), which is
as small as possible and it represents the same in-
dependence structure. From this reduced set all the
relations in the closure should be easily deducible.

In other words, this small set of independence state-
ments, which is called “fast closure”, can be consid-
ered a basis for the closure.

The computation of the fast closure is relevant also for
the selection problem (based essentially on statistical
tests) of a model on the basis of data for building, for
example, the relevant Bayesian network.

In this paper we describe an algorithm to compute
the reduced set. This algorithm is based on a unique
inference rule introduced in [4]. In the quoted paper
we have also compared this algorithm with another



based on two inferential rules, which are deduced from
[24] and studied in our previous paper.

An empirical evaluation of the performance of the in-
troduced algorithm is provided by showing compu-
tation times and number of iterations, as well as a
comparison between the needed time to compute the
fast closure and the time for computing the complete
closure (the size of both closures is compared).

The paper is organized as follows: in Section 2 some
preliminaries concepts about graphoids, closure and
implications for independence relations are recalled.
In Section 3 we describe the generalized inference rules
and the concept of fast closure; while in Section 4 a
system based on a unique inference rule and its corre-
sponding algorithm FC1 are introduced. In Section 5
we describe and comment some experimental results.

2 Graphoid structures

Throughout the paper the symbol S̃ = {Y1, . . . , Yn}
denotes a finite not empty set of variables. Given an
uncertainty measure ϕ, a conditional independence
statement YA⊥⊥YB |YC (compatible with ϕ), where A,
B, C are disjoint subsets of the set of indices S =
{1, . . . , n}, is denoted simply also as an ordered triple
(A,B,C).

Let S(3) be the set of triples (A,B, C) of disjoint sets
of S such that A and B are not empty, then a condi-
tional independence model, related to an uncertainty
measure ϕ, is a subset of S(3).

In particular, we deal with independence models
closed under graphoid properties. We recall that a
graphoid is a couple (S, I), where I is a ternary rela-
tion on the set S, which satisfies the following prop-
erties:

G1 if (A,B, C) ∈ I, then (B, A,C) ∈ I (Symmetry);

G2 if (A,B, C) ∈ I, then (A,B′, C) ∈ I for any
nonempty subset B′ of B (Decomposition);

G3 if (A,B1 ∪ B2, C) ∈ I with B1 and B2 disjoint,
then (A,B1, C ∪B2) ∈ I (Weak Union);

G4 if (A,B, C ∪ D) ∈ I and (A,C, D) ∈ I, then
(A,B ∪ C,D) ∈ I (Contraction);

G5 if (A,B,C ∪D) ∈ I and (A,C, B ∪D) ∈ I, then
(A,B ∪ C,D) ∈ I (Intersection).

(S, I) is a semi–graphoid if it satisfies only the prop-
erties G1–G4.
The symmetric versions of rules G2 and G3 are de-
noted by

G2s if (A, B,C) ∈ I, then (A′, B,C) ∈ I for any
nonempty subset A′ of A;

G3s if (A1 ∪A2, B, C) ∈ I, then (A1, B, C ∪A2) ∈ I.

Let θ, θ′ ∈ S(3), we denote by

θ `R θ′

the fact that θ′ is obtained by applying once the prop-
erty R to θ, where in this context R can be G1, G2
or G3.
Moreover, let θ1, θ2, θ ∈ S(3);

θ1, θ2 `R θ

denotes that θ is obtained by applying once R to the
pair θ1, θ2 of triples. In this case R can be either G4
or G5.

Now, we start from a set J ⊂ S(3) of triples, com-
patible with an uncertainty measure, and we are in-
terested to establish whether a triple θ ∈ S(3) can be
derived from J , in symbols

J `∗ θ .

This means that θ can be obtained by applying a finite
number of times the rules G1–G5 starting from the
set of triples J . This problem is called “implication
problem” and has been already studied, for instance,
in [32].
A strictly related problem is to compute the closure
of a set J , defined as

J̄ = {θ ∈ S(3) : J `∗ θ} .

