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Abstract 
The paper investigates outer approximations of coherent 
lower probabilities by 2-monotone measures. We charac-
terize the set of (Pareto)-optimal outer approximations 
and provide powerful iterative algorithms to calculate 
such measures.  
Keywords. Pareto optimal 2-monotone measure, addi-
tivity on lattices, simplex method, imprecision indices. 

1   Introduction 

Walley [21, p. 51] is often cited in saying that he does 
not “…know any ‘rationality’ argument for two-
monotonicity, beyond its computational convenience.” 
Of course, in particular in problems of larger scale, com-
putational convenience, and even computational tracta-
bility, is still an issue, and so the problem of finding a 
suitable approximation of a coherent lower probability 
by 2-monotone measures arises naturally in many appli-
cations of imprecise probabilities (see also Section 3).  
As analysis shows, the optimal choice of a 2-monotone 
measure can not be made uniquely, which may be under-
stood from the fact that the minimum of two 2-monotone 
measures is not again a 2-monotone measure in general, 
and so we will characterize and derive Pareto optimal 
solutions to that problem.  
The main idea of this paper consists of the following. 
For any coherent probability μ , we define a convex set 

2 monM μ− ≤  of 2-monotone measures that are dominated by 
μ . Then any possible optimal choice of a 2-monotone 
measure in 2 monM μ− ≤  is produced by finding extreme 
points of 2 monM μ− ≤ , which are not dominated by other 
measures in 2 monM μ− ≤ , and any optimal measure is repre-
sented as a linear convex combination of such points. 
After some technical preliminaries (section 2) and a 
slightly more detailed look at the convenience of 2-
monotonicity, we give in section 4 a necessary and suffi-
cient condition for a 2-monotone measure to be an ex-
treme point through lattices on which a 2-monotone 
measure is additive. In Section 5, we provide iterative 
algorithms for searching optimal extreme points, which 
then are illustrated by two examples. In the Appendix the 

reader can find some results on canonical sequences of 
monotone measures [5], which are used in the proofs. 

2. Technical preliminaries 

Let X  be a measurable space and A  be a σ -algebra of 
its subsets. A set function : [0,1]μ →A  is called a 
monotone measure [14] if 1) ( ) 0μ ∅ = , ( ) 1Xμ = ; and 
2) ,A B∈A , A B⊆  implies ( ) ( )A Bμ μ≤ . We write 

1 2μ μ≤  for monotone measures 1 2,μ μ  on A  if 

1 2( ) ( )A Aμ μ≤  for all A∈A . In this paper we consider 
the following families of monotone measures: 
1) monM  is the set of all monotone measures on A ; 

2) prM  is the set of all finite additive probability meas-
ures on A , i.e. pr monM M⊆  and additionally 

( ) ( ) ( )A B A Bμ μ μ∪ = +  for disjoint sets ,A B∈A ; 

3) lowM  is the set of all lower probabilities [22] on A , 
i.e. low monM M⊆  and for any lowMμ∈  there exists 

prP M∈  such that Pμ ≤ (, and so lowMμ∈  iff it satis-
fies the avoiding sure loss property [22]); 
4) cohM  is the set of all coherent lower probabilities [22] 
on A , i.e. for any cohMμ∈  and B∈A  there exists 

prP M∈  such that Pμ ≤  and ( ) ( )B P Bμ = ; 

5) 2 monM −  is the set of all 2-monotone measures [11] on 
A , i.e. 2 mon monM M− ⊆  and ( ) ( )A Bμ μ+ ≤  

( )A Bμ ∪ + ( )A Bμ ∩  for any ,A B∈A . 

6) chainM  is the set of all chain measures [14] on A , i.e. 
if chainMμ∈ , then there is a chain Γ ⊆ A  such that 
∅∈Γ , X ∈Γ  and, for all B, 

|
( ) sup ( )

A A B
B Aμ μ

∈Γ ⊆
= . 

3. On the convenience of 2-monotonicity 

As also discussed below, 2-monotone measures have 
some regular properties compared to coherent lower 
probabilities, which are very convenient from the com-
putational point of view. Of particular importance is the 
property recalled in Remark 1 below, ensuring that for 
any chain of events there is a single classical probability 



