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Abstract particularly suited for the aggregation of different sasc

of information, that might be not only uncertain and vague

The problem of aggregating two or more sources of in- . . .
: . .. when considered singularly, but also conflictual or contra-
formation containing knowledge about a same domain is . . 2
dictory when considered jointly.

considered. We propose an aggregation rule for the case
where the available information is modeled bgherent  In this paper, we apply Walley’s theory of coherent lower
lower previsions corresponding to convex sets of prob- previsions to develop a method of aggregation for uncer-
ability mass functions. The consistency between aggretain information coming from different sources. In order
gated beliefs and sources of information is discussed. Ato describe this aggregation task, let us us first formalize
closed formula, which specializes our rule to a particularthe problem in the Bayesian framework.

class of models, is also derived. Finally, an alternative ex

planation of Zadeh's paradox is provided. Considern sources of information, all reporting knowl-

edge about a variabl¢, whose generic valuevaries in a

K eywords. Information fusion, coherent lower previsions, finite set2".! For eachj = 1,...,n, the knowledge asso-
independent natural extension, generalized Bayes rule. ciated to thej-th source is modeled by a conditional prob-
ability mass functionp;(X|A; = a;). In this formalism,
the conditioning everd; = a; describes the actuaiter-

nal stateof each source, which is in fact modeled by a
. : . variableAj, whose possible realizations take valags a

In practical problems where modeling and handiing i, set#/j. Examples of internal states of the sources can

]t(now:je_;jfge Is required, w_;_fr:)rmaué)nl often cilmes PIECEWISEh 0 the two states of a binary variable denoting the fact that
rom different sources. The modeler usually wants to 49°3 source is reliable or not, or a collection of measurements

gregate these pieces of mformaﬂon_ into a .global mOd.el’coIIected for the phenomenon under study.
that serves as a basis for various kinds of inference, like

decision making, estimation and many others. If the avail-The information associated to the different sources is col-
able information is characterized by uncertainty, Bayesia lected by a singlénformation fusion centeflFC), which
theories can offer a suitable approach to problems of thisaims at aggregating this information together with its prio
kind. Yet, there are situations where the level of un- knowledge abouX, modeled as a probability mass func-
certainty characterizing the sources is so high that singldion po(X). This is achieved by identifying the sources’
probability measures cannot properly model the availablebeliefs abouf\j given thatX = x with those of the IFC:
information. This goes beyond the standard Bayesian the- _ N
; ; ; i Pi(Xaj)pj(a;)
ory, and leads to alternative models of uncertainty, like fo Po(aj|x) := pj(aj|x) = ,
example Choquet capacities [3], belief functions [7], pos- Yajea Pi(X1j)pj(a)
sibility measures [6], and fuzzy measures [15]. As shownfgr eachx € 2, wherep;(A;) is the prior over the inter-
in [14], all these models represent uncertainty through set na) states of thg-th source. Thus, assuming conditional
instead of single probability measures, and can be all reindependence between the variable¢An, ..., A,) given

garded as special cases of Wallegsherent lower pre-  x e can aggregate those beliefs into the following joint:
visions[13]. This theory, which is usually referred to as

imprecise probability provides a very general model of Po(X.ar,....an) = n pj(Xaj)pj(aj) P(X) . (2)

1 Introduction

1)

uncertain knowledge, for which also some rationality cri- j=1 P;j (X)

teria, that can be used to |d.ent|fy conflicts among the dif- Wariables are denoted in this paper by uppercase lettezscdhre-
feren_t sources and qetermme whether the model is selfgponding calligraphic and lowercase letters denote réisphctheir sets
consistent, are provided. All these features seem to bef possible values and the generic values of these sets.

[




with pj(x) = Yajeq; Pi (X/aj)pj(aj) prior of the j-th processes its own information in order to compute the pos-

source. Finally, from (2), thaggregatecposterior is: terior probabilityp; (x|a;), which can be regarded asaf-
0 pi (X&) ficient statistical descriptgorto be shared with the IFC to-
Po(X|8y,...,8,) O 22 mo(x) , (3)  gether withpj(x). This is a high-level form of aggrega-
=1 Pj(X) tion, since the IFC aggregates pieces of information which

whered] denotes the element efj corresponding to the have already been elaborated from the sources. This is one
observed internal state of the source. According to (3),0f the most common architectures for data fusion (see for
Po(X|&y,...,4n) is only a function of the IFC's priopp(X),  €Xxample [2, Chapter 8]).