It is clear that the implication problem can be easily
solved once the closure of J has been computed. But
the computation of the closure is infeasible because
its size is exponentially larger than the size of J .

Then, in the following sections we describe how it is
possible to compute a smaller set of triples having the
same information as the closure.

This problem has been already faced in [24], with par-
ticular attention to semi–graphoid structures.

3 Generalized inference rules

In the following subsections we recall some notions
introduced in [2, 4] useful to compute the closure in a
more efficient way.

In particular, in Subsection 3.1 a notion of generalized
inclusion, that is related to the notion of dominance
given in [23] is studied.

In Subsection 3.2 we study some properties of inter-
section and contraction, which lead to suitable infer-
ential rules. Moreover, we provide a procedure to



compute a “small” set that can be considered a sort
of basis for the closure, with respect to graphoid, of a
given set of conditional independence statements.

3.1 Generalized inclusion

Let us focus our attention, first of all, to the first three
graphoid rules. Given a triple θ2 ∈ S(3), it is possible
to compute all the triples θ1 which can be obtained
from θ2 with a finite number of applications of G1,
G2 and G3. We say (see [2, 3, 4]) that, for any such
pair of triples, θ1 is generalized–included in θ2 (briefly
g–included), in symbol θ1 v θ2.

In order to simplify the notation in the following,
given a triple θi = (Ai, Bi, Ci), Xi stands for (Ai ∪
Bi ∪ Ci).

Now, some properties of g–inclusion are recalled.

Proposition 1 Given θ1 = (A1, B1, C1) and θ2 =
(A2, B2, C2), then θ1 v θ2 if and only if the following
conditions hold

(i) C2 ⊆ C1 ⊆ X2;

(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and
B1 ⊆ A2.

Generalized inclusion is strictly related to the partial
order relation va on S(3), defined in [23] and called
dominance: the triple θ = (A,B, C) is said to dom-
inate θ′ = (A′, B′, C ′) (in symbol θ′ va θ) if θ′ can
be derived from θ by means of decomposition, weak
union and their symmetric properties (i.e. G2, G3,
G2s and G3s).

The relation between v and va is simple: θ′ v θ if
and only if

either θ′ va θ or θ′ va θT ,

where θT is the transpose of θ (i.e. if θ = (A,B, C),
then θT = (B, A, C)).

The g–inclusion verifies almost all the properties of a
partial order relation on S(3) [4], in fact it is reflexive
and transitive, but it is not anti–symmetric. However,
it satisfies a weak form of anti–symmetry, and denoted
by (AS)∗:

θ1 v θ2 and θ2 v θ1 implies either θ1 = θ2 or θ1 = θT
2 .

The definition of g–inclusion between triples can be
extended as follows to the case of sets of triples.

Definition 1 Let H, J be subsets of S(3). J is a
covering of H (in symbol H v J) if and only if for
any triple θ ∈ H there exists a triple θ′ ∈ J such that
θ v θ′.

The g–inclusion between sets of triples verifies reflex-
ivity and transitivity, while as the following example
shows it does not satisfy the anti–symmetry neither
in its weak form.

Example 1 Given S = {1, 2, 3, 4}, consider the
triples θ = ({1}, {2}, {3}), θ′ = ({1, 4}, {2}, {3}) ∈
S(3) and the subsets H = {θ, θ′} and J = {θ′} of
S(3). It is easy to check that H v J and J v H, but
θ ∈ H is such that θ 6∈ J and θT 6∈ J .

However, in [3] we show that weak anti–symmetry
holds for particular sets.

3.2 Closure through the generalization of
G4 and G5

Now, we recall the two inference rules introduced in
[2, 3].

Given θ1, θ2 ∈ S(3), WC(θ1, θ2) is the set

{τ : θ′1, θ
′
2 `G4 τ, with θ′1 va θ1, θ

′
2 va θ2}.

