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Abstract

The problem of aggregating two or more sources of in-
formation containing knowledge about a same domain is
considered. We propose an aggregation rule for the case
where the available information is modeled bycoherent
lower previsions, corresponding to convex sets of prob-
ability mass functions. The consistency between aggre-
gated beliefs and sources of information is discussed. A
closed formula, which specializes our rule to a particular
class of models, is also derived. Finally, an alternative ex-
planation of Zadeh’s paradox is provided.

Keywords. Information fusion, coherent lower previsions,
independent natural extension, generalized Bayes rule.

1 Introduction

In practical problems where modeling and handling
knowledge is required, information often comes piecewise
from different sources. The modeler usually wants to ag-
gregate these pieces of information into a global model,
that serves as a basis for various kinds of inference, like
decision making, estimation and many others. If the avail-
able information is characterized by uncertainty, Bayesian
theories can offer a suitable approach to problems of this
kind. Yet, there are situations where the level of un-
certainty characterizing the sources is so high that single
probability measures cannot properly model the available
information. This goes beyond the standard Bayesian the-
ory, and leads to alternative models of uncertainty, like for
example Choquet capacities [3], belief functions [7], pos-
sibility measures [6], and fuzzy measures [15]. As shown
in [14], all these models represent uncertainty through sets
instead of single probability measures, and can be all re-
garded as special cases of Walley’scoherent lower pre-
visions[13]. This theory, which is usually referred to as
imprecise probability, provides a very general model of
uncertain knowledge, for which also some rationality cri-
teria, that can be used to identify conflicts among the dif-
ferent sources and determine whether the model is self-
consistent, are provided. All these features seem to be

particularly suited for the aggregation of different sources
of information, that might be not only uncertain and vague
when considered singularly, but also conflictual or contra-
dictory when considered jointly.

In this paper, we apply Walley’s theory of coherent lower
previsions to develop a method of aggregation for uncer-
tain information coming from different sources. In order
to describe this aggregation task, let us us first formalize
the problem in the Bayesian framework.

Considern sources of information, all reporting knowl-
edge about a variableX, whose generic valuex varies in a
finite setX .1 For eachj = 1, . . . ,n, the knowledge asso-
ciated to thej-th source is modeled by a conditional prob-
ability mass functionp j(X|A j = a j). In this formalism,
the conditioning eventA j = a j describes the actualinter-
nal stateof each source, which is in fact modeled by a
variableA j , whose possible realizations take valuesa j in a
finite setA j . Examples of internal states of the sources can
be the two states of a binary variable denoting the fact that
a source is reliable or not, or a collection of measurements
collected for the phenomenon under study.

The information associated to the different sources is col-
lected by a singleinformation fusion center(IFC), which
aims at aggregating this information together with its prior
knowledge aboutX, modeled as a probability mass func-
tion p0(X). This is achieved by identifying the sources’
beliefs aboutA j given thatX = x with those of the IFC:

p0(a j |x) := p j(a j |x) =
p j(x|a j)p j(a j)

∑a j∈A j
p j(x|a j)p j(a j)

, (1)

for eachx ∈ X , wherep j(A j) is the prior over the inter-
nal states of thej-th source. Thus, assuming conditional
independence between the variables in(A1, . . . ,An) given
X, we can aggregate those beliefs into the following joint:

p0(x,a1, . . . ,an) =
n
∏
j=1

p j(x|a j)p j(a j)

p j(x)
p0(x) , (2)

1Variables are denoted in this paper by uppercase letters; the corre-
sponding calligraphic and lowercase letters denote respectively their sets
of possible values and the generic values of these sets.



with p j(x) = ∑a j∈A j
p j(x|a j)p j(a j) prior of the j-th

source. Finally, from (2), theaggregatedposterior is:

p0(x|ã1, . . . , ãn) ∝
n
∏
j=1

p j(x|ã j)

p j(x)
p0(x) , (3)

whereã j denotes the element ofA j corresponding to the
observed internal state of the source. According to (3),
p0(x|ã1, . . . , ãn) is only a function of the IFC’s priorp0(X),
and of the sources’ conditionalp j(X|ã j) and priorp j(X),
where the latter two are the only pieces of information to
be shared between the sources and the IFC. Note also that
the prior over the internal statesp j(A j) has been dropped
from (3) because of normalization.

Figure 1 depicts the sequential steps involved in the above
derivation. The idea there is that each source should be
regarded as an independent subject, that has inferred its
conditional beliefs aboutX given the actual internal state
of the source. As formalized in (1), each source induces
a model revisioninto the IFC’s beliefs. This means that,
regarding the state of the source conditional onX, the IFC
identifies its own beliefs with those of the source. Finally,
the IFC defines a global model over all the variables by
exploiting the independence among the sources as in (2).

p0(x|ã1, . . . , ãn) (e)

p0(ã1, . . . , ãn,x) (d)

p0(x) p0(ã1, . . . , ãn|x) (c)

. . .

. . .

. . . . . . . . .

p0(ã j |x) := p j(ã j |x) (b)

p j(x, ã j ) (a)

p j(x) p j(ã j ) p j(x|ã j )

. . .

. . .

. . . . . . . . .

IFC

source jj − 1 j + 1

Figure 1: Aggregation of the sources of information in the
Bayesian framework. The black-highlighted text describes
the information used by the IFC to compute the final pos-
terior density (still in black). The gray-highlighted text
denotes the intermediate steps needed to aggregate the in-
formation. The dashed boxes are used to group the beliefs
whose coherence will be checked in Section 4.

In this architecture it has been assumed that each source

processes its own information in order to compute the pos-
terior probabilityp j(x|a j), which can be regarded as asuf-
ficient statistical descriptor, to be shared with the IFC to-
gether withp j(x). This is a high-level form of aggrega-
tion, since the IFC aggregates pieces of information which
have already been elaborated from the sources. This is one
of the most common architectures for data fusion (see for
example [2, Chapter 8]).