in the core simultaneously attaining the lower probability 
for all elements of the chain. As a consequence, the 
enveloping lower and upper distribution functions define 
probabilities in the core, and so, for instance, a closed 
form for natural extension (calculating expectation of 
random variables) is available (repeated, e.g, in. [22, p. 
30ff], where also some direct applications are given). By 
similar arguments a convenient closed form for calculat-
ing lower and upper conditional probabilities (in 
Walley’s sense) can be derived (see, e.g., [22, p. 301, 
including the corresponding footnote]). Moreover, other 
common forms of conditioning, like Dempster’s rule of 
conditioning ([13]), also called maximum likelihood 
updating ([15]), are then guaranteed to lead to a coher-
ent, and indeed again 2-monotone, solution. 
Our main motivation for the present study, however, has 
been the case of hypothesis testing, where one has to 
distinguish between two hypotheses described by impre-
cise probabilities, and decide which one is more likely to 
have produced the data. Similarly as in the case of calcu-
lating the conditional distribution or the natural exten-
sion, the testing problem can be expressed in terms of a 
single linear optimization problem (see [1, chapter 4]), 
but, even with the considerable improvement along the 
lines developed for decision problems in [20, section 
3.2], the problem still increases exponentially in the 
sample size, and so still is, for the sample sizes usually 
common in statistics, simply computationally intractable.  
A powerful way out is offered by Huber-Strassen theory 
([18], and the work following it, see also [17, 3, 4] for 
reviews from different perspectives). The famous Huber-
Strassen theorem (in [18, cf. also the finally obtained 
extension in [9]) ensures that 2-monotonicity is suffi-
cient for the existence of a globally least favorable pair, 
i.e. a pair of classical probability distributions that 
i) allow to represent the whole testing problem in deter-
mining the optimal test and  
ii) can be calculated by considering sample size 1 only. 
While i) can be alleviated by a concept of local least 
favorability ([1, chapter 3), [2], [16]), property ii) can 
not be generalized appropriately (see the analysis of the 
proof in [1, p. 223ff.]). As a consequence, statistical 
models described by coherent, but not 2-monotone 
measures, often have to be approximated appropriately 
to be able to determine appropriate statistical testing 
procedures.  

4   Approximation by 2-monotone measures (finite 
case) 

In this case, we assume that X  is a finite set and A  is 
the power set of X , i.e. 2X=A . Let lowMμ∈ , then 

monMν ∈  is defined as a Pareto optimal approximation 
of μ  if ν μ≤  and ν ν μ′≤ ≤  for monMν ′∈  implies that 

ν ν′ = . For any lowMμ∈ , we denote 2 monM μ− ≤ =  

{ }2 |monMν ν μ−∈ ≤ .  

Lemma 1. Any Pareto optimal 2-monotone measure for 
a cohMμ∈  can be represented as a convex linear com-
bination of Pareto optimal extreme points of 2 monM μ− ≤ . 

Proof. It is clear that the set 2 monM μ− ≤  has a finite set of 

extreme points { }iμ , because it can be described by a 
finite number of inequalities. Therefore any 

2 monM μν − ≤∈  can be represented as a linear convex com-

bination of these points, i.e. i i
i

aν μ=∑ , where 0ia ≥ , 

1i
i

a =∑ . Assume that in the above representation there 

is an extreme point iμ ′  such that 0ia ′ >  and iμ ′  is not 
Pareto optimal, i.e. there is 2 monM μμ − ≤′∈  such that 

iμ μ′ ′<  (i.e., iμ μ′ ′≤  and iμ μ′ ′≠ ). Then we define 

|
i i

i i ì

aν μ
′≠

′ = ∑  ia μ′ ′+ . It is clear that 2 monM μν − ≤′∈  and 

ν ν ′< , therefore, ν  is not Pareto optimal, which means 
that the coefficient ia  has to be equal to zero if the cor-
responding extreme measure iμ  is not Pareto optimal. 
This fact proves the lemma.■ 
The previous lemma says that the full description of 
Pareto optimal 2-monotone measures for cohMμ∈  can 
be given by knowing only its Pareto optimal extreme 2-
monotone measures. Therefore, we have to answer the 
following question: what characteristics define extreme 
points uniquely? For this reason, we further involve 
some results concerning additivity properties of 2-
monotone measures. We will consider lattices of the 
algebra A . A lattice is a subset of A  closed with respect 
to intersection and union. We say that 2 monMμ −∈  is 
additive on a lattice ⊆L A  if ( ) ( )A Bμ μ+ =  

( ) ( )A B A Bμ μ∪ + ∩  for any ,A B∈L . Next straight-
forward result shows the way how we can describe addi-
tivity of 2-monotone measures. 
Lemma 2. Let S  be the set of all possible lattices in A , 
on which 2 monMμ −∈  is additive. Then S  is a covering1 
of A . 
Proof. Let { }1..., nX x x= . Consider maximal chains in 

2X=A  of the type { }0 1, ,..., nB B BΓ = , 0B∅ = ⊂  

1 ... nB B X⊂ ⊂ = , 1\ 1i iB B − = , 1,...,i n= . It is clear 
that such chains are lattices and every monotone measure 

                                                           
1 An arbitrary covering C  of A  is a family of non-
empty subsets of A  such that 

∈
=∪a C
a A . 



is additive on them, i.e., we get the required covering 
that consists of all these lattices.■ 
We denote by μS  the covering of A  that consists of all 
maximal lattices, on which 2 monMμ −∈  is additive. For 
example, if μ  is a probability measure, then the cover-
ing is a singleton, which contains only one element A . 
If a 2 monMμ −∈  is such that ( ) ( ) ( )A B A Bμ μ μ+ < ∪ +  

( )A Bμ ∩  for any ,A B∈A  with A B⊆  and B A⊆  
then μS  obviously consists of all maximal chains in A . 
It is important to emphasize that any μΛ∈S  has to 
contain ∅  and X , since these sets are additive elements 
for any 2 monMμ −∈ . 
Another convenient characterization of 2-monotone 
measures is recalled in 
Remark 1. For any 2 monMμ −∈ , define the convex set 

( )core μ  of probability measures, defined by 

{ }( ) |prcore P M Pμ μ= ∈ ≥ . It is well-known that this 
set is non-empty and usually called the core of μ . 
Moreover, it is possible to describe all extreme points of 
this set [10]. To do this, we should consider all maximal 
chains of the algebra 2X  on { }1 2, ,..., nX x x x= . Then 
any extreme point Pγ  is generated by a maximal chain 

{ }0 1, ,..., nB B Bγ = , where 0 1 ... nB B B X∅ = ⊂ ⊂ ⊂ =  

and { }1
,...,

kk i iB x x= , 1,...,k n= , as { }( )ki
P xγ =  

( )1\k kP B Bγ − = ( ) ( )1k kB Bμ μ −− , i.e. Pγ  is chosen such 
that ( ) ( )P B Bγ μ=  for all B γ∈ .  