Concerning WC(θ1, θ2) the following result holds (see
[3, 4]).

Proposition 2 Let θ1 = (A1, B1, C1), θ2 =
(A2, B2, C2) be a pair of triples belonging to S(3), then

1. WC(θ1, θ2) is not empty if and only if all the fol-
lowing five conditions hold:

(a) A1 ∩A2 6= ∅;
(b) C1 ⊆ X2 and C2 ⊆ X1;

(c) B1 \ C2 6= ∅;
(d) B2 ∩X1 6= ∅;
(e) |(B1 \ C2) ∪ (B2 ∩X1)| ≥ 2.

2. If WC(θ1, θ2) is not empty the triple gc(θ1, θ2) =

(A1 ∩A2, (B1 \C2)∪ (B2 ∩X1), C2 ∪ (A2 ∩C1)),

is in WC(θ1, θ2) and dominates any triple belong-
ing to WC(θ1, θ2).

When WC(θ1, θ2) is empty, we set gc(θ1, θ2) = ⊥.

The function gc(·, ·) has already been introduced in
[24] in an essentially equivalent form.

The conditions (a)–(e), which assure that WC(θ1, θ2)
is not empty, are however stronger than those given in
[24]: in fact, we are looking for the triple dominating
all the triples obtained, through G4, from θ1 and θ2 or
from some of their dominated triples. This is clarified
in the next example.



Example 2 Consider the triples

θ1 = ({1, 4}, {2}, {3})

and
θ2 = ({1, 3}, {2}, {4}).

The condition (e) fails, since (B1 \ C2) = (B2 ∩X1)
and it contains just the element 2.

Then, in this case WC(θ1, θ2) = ∅, however it could
be noted that by applying G3 to one of the two triples
we get θ = ({1}, {2}, {3, 4}) va θi (for i = 1, 2) and
so θ adds no further information.

We denote with GC(θ1, θ2) the set formed by the pos-
sible (i.e. belonging to S(3)) triples among gc(θ1, θ2),
gc(θ1, θ

T
2 ), gc(θT

1 , θ2) and gc(θT
1 , θT

2 ).

Obviously, GC(θ1, θ2) is in general different from
GC(θ2, θ1).

Note if θ1, θ2 `G4 τ , then τ = gc(θ1, θ2).

A result similar to Proposition 2, related to intersec-
tion property, holds (see [3]) by considering the set

WI(θ1, θ2) = {τ : θ′1, θ
′
2 `G5 τ, with θ′1 va θ1, θ

′
2 va θ2}.

Proposition 3 Let θ1 = (A1, B1, C1), θ2 =
(A2, B2, C2) be a pair of triples belonging to S(3), then

1. WI(θ1, θ2) is not empty if and only if all the fol-
lowing five conditions hold:

(a) A1 ∩A2 6= ∅;
(b) C1 ⊆ X2 and C2 ⊆ X1;

(c) B1 ∩X2 6= ∅;
(d) B2 ∩X1 6= ∅;
(e) |(B1 ∩X2) ∪ (B2 ∩X1)| ≥ 2.

2. If WI(θ1, θ2) is not empty, then the triple
gi(θ1, θ2) = (Agi, Bgi, Cgi) with

• Agi = A1 ∩A2;

• Bgi = (B1 ∩X2) ∪ (B2 ∩X1);

• Cgi = (C1 ∩A2) ∪ (C2 ∩A1) ∪ (C2 ∩ C1);

is in WI(θ1, θ2) and dominates any triple belong-
ing to WI(θ1, θ2).

Given two triples θ1, θ2, Proposition 3 gives rise to
the dominant triple generated, through G5, by θ1, θ2

or by some dominated triples, respectively, by θ1 and
θ2.

The set GI(θ1, θ2) is formed by the possible (i.e. be-
longing to S(3)) triples among gi(θ1, θ2), gi(θ1, θ

T
2 ),

gi(θT
1 , θ2) and gi(θT

1 , θT
2 ).