In this paper we aim at generalizing this approach to Wal-
ley’s theory of imprecise probability in the general case
where, instead of probability mass functions, the uncer-
tainty about a variable is described bycoherent lower pre-
visions. To this end, in Section 2 we first recall the basics
of the theory of coherent lower previsions. In Section 3,
we detail the different steps of our derivation leading to
a combination rule for the general case of coherent lower
previsions. The consistency between the obtained results
and the original assessment is discussed in Section 4. The
rule is indeed specialized in Section 5 for a special class of
coherent lower previsions, calledlinear-vacuous mixtures.
Finally, in Section 6, we show how this rule can be applied
in practice for a possible explanation of Zadeh’s paradox
[16]. Conclusions and outlooks for future developments
are in Section 7.

2 Coherent Lower Previsions

The imprecise probabilitytheory [13] is an extension of
the Bayesian theory of subjective probability. The goal is
to model a subject’s uncertainty by looking at his disposi-
tions toward taking certain actions, and imposing require-
ments of rationality, or consistency, on these dispositions.
In order to do that, let us first recall the fundamental notion
of coherent lower prevision.

Given a variableX taking values in a setX , we usegam-
bles, i.e. bounded functionsf : X → R, in order to test
a subject’s uncertainty aboutX. For eachx ∈ X , the
real numberf (x) is regarded as the (possibly negative) re-
ward, expressed in some linear utility units, that the sub-
ject receives by accepting the gamble ifX = x. Uncer-
tainty about the actual value ofX can be modeled by the
willingness to accept certain gambles and to reject others.
Bayesian theory assumes that subjects are always able to
provide a fair priceP( f ) for f , whatever information is
available aboutX. This assumption is relaxed in the im-
precise probability framework, where subjects can express
two different prices, called respectively lower and upper
previsions and denoted byP( f ) andP( f ), that correspond
to the highest (lowest) buying (selling) price for the gam-
ble f . Since selling a gamblef for a given pricer is the
same as buying− f for the price−r, the conjugacy rela-
tion P( f ) = −P(− f ) holds and we can therefore focus on
lower previsions only. IfL (X ) denotes the set of all the



bounded2 gambles onX , a lower previsionP can be re-
garded as a real-valued functional onL (X ).

Indicator functions3 are clearly a special class of gambles.
Given a setX ′ ⊆ X , we can consider the lower previ-
sion for the corresponding indicator functionIX ′ . The be-
havioural interpretation ofP(IX ′) is the supremum rate for
which the subject is disposed to bet on the eventx∈ X

′,
which is the subject’slower probabilityfor this event, sim-
ilarly P(IX ′) = 1−P(IX \X ′) is theupper probability.

Since lower previsions represent a subject’s dispositions
to act in certain ways, some criteria ensuring that these
dispositions do not lead to irrational behaviours should be
imposed.Coherenceis the strongest requirement consid-
ered in the theory of imprecise probability. A lower pre-
visionP is coherentif and only if it satisfies the following
properties:

(P1) min
x∈X

f (x) ≤ P( f ) [accepting sure gains],

(P2) P( f +g)≥ P( f )+P(g) [super-additivity],

(P3) P(λ f ) = λP( f ) [positive homogeneity],

for all f ,g ∈ L (X ) and non-negative real numbersλ .
We point the reader to [13, Chapter 2] for a deep explana-
tion of the irrational consequences of modeling beliefs by
lower previsions that are not coherent. Here, we regard a
coherent lower prevision(CLP) as the more general model
of a subject’s (rational) beliefs about a variable.

Let us present some examples of CLP. Alinear previ-
sion Pon L (X ) is a CLP which is also self-conjugate,
i.e., P(− f ) = −P( f ) for each f ∈ L (X ). This property
makes the prevision a linear functional, i.e.,P(λ ( f +g))=
λP( f ) + λP(g) for all f ,g ∈ L (X ) and realλ . Any
linear previsionP is completely determined by itsmass
function p(x) := P(I{x}), since it follows from the previous
properties that for any gamblef , P( f ) = ∑x∈X p(x) f (x).
A CLP P onL (X ) such thatP( f ) = minx∈X f (x) can be
easily identified as the most conservative (i.e., less infor-
mative) CLP and is therefore calledvacuous. As both lin-
ear and vacuous previsions are coherent, we can construct
new coherent lower previsions by convex combination of
the two [13, Chapter 2]. IfP is a linear prevision, for each
0 ≤ ε ≤ 1, P( f ) := εP( f )+ (1− ε)minx∈X f (x) defines
a new CLP which is calledlinear-vacuous mixture. Wal-
ley proved that a CLP can be equivalently specified by a
convex set of linear previsions, and hence a convex set of
probability distributions [13].

Now consider also a second variableA with values inA .
Given a CLPP onL (X ×A ), we can easily compute its

2Although Walley’s theory has been developed for bounded gambles
only, an extension to the unbounded case can be found in [12].

3A real-valued function on a domain is called theindicator function
of a given subset of this domain if it takes the value one inside the subset
and zero otherwise.

marginalprevision onA for each f ∈ L (A ) by noting
that f can be equivalently regarded as a gamble inL (X ×
A ) which is constant with respect toX, and set

PA( f ) := P( f ), (4)

where the superscriptA emphasizes the fact that the
marginal prevision is defined onL (A ).

For eachh ∈ L (X ×A ) and a ∈ A , a subject’scon-
ditional lower prevision PX|A(h|A = a), denoted also as
PX|A(h|a), is the highest real numberr for which the sub-
ject would buy the gambleh for any price strictly lower
thanr, if he knew in addition that the variableA assumes
the valuea. We denote byPX|A(h|A) the gamble onA that
assumes the valuePX|A(h|A= a) for eacha∈ A . Overall,
PX|A(h|A) is a gamble onA for eachh∈L (X ×A ) and
PX|A(·|A) is a map betweenL (X ×A ) andL (A ).

A conditional lower previsionPX|A(·|A) is said to besep-
arately coherentif PX|A(·|a) is a CLP onL (X ×A ) and
PX|A(IX ×{a}|a) = 1, for eacha ∈ A . The last condition
means that if the subject knew thatA= a, he would be dis-
posed to bet at all non-trivial odds on the event thatA= a.