and of the sources’ conditiong}(X|&j) and priorp;(X), |, this paper we aim at generalizing this approach to Wal-
where the latter two are the only pieces of information to ley’s theory of imprecise probability in the general case
be shared between the sources and the IFC. Note also thgfhere instead of probability mass functions, the uncer-
the prior over the internal statgg(Aj) has been dropped  ainty about a variable is described byherent lower pre-
from (3) because of normalization. visions To this end, in Section 2 we first recall the basics

Figure 1 depicts the sequential steps involved in the abov®f the theory of coherent lower previsions. In Section 3,
derivation. The idea there is that each source should bave detail the different steps of our derivation leading to
regarded as an independent subject, that has inferred i combination rule for the general case of coherent lower
conditional beliefs abouX given the actual internal state Previsions. The consistency between the obtained results
of the source. As formalized in (1), each source inducesnd the original assessment is discussed in Section 4. The
a model revisiorinto the IFC’s beliefs. This means that, ruleisindeed specialized in Section 5 for a special class of
regarding the state of the source conditionaXgtthe IFC ~ coherentlower previsions, calléidear-vacuous mixtures
identifies its own beliefs with those of the source. Finally, Finally, in Section 6, we show how this rule can be applied
the IFC defines a global model over all the variables byin practice for a possible explanation of Zadeh's paradox
exp|0iting the independence among the sources as in (2)[16] Conclusions and outlooks for future developments
are in Section 7.

Po(X|&y,....an) (e)

[ 2 Coherent Lower Previsions

The imprecise probabilitytheory [13] is an extension of

IFC .. the Bayesian theory of subjective probability. The goal is
<ol Pol A (©) to model a subject’s uncertainty by looking at his disposi-
. N tions toward taking certain actions, and imposing require-
* A ments of rationality, or consistency, on these disposstion
) \ N In order to do that, let us first recall the fundamental notion
s Po(@j[¥) = pi(@jx) () - of coherent lower previsian

- Given a variableX taking values in a set#”, we usegam-
bles i.e. bounded function$ : 2~ — R, in order to test
pj(x.dj) (a) a subject’s uncertainty abot. For eachx € 27, the
real numbeif (X) is regarded as the (possibly negative) re-
/ \ ward, expressed in some linear utility units, that the sub-
LD AN ject receives by accepting the gambleXif= x. Uncer-
I tainty about the actual value &f can be modeled by the
ji—1 sourcej ji+1 willingness to accept certain gambles and to reject others.
Bayesian theory assumes that subjects are always able to
provide a fair priceP(f) for f, whatever information is
Figure 1: Aggregation of the sources of information in the ayajlable abouX. This assumption is relaxed in the im-
Bayesian framework. The black-highlighted text describesprecise probability framework, where subjects can express
the information used by the IFC to compute the final pos-two different prices, called respectively lower and upper
terior density (still in black). The gray-highlighted text previsions and denoted 18 f) andP( ), that correspond
denotes the intermediate steps needed to aggregate the igs the highest (lowest) buying (selling) price for the gam-
formation. The dashed boxes are used to group the beliefg|e . Since selling a gamblé for a given pricer is the
whose coherence will be checked in Section 4. same as buying-f for the price—r, the conjugacy rela-
tion P(f) = —P(—f) holds and we can therefore focus on
In this architecture it has been assumed that each sourdewer previsions only. 1fZ(.2") denotes the set of all the




bounded gambles onZ", a lower previsiorP can be re-  marginal prevision ong for eachf € .# (/) by noting
garded as a real-valued functional 6f( Z). thatf can be equivalently regarded as a gambl&inZ”™ x

Indicator functiond are clearly a special class of gambles. «/) which is constant with respect 6 and set

Given a set2”’ C 27, we can consider the lower previ- EA(f) = P(f), (4)
sion for the corresponding indicator functiby. The be-

havioural interpretation @®(l ) is the supremumrate for Where the superscriph emphasizes the fact that the
which the subject is disposed to bet on the evest2’/,  Mmarginal prevision is defined off (/).