Then, GI(θ1, θ2) = GI(θ2, θ1).

Also in this case, if θ1, θ2 `G5 τ , then τ = gi(θ1, θ2).

The previous sets GC and GI are used to introduce
two new inference rules

G4∗ “generalized contraction”: from θ1, θ2 deduce any
triple τ ∈ GC(θ1, θ2);

G5∗ “generalized intersection”: from θ1, θ2 deduce
any triple τ ∈ GI(θ1, θ2);

which, as explained above, generalize the two classical
inference rules. These rules are useful to compute the
closure of a set J of triples in S(3), that is

J∗ = {τ : J `∗G τ} (1)

where J `∗G τ means that τ is obtained by applying a
finite number of times the rules G4∗ and G5∗.

In [3, 4] the relationship between the two closures
J∗ and J̄ is studied, in particular, we prove that
any triple obtained through G1–G5 is g–included in a
triple deduced from G4∗ and G5∗. This implies that
J∗ ⊆ J̄ and moreover

J̄ v J∗.

Note that J∗ is a subset of J̄ , so even if J∗ has the
same information of J̄ , is smaller than J̄ . Actually, J∗

contains some “redundant” triples, that means that
are g–included in some of the other ones. In fact,
(see (1)) each application G4∗ and G5∗ can generate
a triple which is g–included in a triple of J or in an
already generated triple.

3.3 Fast closure

In [2, 3, 4] we introduced the concept of “maxi-
mal”(with respect to g–inclusion) triple: given a set
J of triples, a triple τ is maximal in J if there exists
no τ̄ ∈ J with τ̄ 6= τ, τT such that τ v τ̄ .

We denote with J/
v the subset of J composed only

by its maximal triples and we call FindMaximal the
function which computes J/

v from J .

There is no loss of information by using J/
v instead

of J [3], in fact
J v J/

v.

Then, given a set J of triples in S(3), we compute J∗

(see equation (1)) and then we take only its maximal
triples, i.e. J∗/

v
.



We call the set J∗/
v

“fast closure” and we denote it,

for simplicity, with J∗.

Note that we have also the following relationship:
J∗ ⊆ J̄ and

J̄ v J∗.

It is interesting to observe J̄/
v and J∗ essentially co-

incide [3], in fact

J̄/
v v J∗ and J∗ v J̄/

v.

4 Unique inference rule

In [3, 4] we describe a procedure to compute efficiently
the closure of a set of conditional independence state-
ments, which is based on the two above inferential
rules (generalized contraction and intersection). In
order to improve such procedure, in we look for a
unique inferential rule with the aim of simplifying the
procedure.

In particular, by taking into account Proposition 2
and Proposition 3, which provide necessary and suffi-
cient conditions for the application of generalized con-
traction and intersection, respectively, the notion of
almost complete pair of triples is introduced in [4] in
order to characterize the couples of triples which lead
to the largest fast closure.

We recall first of all that the fast closure {θ1, θ2}∗
of a couple θ1, θ2 ∈ S(3) is composed by a maximum
of nine extra triples, no matter how many variables
occur in θ1 and θ2.

In particular, any pair of triples (θ1, θ2) can be re–
written, in a general form, as

θ1 = ([AA, AB , AC , AN ], [BA, BB , BC , BN ],
[CA, CB , CC , CN ])

θ2 = ([AA, BA, CA, A′N ], [AB , BB , CB , B′
N ],

[AC , BC , CC , C ′N ])

where some sets can be empty and with the notation
that [A,B, C] stands for A ∪B ∪ C.