If, besides the separately coherent conditional lower previ-
sionPX|A(·|A) on L (X ×A ), the subject has also spec-
ified an unconditional CLPP onL (X ×A ), thenP and
PX|A(·|A) should in addition satisfy the criterion ofjoint
coherence, that requires

P
(

IX ×{a}

[

h−PX|A(h|a)
])

= 0, (5)

for eacha∈A andh∈L (X ×A ). It can be proved [13,
Chapter 6] that, ifP(IX ×{a}) > 0,PX|A(h|a) is the only so-
lution of (5). Thus, given a joint CLP onL (X ×A ), a
(separately coherent) conditional lower prevision can be
obtained from (5). For this reason, this equation is also
calledgeneralized Bayes rule(GBR). GBR cannot be ap-
plied if P(IX ×{a}) = 0. Nevertheless, ifP(IX ×{a}) > 0,

a conditional previsionPX|A(·|a) can be computed by the
following regular extension

PX|A(h|a) = max{µ : P
(

IX ×{a} [h− µ ]
)

≥ 0}. (6)

On the other side, given a (separately coherent) conditional
lower previsionPX|A(·|A) and a coherent marginal previ-
sionPA onA , a joint CLP onL (X ×A ) can be obtained
by marginal extension:

P(h) = PA
(

PX|A(h|A)
)

. (7)

The marginal extensionP in (7) can be proved to be jointly
coherent withPX|A as in (5), and its marginal onA is still
PA [13, Chapter 6].

The standard notion of conditional independence consid-
ered in the Bayesian theory, requires a more general for-
mulation in the framework of CLPs. Given a joint CLPP



on L (X ×Ai ×A j), we say that, according toP, A j is
epistemically irrelevantto Ai givenX, if:

PAi |X,A j (h|x,a j) = PAi |X(h|x), (8)

for eachh ∈ L (Ai), x ∈ X and a j ∈ A j , where both
PAi |X,A j and PAi |X are obtained fromP through GBR. If
A j is epistemically irrelevant toAi givenX, andAi is epis-
temically irrelevant toA j givenX, thenAi andA j are said
to be epistemically independent (givenX).

Let us adopt, for sake of compactness, the notationAn :=
(A1, . . . ,An) and A n := ×n

j=1A j . Given a collection of

separately coherent conditional lower previsionsP
A j |X
j on

L (A j), for each j = 1, . . . ,n, the most conservative sep-
arately coherent conditional lower previsionPAn|X which

is coherent with eachP
A j |X
j , under the assumption that, for

eachi, j = 1, . . . ,n with i 6= j, Ai andA j are epistemically
independent givenX, is defined as follows:4

P(g|x) = sup
g j∈L (A j )

j=1,...,n

inf
a j∈A j

j=1,...,n

{

g(a1, . . . ,an)−
n

∑
j=1

[

g j(a1, . . . ,an)−Pj(g j(a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x)
]}

(9)

This is theindependent natural extension[5]5. The notion
of joint coherence between a separately coherent condi-
tional lower prevision and a joint CLP in (5) reflects the
fact that our assessments should be consistent not only
separately, but also with each other. For this case, joint
coherence can be characterized by the following theorem.

Theorem 1. The separately coherent conditional lower

previsions P
A j |X
j , with j = 1, . . . ,n, are jointly coherent

if there is a CLP Pon L (X ×A n) such that: (i) its
marginal PX assigns positive probability to the elements
of X ; (ii) its marginals PA j ,X are jointly coherent with

P
X|A j
j , for each j= 1, . . . ,n, in the sense of (5).

A more general formulation of Theorem 1 and its proof
can be found in [9].

3 Aggregating Coherent Lower Previsions

The theoretical results reviewed in Section 2 can be em-
ployed for a generalization to imprecise probabilities of
the aggregation rule presented in Section 1. Accordingly,
we suppose that thej-th source of information, for each
j = 1, . . . ,n, makes assessments about the value thatX as-
sumes inX conditionally on its internal states ˜a j ∈ A j .

4A more general formula for non-linear spaces can be found in [10].
5This paper includes a survey of different aggregation rulesfor CLPs.

Yet, our approach differs in aggregating knowledge referred to the same
domain.

Such assessments are expressed through separately coher-

ent conditional lower previsionsP
X|A j
j . Furthermore, also

extra assessments about the internal states of the sources
are available and again expressed in terms of CLPsP

A j
j on

L (A j) for j = 1, . . . ,n. The IFC should therefore gather
this information and aggregate it with its prior aboutX,
which is expressed as a CLPPX

0 onL (X ).

Our goal is to compute the IFC’s joint CLPP0 onL (X ×
A

n) from which the beliefs aboutX conditional on the
actual internal states of the sources(ã1, . . . , ãn) could be
computed. By analogy with the derivation in Section 1,
this task is achieved by the following sequential steps:

(a) As outlined in (7), a CLPP j on L (X ×A j) can be

derived fromP
X|A j
j andP

A j
j by marginal extension

P j( f j ) := P
A j
j

(

P
X|A j
j ( f j |A j)

)

, (10)

for eachf j ∈ L (X ×A j) and j = 1, . . . ,n.

(b) GBR is used to compute, givenP j , the conditional

CLP P
A j |X
j on L (X ×A j).6 Accordingly, by com-

puting the solutionµ of the equation

P j

(

I{x̃} · [ f j − µ ]
)

= 0, (11)

we haveP
A j |X
j ( f j |x̃) := µ , for each f j ∈ L (A j), x̃ ∈

X , and j = 1, . . . ,n.

The so-obtained separately coherent conditional lower
previsions associated to the sources are assumed to in-
duce amodel revisioninto the corresponding beliefs
of the IFC, i.e.,

P
A j |X
0 ( f j |x) := P

A j |X
j ( f j |x), (12)

for eachf j ∈ L (A j) andx∈ X .