Lemma 3. Any lattice in μS  contains a maximal chain.  

Proof. Consider an arbitrary lattice 2XΛ ⊆ , on which 
μ  is additive. Let Γ  be a sequence of sets with the 
following properties: 1) a minimal algebra that contains 
Γ  coincides with 2X ; 2) first elements of Γ  are all 
elements of Λ . Then the limit measure2 μΓ , in the ca-
nonical sequence constructed by Γ  is a probability 
measure, and also ( ) ( )A Aμ μΓ =  for all A∈Λ . Since 
any such sequence Γ  is equivalent to some maximal 
chain 2Xγ ⊆ , we get ( ) ( )A Aμ μΓ =  for all A γ∈ . Con-
sider a lattice, on which μ  and μΓ  have the same val-
ues. It is clear that this lattice contains Λ  and γ , and 
also μ  is additive on it. It means that any lattice in μS  
contains a maximal chain. ■ 

                                                           
2 The explanation of terms: “limit measure”, “canonical 
sequence of monotone measures”, … are given in Ap-
pendix. 

Proposition 1. There is the one-to-one correspondence 
between maximal lattices in μS  and extreme points of 

( )core μ  for every ( )P core μ∈  defined by 

{ }| ( ) ( )A P A AμΛ = ∈ =A , where μΛ∈S . 

Proof. Because any lattice μΛ∈S  contains a maximal 
chain γ ⊆ Λ , we can define that Pγ  corresponds to Λ . 
Using canonical sequences of 2-monotone measures, it 
easy to prove that ( ) ( )P B Bγ μ=  for all B∈Λ . This 
proves that if Λ  contains two different maximal chains, 
then they generate the same probability measure, i.e. we 
show that such a construction generates the unique prob-
ability measure Pγ , where γ ⊆ Λ , with ( ) ( )P B Bγ μ=  
for all B∈Λ . We finish the proof of the proposition by 
showing that for any maximal chain γ  the set 

{ }2 | ( ) ( )XB P B Bγ μμ∈ = ∈S . It is easy to check that 

this set is a lattice. Let ( ) ( )P A Aγ μ=  and ( ) ( )P B Bγ μ=  

for some , 2XA B∈ . Then we have to prove that also 
( ) ( )P A B A Bγ μ∩ = ∩  and ( )P A Bγ ∪ =  ( )A Bμ ∪ . The 

above condition implies that 
( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ ≤ ∩ + ∪ ≤  

( ) ( ) ( ) ( ) ( ) ( )P A B P A B P A P B A Bγ γ γ γ μ μ∩ + ∪ = + = + , 

i.e. ( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ = ∩ + ∪ , ( )P A Bγ ∩ =  
( )A Bμ ∩  and ( ) ( )P A B A Bγ μ∪ = ∪ . Using again 

canonical sequences of 2-monotone measures, it is easy 
to prove that such a lattice is maximal, i.e. we have the 
one-to-one correspondence between maximal lattices in 

μS  and extreme points in ( )core μ .■ 

Proposition 2. Let cohMμ∈ , 2 monM μν − ≤∈ , 

{ }| ( ) ( )S A A Aν μ ν μ= = ∈ =A , { }0 | ( ) 0S A Aν ν= = ∈ =A . 
Then ν  is an extreme point of 2 monM μ− ≤  iff its values are 
defined by the sets Sν μ= , 0Sν = , νS  uniquely. 

Proof. A set function ν  is in 2 monM μ− ≤  iff it satisfies the 
following conditions:  
1) ( ) 0ν ∅ = , ( ) 1Xν = ; 
2) ( ) 0Aν ≥  for all A A∈ ; 
3) ( ) ( )A Bν ν≤  if A B⊆ ; 
4) ( ) ( ) ( ) ( )A B A B A Bν ν ν ν+ ≤ ∩ + ∪  for all ,A B A∈ ; 

5) ( ) ( )A Aν μ≤  for all 2XA∈ . 
These conditions can be considered as a system of linear 
inequalities on values ( )Aν , 2XA∈ . From the theory of 
linear inequalities, we know that any extreme point can 
be calculated by solving linear equalities, obtained by 
the subset of inequalities if we change “ ≤ ” to “ = ”. 
Show that we can confine ourselves to using equalities 



that are generated by 2), 4), and 5). It is not necessary to 
use 1) because ( ) ( ) 0ν μ∅ = ∅ = , ( ) ( ) 1X Xν μ= = . We 
show further that any equality ( ) ( )C Dν ν=  for C D⊂  
( C D≠ ), generated by 3), can be derived from the addi-
tivity of ν . In this case, we take A C= , \B D C= . 
Then A B∩ =∅ , ( ) 0Bν = , ( ) ( ) ( )A B A Bν ν ν+ = ∩ +  