Each triple of the fast closure of (θ1, θ2) is g–included
in the set of possible (i.e. belonging to S(3)) triples

K(θ1, θ2) = {θ1, θ2, θa, θb, θc, θd, θe, θf , θg, θh, θad}
where

θa = (AA, [AB , BA, BB , BC , CB , BN ], [AC , CA, CC ]);

θb = (AB , [AA, BA, BB , BC , CA, BN ], [AC , CB , CC ]);

θc = (BA, [AA, AB , AC , BB , CB , AN ], [BC , CA, CC ]);

θd = (BB , [AA, AB , AC , BA, CA, AN ], [BC , CB , CC ]);

θe = (AA, [AB , BA, BB , BC , CB , B′
N ], [AC , CA, CC ]);

θf = (AB , [AA, BA, BB , BC , CA, A′N ], [AC , CB , CC ]);

θg = (BA, [AA, AB , AC , BB , CB , B′
N ], [BC , CA, CC ]);

θh = (BB , [AA, AB , AC , BA, CA, A′N ], [BC , CB , CC ]);

θad = ([AB , BA], [AA, BB ], [AC , BC , CA, CB , CC ]).

Therefore,
{θ1, θ2}∗ v K(θ1, θ2).

Moreover, in [3, 4] it is also proved that

K(θ1, θ2) v {θ1, θ2}∗.

Note that in general K(θ1, θ2) may not coincide with
{θ1, θ2}∗ because it could contain some redundant
triple or the transpose triple of one belonging to
{θ1, θ2}∗.
However, it is easy to see that

K(θ1, θ2)/v v {θ1, θ2}∗

and
{θ1, θ2}∗ v K(θ1, θ2)/v,

since both sets are maximal.

Therefore the set K(θ1, θ2) allows to compute
{θ1, θ2}∗: in fact, it is possible to build up such a
set and apply the function FindMaximal to it.

All this computation requires a constant number of
steps with respect to the size of θ1, θ2.

By using {θ1, θ2}∗, it is possible to provide a new in-
ference rule

U : from θ1, θ2 deduce any triple τ ∈ {θ1, θ2}∗.

4.1 Algorithm FC1

By using the unique inference rule U , we provided the
Algorithm 1.

Concerning the above algorithm we have the following
result:

Theorem 1 Let J be a nonempty subset of S(3), then

1. FC1(J) v J∗;

2. J∗ v FC1(J).

Both theoretical and empirical comparisons between
FC1 and an algorithm based on two inferential rules
in [4] are carried out, hereby showing the better per-
formances of FC1.



Algorithm 1 Fast closure by U
1: function FC1(J)
2: J0 ← J
3: N0 ← J
4: k ← 0
5: repeat
6: k ← k + 1
7: Nk :=

⋃

θ1∈Jk−1,θ2∈Nk−1

{θ1, θ2}∗

8: Jk ← FindMaximal(Jk−1 ∪Nk)
9: until Jk = Jk−1

10: return Jk

11: end function

Note that FC1 can be optimized by observing that
if θ′1 and θ′2 belong to {θ1, θ2}∗, then {θ′1, θ′2}∗ is g–
included to {θ1, θ2}∗. The validity of this observation
follows easily since

{θ′1, θ′2}∗ v {θ′1, θ′2}∗ v {θ1, θ2}∗ v {θ1, θ2}∗.

Therefore, it is not necessary to apply the inference
rule U to a pair of triples θ′1 and θ′2, generated by U
from the same two triples θ1 and θ2, since from θ′1
and θ′2 we would obtain only redundant triples, which
would be discarded by the function FindMaximal.

Note that for the same reasons, we do not need to
apply the rule U between a triple θ and another one θ′

generated from θ (by combining θ with another triple
θ′′): in fact if θ′ ∈ {θ, θ′′}∗, then {θ, θ′} ⊆ {θ, θ′′}∗
and so

{θ, θ′}∗ v {θ, θ′′}∗ ,

which implies that no maximal triple can be obtained.

Then, the use of the inference rule U in FC1 can be
enhanced by keeping track of the “parents” of each
triple and by neglecting the pairs which satisfies the
two previously described situations (“sibling” triples
and “father–child”).