(c) A conditional CLPPAn|X
0 is obtained fromP

A j |X
0 by

independent natural extension (9):

PAn|X
0 (g|x) = sup

g j∈L (A j )

j=1,...,n

inf
a j∈A j

j=1,...,n

{

g(a1, . . . ,an)

−
n

∑
j=1

[

g j(a1, . . . ,an)

−P
A j |X
0 (g j(a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x)

]}

. (13)

(d) Then, the joint CLPP0 onL (X ×A n) is derived by
marginal extension (7):

P0(g) := PX
0

(

PAn|X
0 (g|X)

)

, (14)

for eachg∈ L (X ×A n).

6We noted that GBR requiresPX
j (I{x̃}) > 0. If only P

X
j (I{x̃}) > 0

holds, regular extension (6) should be employed instead. Anexample of
the calculations required in this latter case is in Section 6.



(e) Finally, assuming thatP An

0 (ã1, . . . , ãn) > 0, where
(ã1, . . . , ãn) ∈ A n are the observed internal states of
the sources, we again apply GBR,

P0

(

I{ã1,...,ãn} · [g− µ ]
)

= 0, (15)

to compute the separately coherent conditional lower

previsionPX|An

0 (·|An) onL (X ).7

The above derivation has been achieved by complete anal-
ogy with that in Section 1, but in the more general frame-
work of CLPs. Notice that, if the sources directly provide

the CLPsP
A j |X
j , we could still apply our procedure by con-

sidering only the steps from (c) to (e). In this case, the
posterior probabilities coincide with those returned by a
naive credal classifier(e.g., compare the equation in Ta-
ble 2 with the results in [17]). This holds in spite of the
different notion of independence assumed in [17], and can
be verified by means of the algorithm in [4].

The coherence between the joint CLP obtained at the step
(d) and the initial assessments will be investigated in the
next section.

4 Checking Coherence

The subjects involved in the derivation formalized in the
previous section (i.e., the sources and the IFC) should be
regarded as autonomous and distinct individuals. Never-
theless, we have assumed that the uncertain information
associated to a subject can induce in another subject a
model revision, i.e., the second agent can replace his own
CLPs (even in the conditional case) with those of the first
agent. More specifically, in our architecture, we allow
for an asymmetricalmodel revision, as we assume that
each source revises the IFC’s beliefs as in (1) or in (12),
while the contrary cannot take place because of the way
the sources and the IFC share the information. In this sec-
tion we discuss the coherence between the different be-
liefs specified in our model. According to the previous
argument, this will be done separately for each subject, by
considering also the beliefs induced by other subjects via
model revision.

Let us start from the coherence of the IFC’s beliefs. In
order to do that, we first consider the derivation in the pre-
cise case as in Section 1. As outlined in Figure 1, the mass
functions to be considered are the conditionalsp0(A j |x),
for each j = 1, . . . ,n, which are obtained through model
revision from the sources, and the marginalp0(X). The
consistency between these assessments when considered
jointly follows from the existence of a joint probability
mass function, which is clearly the one in (2), from which
these mass functions can be obtained. Concerning the IFC,

7Note that, also in this case, if we only have thatP
An

0 (ã1, . . . , ãn) > 0,
the regular extension (6) can be used instead.

we should also verify that this joint probability mass func-
tion preserves the assumption of independence between
the sources givenX. This holds since, after marginal-
ization and Bayes rule, the joint probability mass func-
tion p0 in (2) is such thatp0(ai |x,a j) = p0(ai |x) for each
i, j = 1, . . . ,n, ai ∈ Ai , a j ∈ A j andx ∈ X . Analogous
results, in the more general framework of imprecise prob-
ability, can be obtained by considering the joint CLPP0 in
(14), which is the basis to prove the following result.

Theorem 2. The separately coherent conditional lower

previsions P
A j |X
0 in (12) and PX

0 are jointly coherent.

Proof. The joint coherence of the assessmentsPX
0 and

P
A j |X
j (·|x), considered for eachj = 1, . . . ,n, can be proved

by considering the joint CLPPX,An
in (14). As a con-

sequence of marginal extension,PX,An
is jointly coher-

ent with bothPX
0 andPAn|X(·|x). Furthermore, as a con-

sequence of independent natural extension,PAn|X(·|x) is

jointly coherent with all theP
A j |X
j (·|x) for j = 1, . . . ,n,

because of the epistemic independence between the
variables in (A1, . . . ,An) given X. Finally, assuming
P An

j (I{a1,...,an}) > 0 because of GBR, the coherence of

PX|An
(·|a1, . . . ,an) follows from Theorem 1.

On the other side, checking the coherence of the beliefs

associated to a particular source is trivial, asP
X|A j
j andP

A j
j

are jointly coherent because of (5), for eachj = 1, . . . ,n.
We have argued that the IFC’s beliefs are not required to
be coherent with those of the sources, as they refer to sep-
arate subjects. Nevertheless, let us consider what can be
said about the consistency between different subjects in
the Bayesian (i.e., precise) formulation. By exploiting the
independencies between the sources, (2) rewrites as:

p0(x,a1, . . . ,an) =
n
∏
j=1

p0(x|a j)p0(a j)

p0(x)
p0(x) . (16)

By comparing (16) with (2), it can be noticed that the joint
coherence between the IFC’s beliefs and those of thej-th
source cannot be guaranteed in general. In fact, we can
always imposep0(x|a j) := p j(x|a j) andp0(a j) := p j(a j),
but, at least in general, it is not possible to have at the
same timep0(X) = p j(X), for each j = 1, . . . ,n. In fact,
since each source and the IFC are considered autonomous
subjects and the information flows from the sources to the
IFC, we cannot require that the sources agree on their
marginals overX , i.e., pi(X) = p j(X) for each i, j =
1, . . . ,n. Thus, the IFC can define a single global proba-
bilistic model over all the variables that reproduces all the
inputs from the sources only if the IFC and all the sources
have the same prior overX.