( )A Bν ∪ , and the last equality, ( ) 0Bν = , ( ) 0A Bν ∩ =  
implies that ( ) ( )C Dν ν= . Therefore, we conclude that 
the proposition is true. ■ 
Consider some corollaries from Propositions 1 and 2:  
Corollary 1. Let the notation of Proposition 2 be used. 
Then ν  is an extreme point of 2 monM μ− ≤  if for any 

νΛ∈S  a probability measure PΛ  with ( ) ( )P A AμΛ =  
for all A Sν μ=∈ ∩Λ  and ( ) 0P AΛ =  for all 0A Sν =∈ ∩Λ  
is defined uniquely. 
Proof. It is easy to see that Corollary 1 is a direct conse-
quence of Propositions 1 and 2. ■ 
Corollary 2. Let notations of Proposition 2 be used. 
Then ν  is an extreme point of 2 monM μ− ≤  if for any 

νΛ∈S  the set ( )0S Sν μ ν= =Λ∩ ∪  contains a maximal 

chain. In addition, Pγγ
ν = ∧ , where the minimum in the 

right side of the last formula is taken over all possible 
probability measures Pγ , defined for each maximal 
chain 0S Sν μ νγ = =⊆ ∪  by ( ) ( )P A Aγ μ=  for 
A Sν μγ =∈ ∩  and ( ) 0P Aγ =  for 0A Sνγ =∈ ∩ . More-

over, if 0 \S Sν ν μ= = = ∅ , then such a ν  is Pareto optimal. 

Proof. Because PΛ  is defined uniquely if 

( )0S Sν μ ν= =Λ∩ ∪  contains a maximal chain, we con-
clude that ν  is an extreme point by Corollary 1. The 
formula Pγγ

ν = ∧  is also true, since 2-monotonicity of ν  

implies that Pγ ν≥  for any 0S Sν μ νγ = =⊆ ∪ . Observe 
also that, for any 2 monM μν − ≤′∈  with S Sν μ ν μ′= ==  and 

0 0S Sν ν′= == , we have ν ν′ ≤ , i.e. ν  have the largest 
values for the fixed Sν μ=  and 0Sν = . Show that ν  is 
Pareto optimal if 0 \S Sν ν μ= = = ∅ . Suppose on the con-
trary that there is another 2 monM μν − ≤′∈  such that ν ν′ > . 
Then we should conclude that S Sν μ ν μ′= =⊆  and 
S Sν μ ν μ′= =≠ . We see that 

S S
P P

ν μ ν μ
γγ γ

ν ν
′= =⊆ ⊆

′ ≤ ∧ ≤ ∧ = , and 

such a ν ′  does not exist, i.e. the corollary is proved in 
the whole. ■ 
Pareto optimal extreme points, described in Corollary 2, 
have desirable properties. They are uniquely defined by 
a chosen set Sν μ=  and their values can be easily com-
puted using explicit formulas. Therefore, it is desirable 

to study the conditions of existence of these extreme 
points, and to construct the algorithm for finding such 
sets Sν μ= . 

We see from Proposition 1 that any extreme point of 
2 monM μ− ≤  is characterized by Sν μ= , 0Sν = , νS . But we 

know that an arbitrary extreme point is not necessarily 
Pareto optimal. To investigate this situation, introduce so 
called elementary lattices in 2X  of two types. An ele-
mentary lattice Λ of the first type is given by 

{ }, { }iA A xΛ = ∪ , where 2XA∈  and ix A∉ , and an 
elementary lattice of the second type by 

{ }, { }, { }, { } { }i j i jA A x A x A x xΛ = ∪ ∪ ∪ ∪ , where 

2XA∈  and ,i jx x A∉ . Using the above definition we 
can formulate the following necessary and sufficient 
feature of 2-monotonicity [7, 12]. 
Proposition 3. A set function : 2 [0,1]Xμ →  is a 2-
monotone measure iff 
1) ( ) 0μ ∅ = , ( ) 1Xμ = ; 

2) μ  is monotone on all possible lattices in 2X  of the 
first type; 
3) μ  is 2-monotone on all possible lattices in 2X  of the 
second type. 
Remark 2. Proposition 3 can be reformulated in the 
following simple way: 
A set function : 2 [0,1]Xμ →  is a 2-monotone measure 
iff  
1) ( ) 0μ ∅ = , ( ) 1Xμ = ; 

2) ( )( ) { }iA A xμ μ≤ ∪  for all possible 2XA∈  and 

ix A∉ ; 

3) ( ) ( ) ( ) ( ){ } { } { } { }i j i jA x A x A A x xμ μ μ μ∪ + ∪ ≤ + ∪ ∪  

for all possible 2XA∈  and ,i jx x A∉ . 