In our implementation, we use this optimization, but
we consider K(θ1, θ2) instead of {θ1, θ2}∗, because in
any case in each cycle of FC1 a call to function Find-
Maximal is however performed.

5 Experimental results

In this section we describe some experimental results
obtained with an implementation in C++ of the algo-
rithm FC1, as well as an implementation of an algo-
rithm to compute the complete closure (with respect
to G1–G5). The main purpose of these experiments is
to prove the viability of the fast closure computation.

The first aspect, that these experiments can clarify,
is to show how difficult it is, from the computational

point of view, to compute the fast closure. It is clear
that this problem is a computationally hard problem,
for which no efficient (i.e. polynomial time) solution
can exist as already noted in [23, 24].

Therefore an empirical evaluation is necessary in order
to establish whether the computation of the fast clo-
sure is reasonably fast and uses an acceptable amount
of memory.

The other question is which is the quantitative dif-
ference in size and in computation time of the fast
closure with respect to the complete closure. The fast
closure is clearly smaller than the complete closure
(each triple θ ∈ J∗ corresponds to several triple in
J̄), but we have not been able to find any theoretical
bounds for the size of J∗ with respect to the size of J̄ .

The experiments were performed on an AMD Dual
Core Opteron running at 1.8 GHz with 2 GByte main
memory. We applied a cut–off of 5,000,000 triples that
can be stored (to avoid problems with memory) and a
time–out of 3600 seconds. Some preliminary results,
with different experimental parameters, have already
been given in [6, 2].

In the first set of experiments, we have generated
200 random sets of triples having nv variables and
nr triples, for nr = 10, 15, 20, 25, 30 and nv = b0.5 ·
nrc, nr, b1.5 ·nrc, 2nr. and we have computed the fast
closure by means of (see Table 1).

In the Table 1, the value perc is the percentage of the
sets for which FC1 has been able to compute the fast
closure, within the limits of time and memory, time
is the average computation times in seconds, size is
the average size of the fast closure, iter is the average
number of iterations needed to find the closure, and
gen is the average number (rounded to the nearest
integer) of the overall generated triples.

The behavior of FC1, as explained in the following, is
influenced by many factors, which can have contradic-
tory and not well understandable effects. However it
is possible to observe that as nr grows, instances with
a small value for nv

nr become more and more difficult:
with nr = 30 and nv = 15 FC1 has not been able to
solve any instance. The same happens with nr = 35
and 40 (nv being 0.5 · nr), in experimental tests not
described here.

On the other hand, when the ratio nv
nr is large, in-

stances get easier and easier to solve.

The first behavior can be explained with the fact that
generating at random an instance with fewer vari-
ables, with respect to the number of relations, can
produce many triples to which it is possible to repeat-
edly apply the generalized inference rules. In these



Table 1: Fast Closure FC1

nr nv perc time size iter. gen.

10 5 100 0 10.83 3.99 202

10 10 100 1.06 95.93 6.42 27524

10 15 99 44.43 226.08 6.263 241219

10 20 98.5 22.16 153.54 4.81 115006

15 7 100 9.11E-02 46.84 5.50 5841

15 15 63 500.42 982.68 10.03 1926990

15 22 80.5 111.49 365.29 6.63 359213

15 30 98 9.77 72.14 3.25 32615

20 10 100 79.19 433.835 7.41 652608

20 20 27.5 376.43 921.47 10.2 1105693

20 30 93.5 84.64 305.21 5.58 240052

20 40 98.5 3.64 54.95 2.20 16514

25 12 49.5 1383.23 1354.33 8.3 5231558

25 25 35 254.46 719.69 9.04 720993

25 37 97.5 14.25 124.42 3.8 62761

25 50 100 1.1E-03 29.685 1.445 84

30 15 0 – – – –

30 30 51.28 118.59 514.58 7.65 3631898

30 45 100 0.03 48.38 2.41 1063

30 60 100 8.55E-05 31.06 1.12 7

cases, the computation of the fast closure requires sev-
eral iterations during which a large number of triples
are generated (most of them are discarded). These
kinds of instances seem to be the hardest to solve, if
compared to the other kinds.