5 Mathematical Derivation for
Linear-Vacuous Mixtures

Let us detail the derivation described in Section 3 in the
special case where the marginal associated to the IFC and
the separately coherent conditional lower previsions spec-
ified for the sources are linear-vacuous mixtures, while the
marginals overA j are linear.8 This corresponds to the fol-
lowing settings:

PX
0 (h) := ε0 ∑

x∈X

p0(x)h(x)+ (1− ε0) min
x∈X

h(x),

P
X|A j
j ( f j |a j) := εa j

j ∑
x∈X

p j(x|a j) f j (x,a j) (17)

+(1− εa j
j ) min

x∈X

f j (x,a j), ∀a j ∈ A j

P
A j
j (g j) := ∑

a j∈A j

p j(a j)g j(a j), (18)

where p j(X|a j), p j(A j) and p0(X) are probability mass
functions, f j ∈ L (X × A j), g j ∈ L (A j), and h ∈
L (X ), for all j = 1, . . . ,n. The derivation is as follows.

(a) In this particular case, (10) rewrites as

P j( f j ) = ∑
a j∈A j

p j(a j) ·
(

εa j
j ∑

x∈X

p j(x|a j) · f j(x,a j)

+ (1− εa j
j ) min

x∈X

f j (x,a j)
)

, (19)

for eachf j ∈ L (X ×A j) and j = 1, . . . ,n.

(b) Thus, for each ˜x∈ X , (11) becomes:

∑
a j∈A j

p j(a j) ·
(

εa j
j [ f j (x̃,a j)− µ ]p j(x̃|a j)

+ (1− εa j
j )min{0, f j(x̃,a j)− µ}

)

= 0. (20)

Define the subsetA ∗
j (µ) of A j as follows:

A
∗
j (µ) := {a j ∈ A j : f j (x̃,a j)− µ < 0}, (21)

where f j , x̃ are omitted from the arguments ofA ∗
j for

sake of simpler notation. Equation (20) rewrites as:

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+(1−εa j

j )IA ∗
j (µ)(a j)] f j (x̃,a j)

−µ ∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+(1−εa j

j )IA ∗
j (µ)(a j)] = 0.

(22)

The solution of (20) is non-trivial becauseA ∗
j is a

function of µ . Yet, we can computeA ∗
j (µ) for the

particular valueµ̃ of µ that solves (20), without ex-
plicitly solving this equation. Accordingly, we set

8The last assumption will be relaxed at the end of this section.

A ∗
j := A ∗

j (µ̃), and the solutionP
A j |X
j ( f j |x̃) of (22)

is:9

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+ (1− εa j

j )IA ∗
j
(a j)] f j (x̃,a j)

∑
a j∈A j

p j(a j)[ε
a j
j p j(x̃|a j)+ (1− εa j

j )IA ∗
j
(a j)]

.

(23)

(c) The (separately coherent) conditional lower previsions
associated to the sources and defined as in (23) induce
the followingmodel revisioninto the IFC’s beliefs,

P
A j |X
0 ( f j |x) := P

A j |X
j ( f j |x), (24)

for each f j ∈ L (A j), j = 1, . . . ,n andx ∈ X . Their
independent natural extension toA n can be therefore
considered:

PAn|X
0 (g|x̃)= sup

g j∈L (X ×A j )

j=1,...,n

inf
a j∈A j

j=1,...,n

{

g(x̃,a1, . . . ,an)

−
n

∑
j=1

[

g j(x̃,a1, . . . ,an)

−P
A j |X
0 (g j(x̃,a1, . . . ,a j−1, ·,a j+1 . . . ,an)|x̃)

]}

, (25)

for each ˜x ∈ X . Notice that the gamble
g j(x̃,a1, . . . ,a j−1, ·,a j+1 . . . ,an) is in L (X × A j).
Let us consider, in (25), only gamblesg ∈ L (X ×
A

n) such that, forX = x̃ and each(a1, . . . ,an) ∈ A
n,

factorize as follows:

g(x̃,a1, . . . ,an) =
n

∏
j=1

g′j(x̃,a j), (26)

with g′j ∈ L (X ×A j) for eachj = 1, . . . ,n. Assume
also that the gambleg′j(x̃, ·) ∈ L (A j) has a constant

sign inA j , and denote its sign byσ j = σ j(x̃)10. Un-
der these assumptions, if we intend, for fixed ˜x, g as a
gamble onA n, we have thatg has constant sign and
(25) reduces to:

PAn|X
0 (g|x̃)=

{

∏n
j=1P

A j |X
0 (g′j |x̃) if g≥ 0

− ∏n
j=1P

A j |X
0 (σ jg′j |x̃) if g < 0

(27)
whereg′j is theg j defined in (25), for eachj = 1, . . . ,n.
The proof is in [10]. The gambles we consider in the
following factorize as in (26), and we can therefore
use (27) instead of (25).

9This is possible unlessPj (I{x̃}×A j
) = ∑

a j∈A j

pj (aj )ε
a j
j pj (x̃|aj ) > 0.

10Setσ j = +1 if g′j (x̃, ·) > 0, σ j = −1 if g′j (x̃, ·) < 0 andσ j = 0 oth-
erwise.



(d) By marginal extension (14), the following joint CLP
can be calculated:

P0(h) = PX
0

(

PAn|X
0 (h|x)

)

= ε0 ∑
x∈X

PAn|X
0 (h|x)p0(x)

+ (1− ε0) min
x∈X

PAn|X
0 (h|x). (28)

(e) Thus, by GBR, given{ã1, . . . , ãn} ∈ A n, the condi-

tional CLPPX|An

0 (g|ã1, . . . , ãn) is the solution of:

P0(I{ã1}×···×{ãn}(g− µ)) = 0, (29)

where we assumeP0(I{ã1}×···×{ãn}) > 0. Note also
that the only values of the gambleg that should be
considered for the solution of (29) are those such that
An 6= ãn, because otherwise the argument ofP0 is
zero. Furthermore, for fixedx, g(x, ã1, . . . , ãn) − µ
is constant. Thus, the gamble factorizes as in (26),
with g′i(x̃,ai) = I{ãi} ∀i < n andg′i(x̃,an) = I{ãn}(g(·)−
µ). Therefore, notice thatσi = 1 ∀i < n and σn =
sgn(g(·)− µ). Thus, (27) holds and we can write:11

PAn|X(h|x) = PA1|X
1 (I{ã1}|x) · · ·P

An|X
n (I{ãn}|x)

[g(x, ã1, . . . , ãn)− µ ]I{g(x,ã1,...,ãn)−µ≥0}

+P
A1|X
1 (I{ã1}|x) · · ·P

An|X
n (I{ãn}|x)

[g(x, ã1, . . . , ãn)− µ ]I{g(x,ã1,...,ãn)−µ<0} (30)

According to (30), (29) can be written as in Table 1,
where from (23) it can be derived that:

P
A j |X
j (I{ã j }|x̃) =

pj (ãj )ε
ã j
j pj (x|ãj )

∑
a j∈A j

pj (aj )[ε
a j
j pj (x|aj )+(1− εa j

j )IA j \{ã j }(aj )]
.