However, the consideration of elementary lattices is 
useful for characterizing Pareto optimal 2-monotone 
measures. 
Proposition 4. Let 2 monM μν − ≤∈ , 1L  be the set of all 
elementary lattices of the first type on which ν  is con-
stant, and 2L  be the set of all elementary lattices of the 
second type, on which ν  is additive. Then ν  is not 
Pareto optimal iff there is a non-identical zero, non-
negative set function : 2Xν +Δ → \  such that  

1) ( ) 0AνΔ =  if A Sν μ=∈ ; 

2) νΔ  is monotone on all lattices in 1L ; 

3) νΔ  is 2-monotone on all lattices in 2L . 



Proof. Necessity. Let ν  be not Pareto optimal. Then 
there is a 2 monM μν − ≤′∈  such that ν ν′ > . It is easy to 
check that ν ν ν′Δ = −  obeys all required properties. 
Sufficiency. Let such a set function νΔ  exist. Consider 
the following positive numbers: 

( ) ( )( ){ }1 max 2Xh A A Aε μ ν= − ∈ , 

( )( ){ }2 max { } ( ) 2 ,X
i ih A x A A x Aε ν ν= ∪ − ∈ ∉ , 

( ){ }3 max , , 2 , ,X
i j i jw A x x A x x Aε = ∈ ∉ , 

where ( )h t t=  if 0t >  and 1t =  else; ( ), ,i jw A x x =  

( ) ( ) ( ) ( )( ){ } { } { } { }i j i jh A A x x A x A xν ν ν ν+ ∪ ∪ − ∪ − ∪

. Then choosing νΔ  such that 
{ }max ( ) | 2XA Aν εΔ ∈ ≤ , where { }1 2 3min , ,0.5 ,ε ε ε ε= , 

we get that the set function ν ν ν′ = + Δ  is in 2 monM μ− ≤  
and obviously ν ν′ > , i.e. ν  is not Pareto optimal. ■ 

5.  Algorithms for searching Pareto optimal 2-
monotone measures 
In this section we present two algorithms. The first one 
improves a given approximation (two-monotone prob-
ability) to a Pareto-optimal approximation, the second 
one places the choice of a certain Pareto-optimal ap-
proximation on a certain linear imprecision index as an 
objective function. 
Algorithm I 
Input data: coherent lower probability μ  on 2X . 

First step. Finding a 2-monotone measure 0ν  with 

0ν μ≤ . 
Second step. Finding a Pareto optimal 2-monotone 
measure ν  with 0ν ν μ≤ ≤ . 
The first step can be based on different approaches. For 
example, we can choose as 0ν  an arbitrary chain meas-
ure, generated by some maximal chain Γ  of algebra 2X . 
Then 0

|
( ) sup ( )

A A B
B Aν μ

∈Γ ⊆
=  for all 2XB∈ . However, it is 

clear that the realization of the second step of the algo-
rithm can be produced more effectively if the values 0ν  
are close to the values of μ . In this sense, the following 
procedure is better than the first one.  
1) Compute an auxiliary 2-monotone set function g  on 
2X  using the following formulas: 
  a) ( ) ( )g A Aμ=  for all 2XA∈  with 1A ≤ ; 

  b) Let us compute all values of g on sets with cardinal-
ity less or equal to k . Then values of g  on sets A  with 
cardinality that is equal to 1k +  are computed by  

{ }( ){ ,
( ) max ( ), max \

i j
ix x A

g A A g A xμ
∈

= +  

           { }( ) { }( )}\ \ ,j i jg A x g A x x− . 

Observe that in the last formula { }( )\ ig A x +  

{ }( )\ jg A x − { }( ) { }( )\ , \i j ig A x x g A x=  for i j= . 

Therefore, g  is 2-monotone by Proposition 3. It is easy 
to see that g μ≥  and g μ=  iff μ  is 2-monotone, and 
also it is not necessarily ( ) 1g X = . 

2) A 2-monotone measure 0 gν ϕ= D  is computed using 
a convex distortion function [ ]: 0, ( ) [0,1]g Xϕ →  that 
has to obey the following properties: 
(i) (0) 0ϕ = , ( ( )) 1g Xϕ = ; 

(ii) ( ( )) ( )g A Aϕ μ≤  for all 2XA∈ . 

According to, e.g., [14] 0ν  has to be also 2-monotone, 
i.e. 0 2 monMν μ−∈ ≤ . The search of the mapping ϕ  is 
also connected with solving the system of linear ine-
qualities. It is clear that it is sufficient to know the values 
of ϕ  only in the points in the set { }( ) | 2XY g A A= ∈ . 

Let { } 0

m
i i

Y y
=

= , where 0 10 ... ( )my y y g X= < < < = . 

Then the condition (ii) is transformed to ( ) ( )i iy yϕ ψ≤ , 

where ( )iyψ , 1,..., 1i m= − , are corresponding values 
of μ  in (ii), and convexity of ϕ  means that 

( ) ( )1i iy yϕ ϕ +≤ , 0,..., 1i m= − , and 

( ) ( )1

1

i i

i i

y y
y y

ϕ ϕ+

+

−
≤

−
( ) ( )1

1

i i

i i

y y
y y

ϕ ϕ −

−

−
−

, 1,...,i m= . 