At the same time, if the number of variables is too
large, the chance of application of the inference rules
becomes very low, as proved by the average size of the
fast closure (which is roughly similar to nr) and the
number of generated triples (which is rather small). In
these cases, the closure often coincides or is similar to
the initial set of triples and therefore can be computed
with a little computational effort.

In the second set of experiments we compare the com-
putation time needed for finding the complete closure
and its size with respect to the time and size of the
fast closure. The complete closure is obtained by us-
ing an algorithm similar to FC1, which uses all the in-
ference rules G1–G5, without calling FindMaximal.
Furthermore, we did not apply for it any cut–off with
respect to number of triples.

Since we expect that the complete closure is much
larger than its fast version, we have performed these
new experiments with smaller instances, instead of
using the previous one. In particular, we generate 20
sets of nr triples and nv variables, for nr = 4, 7, 10
and nv = nr, b1.5 · nrc.
In Table 2 the results for the fast closure are reported,
with the average values calculated with respect to
the solved instances by FC1, the average computa-
tion time is negligible, except that in the last row,
where we obtain results similar in magnitude order,
as those displayed in Table 1. The algorithm FC1 has
been able to build the closure for each instance.

Table 2: Fast Closure with FC1
nr nv time size iter. gen.

4 4 0 3.95 2.75 12.1

4 6 0 5.85 2.95 29.2

7 7 2E-03 18.65 4.95 559.25

7 10 1.8E-02 32.05 4.7 1756.15

10 10 0.6755 86.9 5.95 18415

10 15 42.7225 320.45 6.7 335910.5

In Table 3 we report the results obtained in the com-
putation of the complete closure. The last column
contains the number of instances for which the al-
gorithm has been able to compute the complete clo-
sure within an hour of computation. Note that with
nr = 10 and nv = 15 we could solve only one in-
stance, which almost reached the time limit, while
the fast closure of this instance has only 27 triples
and has been found in a negligible amount of time.
The values in the last column are used to compute
the average values showed in Table 2.

The comparison of the size between fast and complete
closure is impressive, as it is possible to see in the
graph of Figure 1 (the last rows of both tables have
been ignored).

Table 3: Complete Closure
nr nv time size iter. gen. res.

4 4 0 64 7 57 20

4 6 0.05 527 8.9 899 20

7 7 1.75 3282 13.15 9526 20

7 10 248 28808 13.89 147249 19

10 10 603 50760 16.67 268381 15

10 15 3513 159164 14 683991 1



Figure 1: Sizes of the closure

Clearly also the computation times for computing
the complete closure are much higher than the time
needed to compute the fast closure, as displayed in
the Figure 2.

Figure 2: Computation times

6 Conclusions

We study some properties of graphoid structures with
the aim to compute efficiently the closure of a set of
conditional independence statements. It is well known
that the size of the closure of a set is exponentially
greater than the size of the given set.

In particular, we give an algorithm FC1, which is able
to compute the closure of a set of triples by look-

ing for a suitable subset of the closure, that has the
same information, but it is smaller than the closure as
shown by experimental results. Actually, FC1 com-
putes just the maximal (with respect to g–inclusion)
triples, then it also allows to improve the computa-
tional time.

By means of this set also the well known implication
problem can be solved in an efficient way: in fact,
to verify whether a triple belongs to the closure it is
enough to look for a triple in the set, obtained through
FC1, which g–includes the given triple. Moreover, to
check the g–inclusion relation requires constant time,
therefore the computational time is linear with respect
to the size of the set.

A straightforward extension of this work is to adapt
this framework for computing the closure by using
semi-graphoid axioms and compare it with that pro-
posed in [24].

A further open problem, partially studied in [5], con-
sists into using this set for building in an efficient way
an acyclic directed graph representing the indepen-
dence statements in the closure.
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