(31)
It can be easily verified thatA ∗

j = A j\{ã j} in this
case. Again from (23) it follows that:

P
A j |X
j

(

I{A j \ã j}|x
)

=

∑
a j∈A j ,a j 6=ã j

pj (ai)ε
a j
j pj (x|aj )

∑
a j∈A j

pj (aj )[ε
a j
j pj (x|aj )+(1− εa j

j )I{ã j }(aj )]
,

(32)
where, in this case,A ∗

j = {ã j}. According to the du-
ality relation reviewed in Section 2, the corresponding
upper probability is one minus the lower probability
in (32), and hence:

P
A j |X
j

(

I{ã j }|x
)

=
pj (ãj )[ε

ã j
j p

ã j
j (x)+(1− ε ã j

j )]

∑
a j∈A j

pj (ai)[ε
a j
j pj (x|aj )+(1− εa j

j )I{ã j }(aj )]
.

(33)

Finally, by solving the equation in Table 1 with re-
spect toµ , the conditional CLPsPX|An

0 (g|ã1, . . . , ãn)
can be calculated for each{ã1, . . . , ãn} ∈ A n.

11Note that the indicator functions in (30) refer to sets that are implic-
itly defined through inequalities over gambles. This kind ofspecification
will be employed also in the followings.

The assumption of linearity for the prior beliefs over the
sources can be relaxed to the case where the previsions

P
A j
j are CLPs generated by the lower envelope of a finite

set of linear previsions [13, Chapter 3]. In this case, we
solve the equation in Table 1 for each element of this set,
and the minimum over these values is the solution in the
general case. The following results can be easily verified
to follow from our derivation.

1. If PX
0 is vacuous (i.e.,ε0 = 0), then alsoPX|An

0 is vac-
uous. This is consistent with the results in [11].

2. If P
X|A j
j is vacuous (i.e.,ε ã j

j = 0) for eachj = 1, . . . ,n,
thenPj(I{x̃}×A j

) = 0 and, (20) cannot be solved by
(23). In this case, from (20) it is straightforward

to verify that P
A j |X
j ( f j |x̃) is vacuous (ifp j(ai) > 0

for eachi), that PAn|X(g|x̃) is also vacuous and that

PX|An

0 (g|ã1, . . . , ãn) is equal toPX
0 (g).

3. In (3), it is shown that, since the posterior probabil-
ity distribution p0(x|a1, . . . ,an) does not depend on
p(a j), the only pieces of information to be shared be-
tween sources and IFC arep j(x) and p j(x|a j). In
the imprecise case, additional information must be
shared between sources and IFC. In fact, from Ta-
ble 1 and from (31) and (33), it can be seen that
PX|An

0 (g|ã1, . . . , ãn) depends on the sources’ priorsPX
j

and on(1− ε ã j
j )p(ã j). Notice, in fact, that the de-

nominator in (31) is just equal toPX
j (I{x}) − (1−

ε ã j
j )p(ã j) = PX

j (IX \{x})− (1− ε ã j
j )p(ã j), while the

denominator in (33) isPX
j (I{x}) + (1− ε ã j

j )p(ã j).
Conversely, the dependency onp(ã j) in the numer-
ators of (31) and (33) is dropped in Table 1, since
the sum and the minimum are overx and, thus, the
p(ã j) can be simplified. Summarizing, the pieces of
information to be shared between sources and IFC
are: the marginal CLPPX

j , which corresponds to the

prior CLP of the sources; the quantity(1−ε ã j
j )p(ã j),

which is equal to the probability that thej-th source
is in the statep(ã j) multiplied by thedegree of un-

certaintyP
X|A j
j (I{x})−P

X|A j
j (I{x}) = 1− ε ã j

j .

6 Zadeh’s Paradox

The problem of aggregating beliefs over the same variable
has been already considered in other uncertainty theories.
In the case of Dempster-Shafer (DS) theory [7], Demp-
ster’s combination rule allows for the following aggrega-
tion of two belief functionsm1 andm2:12

m12(X) ∝ ∑
X1,X2:X1∩X2=X

m1(X1) ·m2(X2). (34)

12We point to [7] for details about DS theory.



Table 1: The unique solutionµ of GBR corresponding to the conditional CLPPX|An

0 (g|ã1, . . . , ãn)

0 = ε0 ∑
x∈X

{[

PA1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}

+ P
A1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]

(g(x, ã1, . . . , ãn)− µ)p0(x)
}

+ (1− ε0) min
x∈X

{[

PA1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}

+ P
A1|X
0 (I{ã1}|x) · · ·P

An|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]

(g(x, ã1, . . . , ãn)− µ)
}

Yet, in the 1980s, DS theory suffered a serious blow when
Zadeh proposed his “paradox”, an example for which
the Dempster’s rule of combination gave an apparently
counter-intuitive result [16].