Clearly the problem of searching ϕ  is simpler than the 
initial problem, and we should try to choose ϕ  with the 
largest values. 
The second step can be performed iteratively by using 
procedures that are similar to the usual simplex method. 
Consider an algorithm that seems to be easily realizable 
and computationally effective. Let 2k monM μν − ≤∈ , and the 
following values  

1 ( ) ( )kA Aμ νΔ = − , 

{ }( )( )2 \
min ( )
i

k i kx X A
A x Aν ν

∈
Δ = ∪ − , 

{ }( )(3 \ ,
min ( )

i j
k i kx X A x A

A x Aν ν
∈ ∈

Δ = ∪ − −  

{ }( ) { }( ) { }( ))\ \k j i k jA x x A xν ν∪ +  

are positive for a given 2XA∈ . Then, by Proposition 3, 
we can increase values of kν  on the set A  without any 
changes on other sets, and get a measure 1 2k monM μν + − ≤∈  



by the rule 1( ) ( )k kB B dν ν+ = +  if B A=  and 

1( ) ( )k kB Bν ν+ =  otherwise, where { }1 2 3min , ,d = Δ Δ Δ . 
Thus, we can increase values by this rule until 0d =  for 
any 2XA∈ . It easy to show that this procedure con-
verges to a Pareto optimal 2-monotone measure after a 
finite number of iterations due to simplex method. Show 
that a measure kν  is Pareto optimal if 0d =  for any 

2XA∈ . In this case, we have to show that a convex set 
{ }2 |mon kM Mν ν ν μ−= ∈ ≤ ≤  is a singleton, i.e. 

{ }kM ν= . Observe that values of kν  can be considered 
as basic variables and the above condition ( 0d = for any 

2XA∈ ) means that we cannot change them, i.e. the 
convex set M contains the only one extreme point kν , 
i.e. kν  is Pareto optimal. Analogously, any iteration of 
the proposed procedure can be considered as an iterative 
step of the simplex method. This means that this proce-
dure converges by a finite number of iterations. 
Algorithm II. It is based on the usual application of 
simplex method. As a criterion a linear imprecision in-
dex can be used. By definition [8], a linear imprecision 
index f  is a non-negative functional on lowM  that satis-
fies the following properties:  
1) ( ) 0f P =  for any prP M∈ ; 

2) ( ) 1Xf η = , where Xη  describes the situation of 

complete ignorance, i.e. ( ) 1X Aη =  if A X= , 

( ) 0X Aη =  otherwise; 

3) ( ) ( )1 2f fν ν≤  for any 1 2, lowMν ν ∈  such that 

1 2ν ν≥ ; 

4) ( ) ( ) ( )1 2 1 2(1 ) (1 )f a a af a fν ν ν ν+ − = + −  for arbit-
rary [0,1]a∈  and 1 2, lowMν ν ∈ . 
The notable examples of such imprecision indices are the 
generalized Hartley measure [19] defined by 

2

1( ) ( ) ln
ln XA

GH m A A
X

ν
∈

= ∑ , 

where m  is the Möbius transform [10] of the given 
lowMν ∈ , and an index 

1Lf  based on 1L  distance defined 
by  

1
2

1( ) ( ) ( )
2 2 X

L X
A

f A Aν ν ν
∈

= −
−
∑ , 

where ν  is the dual of ν , i.e. ( ) 1 ( )cA Aν ν= − . Notice 
that linear imprecision indices are linear functions w.r.t. 
values of a given lowMν ∈ . In particular, since ν ν≥  
for any lowMν ∈ , we get  

( )
1

2

1( ) 1 ( ) ( )
2 2 X

c
L X

A

f A Aν ν ν
∈

= − − =
−
∑  

{ }
1

2 \ ,

11 ( )
2 1 X

X
A X

Aν
−

∈ ∅

−
−

∑ . 

Notice that we can use also as a linear functional the 1L  
distance between μ  and its approximation ν , i.e. in this 
case 

2

( ) ( ) ( )
XA

f A Aν μ ν
∈

= −∑ . 

Because ν μ≤ , we obtain 

{ } { }2 \ , 2 \ ,

( ) ( ) ( )
X XA X A X

f A Aν μ ν
∈ ∅ ∈ ∅

= −∑ ∑ , 

i.e. the criterion based on this metric is equivalent to the 
criterion 

1Lf . 

Therefore, the choice of Pareto optimal 2-monotone 
measure, based on a linear inclusion index, can be con-
ceived as a linear programming problem, where we have 
a system of inequalities that describe a convex set 

2 monM μ− ≤  and a linear criterion f .  

6.   Examples of the proposed algorithms working 

To illustrate our method, we use examples of coherent 
lower probabilities from [6]. 
Example 1. Let { }1 2 3 4, , ,X x x x x=  and let cohMμ∈  be 

defined on 2X  by { }1 2( ) min ( ), ( )A P A P Aμ = , where 

2XA∈  and 1 2, prP P M∈  are defined through their values 

on singletons by { }( )1 1 1/ 4P x = ; { }( )1 2 0P x = , 

{ }( )1 3 3/ 4P x = ; { }( )1 4 0P x = ; { }( )2 1 0P x = ; 

{ }( )2 1 1/ 2P x = , { }( )2 3 0P x = ; { }( )2 4 1/ 2P x = . The 
values of μ  are given in Table 1. It is clear that 