yvhich_is the subject'tower prqbabilityforthis event, SiM-  Eor eachh € L(% x o) anda € 7, a subject'scon-
ilarly P(1.51) = 1—P(l 2 5) is theupper probability ditional lower prevision B/A(h|A = a), denoted also as
Since lower previsions represent a subject’s disposition£X‘A(h|a)' is the highest real numberfor which the sub-
to act in certain ways, some criteria ensuring that thesdect would buy the gambla for any price strictly lower
dispositions do not lead to irrational behaviours should bethanr, if he knew in addition that the variabfassumes
imposed.Coherences the strongest requirement consid- the valuea. We denote byP*/A(h|A) the gamble orh that
ered in the theory of imprecise probability. A lower pre- assumes the vall‘A(h|A = a) for eacha € =/. Overall,
vision P is coherentif and only if it satisfies the following PXA(h|A) is a gamble on for eachh € (2 x /) and

properties: PXIA(.|A) is a map betweer?’ (2" x «7) and.Z (< ).
. . _ A conditional lower previsioPXA(-|A) is said to besep-
(P1) XQEP‘C (x) < B(f) [accepting sure gains], arately coherenif PXIA(.|a) is a CLP on% (2" x <) and

PXA(1 4 (ay]@) = 1, for eacha € 7. The last condition
means that if the subject knew that a, he would be dis-
(P3) P(A f) = AP(f) [positive homogeneity], posed to bet at all non-trivial odds on the event that a.

(P2) P(f +g) > P(f)+P(g) [super-additivity],

If, besides the separately coherent conditional loweriprev

for all f,g e Z(£") and non-negative real numbeks L XA .
We point the reader to [13, Chapter 2] for a deep explana—SlonE (|A) onZ(2" x o), the subject has also spec-

tion of the irrational consequences of modeling beliefs byIfled an unconditional CLR® on £(2" x /), thenP and

X|A (. ; i ; PO
lower previsions that are not coherent. Here, we regard ; h (r|Ar\1> SPhOL:I? n i":dd't'on satisfy the criterion ggint
coherent lower previsio(CLP) as the more general model conerencethat requires

of a subject’s (rational) beliefs about a variable. p (I%X{a} {h _EX\A(hla)D —0, (5)

Let us present some examples of CLP.iAear previ-

sion Pon 2 (.2") is a CLP which is also self-conjugate, foreachac .« andhe (2" x «/). Itcan be proved[13,
i.e., P(—f) = —P(f) for eachf € #(%’). This property ~ Chapter 6] that, iP(l ;. (s}) > 0,P*/(ha) is the only so-
makes the prevision a linear functional, iR(A (f +g))=  lution of (5). Thus, given a joint CLP oi¥’(2” x &), a
AP(f) +AP(g) for all f,ge (%) and realA. Any  (separately coherent) conditional lower prevision can be
linear previsionP is completely determined by ithass  obtained from (5). For this reason, this equation is also
function x) :=P(l ), since it follows from the previous ~ calledgeneralized Bayes ruSBR). GBR cannot be ap-
properties that for any gamble P(f) = S,c 5 p(x)f(x).  plied if P(14-,(a)) = 0. Nevertheless, iP(l 4« a;) > 0,
ACLPPon.Z(%)suchthaP(f)=min, f(x)canbe a conditional previsio®®*/A(-|a) can be computed by the
easily identified as the most conservative (i.e., less infor following regular extension

mative) CLP and is therefore calledcuous As both lin- X|A _

ear and vacuous previsions are coherent, we can construct ' (h[a) =max{u : P(l2xqay[h—p]) >0} (6)
new coherent lower previsions by convex combination of

the two [13, Chapter 2]. IP is a linear prevision, for each Onthe other side, given a (separately coherent) conditiona
0<&<1,P(f) ;== eP(f) + (1— &) minye 5~ f(x) defines  lower previsionPX/A(-|A) and a coherent marginal previ-
a new CLP which is calletinear-vacuous mixtureWal- ~ SionP*on.«7, ajoint CLP onZ (2" x </ ) can be obtained
ley proved that a CLP can be equivalently specified by aby marginal extension

convex set of linear previsions, and hence a convex set of XIA
probability distributions [13]. P(h) =P* (E (hIA)) : 7

Now consider also a second variaBlavith values in<7. The marginal extensioRin (7) can be proved to be jointly
Givena CLPPon.Z (2" x /), we can easily computeits coherent withPX/* as in (5), and its marginal oA is still

PA[13, Chapter 6].
only, an extension to the unbounded case can be found in [12]. The standard notion of conditional independence consid-
3A real-valued function on a domain is called tinelicator function

of a given subset of this domain if it takes the value one i subset ~ €red i_n th_e Bayesian theory, reqUires_a more general for-
and zero otherwise. mulation in the framework of CLPs. Given a joint CIEP