Zadeh’s example is as follows. Two doctors examine a pa-
tient and agree that he suffers from either meningitis (x1),
contusion (x2) or brain tumor (x3). Thus,X = {x1,x2,x3}
is the frame of the variable of interest. The doctors agree
in considering a tumor quite unlikely, but disagree in the
likely cause, thus providing the following diagnosis:

Doctor 1→ m1(x1) = 0.99, m1(x3) = 0.01,
Doctor 2→ m2(x2) = 0.99, m2(x3) = 0.01,

(35)

while the basic belief masses of the other elements of the
power set ofX are null. By (34) one gets

m12(x1) = 0, m12(x2) = 0, m12(x3) = 1. (36)

Hence, from direct application of the DS theory, it turns
out that the patient suffers from brain tumor with certainty.
This result arises from the fact that the two doctors agree
that the patient most likely does not suffer from tumor but
are in almost full contradiction for the other causes of the
disease. Since doctors’ diagnoses are modeled by precise
probability mass functions, also Bayesian approaches like
the one in Section 1 might be applied to Zadeh’s example;
yet the same result is obtained.

Haenni has shown that the controversy of Zadeh’s exam-
ple can be overcome by assuming that the doctors are not
fully reliable [8]. To take this into account, one has to
build a model that includes two more variables, modeling
the reliabilities of the doctors. LetA1 = a1 correspond
to the statement “Doctor 1 is reliable”, andA1 = ¬a1 to
“Doctor 1 is unreliable”,p1(a1) can be therefore inter-
preted as the probability that the first source is reliable,
p1(¬a1) = 1− p1(a1) that is unreliable, and similarly for
Doctor 2. By following this idea, our aggregation rule
can be applied to Zadeh’s example. The doctors’ diag-
noses (35) can be formalized as in (17) by settingεa1

1 = 1,
p1(x1|a1) = 0.99, p1(x2|a1) = 0, p1(x3|a1) = 0.01 and
ε¬a1

1 = 0 for Doctor 1, and similarly but withp2(x1|a2) = 0

and p2(x2|a2) = 0.99 for Doctor 2. Notice that, by set-

ting ε¬a1
1 = ε¬a2

2 = 0, it has been assumed thatPX|¬a1
1

andPX|¬a2
1 are vacuous, i.e., when the doctors are unre-

liable they do not provide any useful information. Further-
more, we assume thatp1(a1) = p2(a2) = δ with δ ∈ (0,1)
andε0 = 1, p0(x1) = p0(x2) = p0(x3) = 1/3. The goal

is the evaluate the posterior beliefPX|A1,A2
0 (I{x̃}|ã1, ã2),

which represents the lower probability of the diagnosis
x̃ ∈ X conditional on the fact that the sources are in a
particular state(ã1, ã2). In this case, we can compute the

lower probabilityPX|A1,A2
0 (I{x̃}|ã1, ã2) by simply putting

g(x, ã1, ã2) = I{x̃} in the equation in Table 1. The fi-
nal conditional are shown in Table 2. For Doctor 1, the

CLPsP
A j |X
1 for X = x1 or X = x3 can be derived by ap-

plying equations (32)-(33). Conversely, forX = x2, since

P1(I{x2}×A1
) = 0, the GBR cannot be applied to getP

A j |x2
1

and, thus, (32)-(33) are not valid anymore. However, since

P1(I{x2}×A1
) = ∑

ã j∈A1

p1(ã j) ·
(

ε ã j
j ∑

x∈X

p1(x|ã j)

·I{x2}×A1
(x, ã j)+ (1− ε ã j

j )max
x∈X

I{x2}×A1
(x, ã j)

)

= p1(¬a1) > 0

,

the regular extension (6) can be used to derive

P
A j |x2
1 (g|x2) = max

µ
P

(

I{x2}×A1
[g− µ ]

)

≥ 0

where the gambles we are interested in are onlyI{a1} and

I{¬a1}. From (22),P
A j |x2
1 (g|x2) can be calculated by find-

ing the maximum value ofµ for which

∑
ã j∈A1

p j(ã j)[ε
ã j
j p j(x2|ã j)+ (1− ε ã j

j )IA ∗
1 (µ)(ã j)]g(ã j)

−µ ∑
ã j∈A1

p j(ã j)[ε
ã j
j p j(x2|ã j)+(1−ε ã j

j )IA ∗
1 (µ)(ã j)]≥ 0.

(37)

The values ofµ which satisfy (37) in the casesg =
I{a1} andg = I{¬a1} are µ = 0 and, respectively,µ = 1.

Hence, it follows thatP
A j |x2
1 (I{a1}|x2) = P

A j |x2
1 (I{a1}|x2) =



Table 2: Upper and lower conditional probability for the Zadeh’s example fori, j,k = 1,2,3 andi 6= j 6= k

PX|A1,A2
0 (I{xi}|ã1, ã2) =

PA1|X
1 (I{ã1}

|xi )P
A2|X
2 (I{ã2}

|xi )

PA1|X
1 (I{ã1}

|xi )P
A2|X
2 (I{ã2}

|xi)+P
A1|X
1 (I{ã1}

|xj )P
A2|X
2 (I{ã2}

|xj )+P
A1|X
1 (I{ã1}

|xk)P
A2|X
2 (I{ã2}

|xk)

P
X|A1,A2
0 (I{xi}|ã1, ã2) =

P
A1|X
a (I{ã1}

|xi )P
A2|X
2 (I{ã2}

|xi )

P
A1|X
1 (I{ã1}

|xi )P
A2|X
2 (I{ã2}

|xi)+PA1|X
1 (I{ã1}

|xj )P
A2|X
2 (I{ã2}

|xj )+PA1|X
1 (I{ã1}

|xk)P
A2|X
2 (I{ã2}

|xk)

0 andP
A j |x2
1 (I{¬a1}|x2) = P

A j |x2
1 (I{¬a1}|x2) = 1 . A simi-

lar derivation can be clearly achieved for Doctor 2. The
posterior lower and upper probabilities calculated for the
reliability valueδ = 0.8 are shown in Table 3. The values
of the conditionals which depend onδ are highlighted in
bold-face. It can be noticed that, in the case the sources
are in the states ˜a1 = a1 and ã2 = a2, i.e., both sources
are reliable, one gets the following precise conditional

probabilityPX|A1,A2
0 (I{x1}|a1,a2) = P

X|A1,A2
0 (I{x1}|a1,a2) =

0, PX|A1,A2
0 (I{x2}|a1,a2) = P

X|A1,A2
0 (I{x2}|a1,a2) = 0, and

PX|A1,A2
0 (I{x3}|a1,a2) = P

X|A1,A2
0 (I{x3}|a1,a2) = 1. This re-

sult holds for each value ofδ and shows that, when both
the sources are reliable, the answer provided in (36) by
both DS and Bayesian theory is coherent with the initial
assessments. In fact, since Doctor 1 says implicitly that
x2 is wrong (with almost absolute certainty), and Doctor 2
says thatx1 is wrong, it follows then thatx3 must be the
true diagnosis when both doctors are reliable.