2 monMμ −∉ , because, for example, ( ) ( )A Bμ μ+ >  
( )A Bμ ∪  for { }1 2,A x x= , { }2 3,B x x= . Following the 

first step of Algorithm 1, we get an auxiliary 2-monotone 
set function g  on 2X  with values also shown in Table 
1. Then we need to find a convex distortion function ϕ , 
that is lower than function ψ  (see Fig. 1). The found 
distortion function is also shown in Fig. 1 and can be 
given by the formula 

0.5 , [0,0.5],
( )

0.75 0.125, (0.5,1.5].
x x

x
x x

ϕ
∈⎧

= ⎨ − ∈⎩
 

It easy to check that 0ν  is not Pareto optimal in this case, 
because, for example, 1/8d =  for the set 

{ }1 2 3, ,A x x x=  and according to Algorithm 1, we obtain 
the next approximation 1 2 monM μν − ≤∈  by the rule 



1 0( ) ( )B B dν ν= +  if B A=  and 1 0( ) ( )B Bν ν=  other-
wise. Producing in such a way iterations for sets 
{ }1 3 4, ,x x x , { }2 3 4, ,x x x , { }2 3,x x , { }3 4,x x , we obtain a 
Pareto optimal measure 2 monM μν − ≤∈  with values given 
in Table 1.  

1x  2x  3x  4x  μ  g  
0ν  ν  

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 1/4 1/4 1/8 1/8 
0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 1 0 1/2 1/2 1/4 3/8 
1 1 1 0 1/2 3/4 7/16 ½ 
0 0 0 1 0 0 0 0 
1 0 0 1 1/4 1/4 1/8 1/8 
0 1 0 1 0 0 0 0 
1 1 0 1 1/4 1/2 1/4 ¼ 
0 0 1 1 1/2 1/2 1/4 3/8 
1 0 1 1 1/2 3/4 7/16 ½ 
0 1 1 1 3/4 1 5/8 ¾ 
1 1 1 1 1 3/2 1 1 

Table 1. Results for Example 1. 
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Figure 1: The distortion function for Example 1: ϕ  - red 

line; ψ  - blue line. 

Example 2. Let { }1 2 3 4, , ,X x x x x=  and let cohMμ∈  
have the values given in Table 2. We see that 

2 monMμ −∉ , since ( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ > ∩ + ∪  
for { }1 4,A x x= , { }2 4,B x x= . Then, following the steps 
of Algorithm 1, we can get results that are shown in 

Table 2 and Fig. 2. The distortion function for this case 
can be defined by the formula 

0.5 , [0,2 / 3],
( )

1/ 3, (2 / 3,4 / 3].
x x

x
x x

ϕ
∈⎧

= ⎨ − ∈⎩
 

1x  2x  3x  4x  μ  g  
0ν  1ν  

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
1 0 1 0 0 0 0 0 
0 1 1 0 0 0 0 0 
1 1 1 0 2/3 2/3 1/3 2/3 
0 0 0 1 0 0 0 0 
1 0 0 1 1/3 1/3 1/6 1/6 
0 1 0 1 1/3 1/3 1/6 1/6 
1 1 0 1 1/3 2/3 1/3 1/3 
0 0 1 1 1/3 1/3 1/6 1/6 
1 0 1 1 1/3 2/3 1/3 1/3 
0 1 1 1 1/3 2/3 1/3 1/3 
1 1 1 1 1 4/3 1 1 

Table 2. Results for Example 2. 
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Figure 2: The distortion function for Example 2: ϕ  - red 

line; ψ  - blue line. 

It is easy to check that 0ν  is not Pareto optimal in this 
case, because 1/ 3d =  for set { }1 2 3, ,A x x x= , and ac-
cording to Algorithm 1, we obtain a Pareto optimal 
measure 1 2 monM μν − ≤∈  by the rule 1 0( ) ( )B B dν ν= +  if 
B A=  and 1 0( ) ( )B Bν ν=  otherwise. 
Notice that we can indeed apply the proposed algorithms 
to any monotone measure, i.e. μ  need not be a coherent 



lower probability. This case is considered in the next 
example. 
Example 3. Let { }1 2 3 4, , ,X x x x x=  and let monMμ∈  be 

defined by ( ) 1Aμ =  if 1A ≥  and ( ) 0Aμ = . In this 
case the set of all Pareto optimal 2-monotone measures 
coincides with the set of all probability measures on 2X , 
and, by Algorithm 1, we obtain a probability measure 

0ν ν=  defined by { }( ) 1/ 4ixν = , where 1,..., 4i = .  

7.   Concluding remarks 

We have characterized and computed Pareto optimal 
outer approximations of coherent lower probabilities by 
2-monotone measures. Further research includes obvi-
ously the study of the sensitivity of the results with re-
spect to the choice of the approximation.  
Also a closer investigation of some modifications of the 
algorithms is certainly rewarding, in particular in the 
following directions.  
Because in principle the solution of the optimization 
problem is computationally very hard for large n X= , 

it is possible to solve it for some subalgebra 2X⊆B . 
Let ν  be Pareto optimal onB  for some μ  on 2X , then 
its inner extension ν  on 2X  defined by 

|
( ) sup ( )

A A B
B Aν ν

∈ ⊆
=

B

, 2XB∈ , is 2-monotone [14], and 

can be considered as an approximation of a Pareto opti-
mal measure. The same approach can be used for a gen-
eral infinite algebra A .  
In light of the intended application to statistical hypothe-
ses testing, it will also be interesting to replace the linear 
imprecision index in the objective function by the Kull-
back-Leibler distance, which has some close relation to 
the likelihood ratio underlying optimal hypotheses test-
ing.   
Notice that a Pareto optimal measure is not uniquely 
defined even in a case when we use a linear imprecision 
index in the linear programming problem. To get 
uniqueness, it seems to be possible to use the following 
approach: Let 2X=A , where X n= , we have a linear 
order on A  defined by indexing its elements, i.e. 