According to Table 3 it can also be noticed that when
both doctors are unreliable the conditionals are vacuous
for all the diseases. Conversely, in the case only one
doctor is reliable, e.g., Doctor 1 in Table 3, the disease
that he believes wrong has precisely zero probability. For

δ > 0.9, it can be verified thatPX|A1,A2
0 (I{x1}|a1,¬a2) >

P
X|A1,A2
0 (I{x3}|a1,¬a2) and, thus, the lower probability of

x1 dominates the upper probability of the other element.
In this case, the IFC can decide, without doubts, that the
patient suffers from the diseasex1.

In general, in this kind of reliability problems, the sources
of information do not provide their reliability status
{ã1, ã2} and, thus, the IFC cannot know it. However,
since the doctors’ diagnoses are almost in full contradic-
tion, the IFC can infer that at least one of the doctors
must be unreliable and, thus, apply the aggregation rule
by computing the following lower conditional probabil-

ity PX|A1,A2
0 (·|A 2\{a1,a2}). In practice, the condition-

ing event is the complementary event of{a1,a2}, which
means that at least one doctor is unreliable.

Since I
A 2\{a1,a2}

do not factorize as in (26), we can-

not apply (30) to computePA2|X(·|x). However, since
PA2|X(·|x) is a CLP, we can exploit the following

property: PA2|X(I
A 2\{a1,a2}

|x) = 1− P
A2|X

(I{a1,a2}|x) =

1−P
A1|X(I{a1}|x)P

A2|X(I{a2}|x) andP
A2|X

(IA 2\{a1,a2}
|x) =

1−PA2|X(I{a1,a2}|x) = 1−PA1|X(I{a1}|x)P
A2|X(I{a2}|x).

Since P
A1|X(I{a1}|xi)P

A2|X(I{a2}|xi) = 0 and

PA1|X(I{a1}|xi)PA2|X(I{a2}|xi) = 0 for i = 1,2, and

P
A1|X(I{a1}|x3)P

A2|X(I{a2}|x3) = 1, the lower and up-
per probabilities are those in Table 4. Because of

PX|A1,A2
0 (I{x1}|IA 2\{a1,a2}

) = PX|A1,A2
0 (I{x2}|IA 2\{a1,a2}

) ≥

P
X|A1,A2
0 (I{x3}|IA 2\{a1,a2}

), the IFC can infer that the
patient suffers fromx1 or x2 but not fromx3. It can be no-
ticed that when the reliabilityδ approaches one, the lower
and upper probabilities converge to the following precise

probability mass function:pX|A1,A2
0 (I{x1}|IA 2\{a1,a2}

) =

pX|A1,A2
0 (I{x2}|IA 2\{a1,a2}

) = 1/2.

Summarizing, the results of this section generalize those in
[8, 1] to CLPs by showing that: (i) if both the doctors are
reliable the result obtained by the Bayes’ and Dempster’s
rule in (36) is correct and coherent with the initial assess-
ments; (ii) if we assume that at least one of the doctors
is unreliable, we obtain that the patient must suffer from
eitherx1 or x2.

7 Conclusions and Outlooks

A general aggregation rule for coherent lower previsions
defined on the same domain has been proposed. This is
achieved by a simultaneousmodel revisionof beliefs asso-
ciated to different sources of information. The coherence
of the aggregated beliefs is also discussed. Furthermore,
in the particular case of linear-vacuous mixtures, a closed
formula for the aggregated beliefs has been derived. As an
example of applications of this approach, Zadeh’s paradox
is treated and an alternative explanation is concluded.

As a future work, we aim to generalize our formula for
linear-vacuous mixtures to the more general case of 2-
monotone capacities. That would be the basis for a recur-
sive application of our approach. Furthermore, although
the size of the possibility space of the variable of inter-
est has been assumed finite, it seems possible to extend
our results to the infinite case. Yet, further investigations



Table 3: Posterior lower and upper probabilities in the caseδ = 0.8

PX|A1,A2
0 (·|a1,a2) P

X|A1,A2
0 (·|a1,a2) PX|A1,A2

0 (·|a1,¬a2) P
X|A1,A2
0 (·|a1,¬a2) PX|A1,A2

0 (·|¬a1,¬a2) P
X|A1,A2
0 (·|¬a1,¬a2)

x1 0 0 0.45 1 0 1
x2 0 0 0 0 0 1
x3 1 1 0 0.54 0 1

Table 4: Upper and lower conditional probabilities conditioned onI
A 2\{a1,a2}

for i = 1,2

PX|A1,A2
0 (I{xi}|IA 2\{a1,a2}

) =
1

3−PA1|X(I{a1}
|x3)PA2|X(I{a2}

|x3)
, P

X|A1,A2
0 (I{xi}|IA 2\{a1,a2}

) =
1
2

PX|A1,A2
0 (I{x3}

|I
A 2\{a1,a2}

) = 0, P
X|A1,A2
0 (I{x3}

|I
A 2\{a1,a2}

) =
1−PA1|X(I{a1}

|x3)PA2|X(I{a2}
|x3)

3−PA1|X(I{a1}
|x3)PA2|X(I{a2}

|x3)

about the coherence of the corresponding model should be
considered. We also want to investigate the relationships
between our approach in the case of a single source and
Jeffrey’s updating. Finally, we intend to apply our rule to
practical problems of information fusion in signal and data
processing and communications.
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