{ }2

1

n

i i
B

=
=A  and iB  is more preferable than jB  if i j< . 

Then we say that 1 2 monM μν − ≤∈  is more preferable than 

2 2 monM μν − ≤∈  if there is an index k  such that ( )1 iBν =   

( )2 iBν  for 1,..., 1i k= − , and ( ) ( )1 2k kB Bν ν> . 

Another rewarding issue has been raised by one of the 
referees, looking at the so-to-say inverse problem: can 
every Pareto-optimal solution be obtained from a certain 
imprecision index? Irrespective of whether the answer is 
affirmative or not, in any way that would give a vivid 

natural characterization and classification of the Pareto 
optimal solutions.  

Appendix: Canonical sequences of monotone 
measures: main results 
Here we give a brief overview on results concerning 
canonical sequence of monotone measures. The detailed 
description with proofs can be found in [5].  

Let 0μ  be a monotone measure on A , { } 1k k
B ∞

=
Γ =  a 

sequence of sets in A . Then a sequence of monotone 
measures { } 0k k

μ ∞

=
, defined as 

1 1 1( ) ( ) ( ) ( )k k k k k k kA A B B A Bμ μ μ μ− − −= ∪ − + ∩ , 
is called a canonical sequence of monotone measures, 
generated by Γ . It is easy to see that if 0μ  is 2-

monotone, then the sequence { } 0k k
μ ∞

=
 is increasing, i.e. 

0 1 ...μ μ≤ ≤ , and there is a limit ( ) lim ( )kk
A Aμ μΓ →∞

=  for 

all A∈A , and 2 monMμΓ −∈ . If 0μ  is 2-alternating 

(submodular), the sequence { } 0k k
μ ∞

=
 is decreasing, i.e. 

0 1 ...μ μ≥ ≥ , and the limit measure ( ) lim ( )kk
A Aμ μΓ →∞

= , 

A∈A , is also 2-alternating. For our purpose, it is suffi-
cient to consider the finite case where 2X=A , 

{ } 1

m
k k

B
=

Γ = , and mμ μΓ = . 

Two sequences { }1 1

n
k k

B
=

Γ =  and { }2 1

m
k k

C
=

Γ =  in A  are 
called to be equivalent ( 1 2~Γ Γ ) iff 

1 2
μ μΓ Γ=  for any 

generating monotone measure 0μ . 

Theorem 1. Let { } 1

n
A k k

A
=

Γ = ⊆ A . Then there is a in-

creasing sequence of sets { } 1

m
B k k

B
=

Γ = ⊆ A , 

1 2 ... mB B B⊆ ⊆ ⊆ , such that ~A BΓ Γ . Minimal alge-
bras AA  and BA , generated by AΓ  and BΓ  respec-
tively, coincide,  i.e. A B=A A . 

Let monMμ∈  be a monotone measure on A . We call a 
set B∈A  an additive element w.r.t. μ  iff 

( ) ( ) ( ) ( )A A B B A Bμ μ μ μ= ∪ − + ∩  for all A∈A . It is 
easy to check that , X∅  are additive elements w.r.t. any 

monMμ∈  and the set of all additive elements w.r.t. a 
monotone measure μ  is an algebra. 

Theorem 2. Let { } 0n n
μ ∞

=
 be a canonical sequence of 

monotone measures, generated by { } 1n n
B ∞

=
⊆ A . Denote 

by nM  the algebra, consisting of all additive elements 
w.r.t. nμ . Then 

1) 0 1 ... ....n⊆ ⊆ ⊆ ⊆M M M ; 

2) nμ  is additive on nM ; 



3) if nC∈M , then ( ) ( )n kC Cμ μ=  for k n≥ ; 

4) 1 2{ , ,.., }n nB B B ⊆M . 
Notice that the above results imply several important 
consequences, which are used in this paper. In particular, 
let { }1,..., nX x x= . 2X=A , 0 2 monMμ −∈ . Consider a 
canonical sequence of 2-monotone measures, generated 
by { } 1

m
A k k

A
=

Γ = ⊆ A , assuming that the minimal algebra 
containing AΓ  coincides with A . Then, by Theorem 2, 
μ μΓ ≥ , μΓ  is additive on A , i.e. μΓ  is a probability 
measure, and by Theorem 1, there is a maximal chain 

{ } 0

n
B k k

B
=

Γ = ⊆ A  such that 0 1 ... nB B B X∅ = ⊂ ⊂ ⊂ = , 

1\ 1k kB B − = , 1,..,k n= ; μΓ  is uniquely defined by 

( ) ( )0k kB Bμ μΓ = , 1,..,k n= . 
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