2Although Walley’s theory has been developed for boundedhd@sn



on Z(%Z x 4 x «j), we say that, according t8, A; is Such assessments are expressed through separately coher-
epistemically irrelevanto A; givenX, if: ent conditional lower previsiorBT‘Aj. Furthermore, also
(XA N\ _ PAIX extra assessments about the internal states of the sources
PAPE (hix 3j) = PA(hix), (8) are available and again expressed in terms of Oﬁbsm
for eachh € .Z(44), x € 2 anda; € </, where both ZL(afj) for j=1,...,n. The IFC should therefore gather
PAIXA] and PAX are obtained fronP through GBR. If this information and aggregate it with its prior aboGt
A; is epistemically irelevant té; givenX, andA is epis- ~ Whichis expressed as a Clgg on.Z(2).
temically irrelgvant .toAj givenX, thgnA.- andAj are said  Qur goal is to compute the IFC's joint CL® on L (2 x
to be epistemically independent (giv&j /™) from which the beliefs abouX conditional on the
Let us adopt, for sake of compactness, the notaifor= actual internal states of the sourdds, ..., &) could be
(Aq An) and /" := x"_ 7. Given a collection of computed. By analogy with the derivation in Section 1,
yeees : 1.

N O AIX this task is achieved by the following sequential steps:
separately coherent conditional lower prews@ﬁ on

Z (<)), for eachj =1,...,n, the most conservative sep- (a) As outlined in (7), a CLMP; on ZL(X x off) can be
arately coherent conditional lower previsiBfA"X which
is coherent with eaclj?/?j ‘X, under the assumption that, for
eachi,j =1,...,nwithi # j, A andA; are epistemically P;(fj) ::_J-Aj (ET‘A" (f |Aj)) , (20)
independent givek, is defined as follow$:

foreachfj € Z(2 x o) andj=1,...,n.

derived fromE?qAj andE?j by marginal extension

n
P(glx) = sup inf {g(al,___,an), Z (b) GBR is used to compute, givey, the conditional
gic(of)  BET] =1 AjIX 6 _
) =t J CLPP;"" on.Z(2 x «).” Accordingly, by com-
=5 puting the solutiornu of the equation
i(ag,...,an)—Pi(gj(as,...,aj_1,-,@j11...,a)|X
|:gl( 1 ) J(gJ( 1 j—1 j+1 )| ):| }(9) EJ (I{)'Z} . [fj . “]) _ 07 (11)
o . . we haveEjA”X(fjb”() = W, for eachfj € Z(o), X €
This is theindependent natural extensi@i°. The notion 2 ,andj=1,...,n.

of joint coherence between a separately coherent condi-
tional lower prevision and a joint CLP in (5) reflects the

fact that our assessments should be consistent not only
separately, but also with each other. For this case, joint

The so-obtained separately coherent conditional lower
previsions associated to the sources are assumed to in-
duce amodel revisioninto the corresponding beliefs

coherence can be characterized by the following theorem. ofthe IFC, i.e.,
- Aj X . philX
Theorem 1. The separately coherent conditional lower Ro' " (fjIx) =P (fj[x), (12)
. X .
preV|S|ons_|j§J , with j=1,...,n, are jointly coherent for eachfj € (<) andx e 2.

if there is a CLP_Pon £ (2" x &™) such that: (i) its . Al
marginal P¢ assigns positive probability to the elements (c) A conditional CLPEQ X is obtained fromEO” by
of 27; (i) its marginals PAiX are jointly coherent with independent natural extension (9):

E?‘Aj, for each j=1,...,n, in the sense of (5).

Py = sup i {gfas....a)
A more general formulation of Theorem 1 and its proof 9j €2 () Eﬂle I
can be found in [9]. J:l;_,,n i=1,..,
. .. *Z [gj(al,...,an)
3 Aggregating Coherent Lower Previsions =1

AilX A
The theoretical results reviewed in Section 2 can be em- Bo " (G(@, a1, ,aj+1...,an)|x)} } (13)
ployed for a generalization to imprecise probabilities of (d) Then, the joint CLAP, on.Z (2" x «/") is derived by
the aggregation rule presented in Section 1. Accordingly, marginal extension_(7):
we suppose that thgth source of information, for each
j =1,...,n, makes assessments about the valueXtesd- Po(g) :=Pg (Eén‘X(QIX)) 7 (14)
sumes inZ" conditionally on its internal states € .<7].
foreachge L( 2 x /™).

4A more general formula for non-linear spaces can be foundiGh [

5This paper includes a survey of different aggregation ride€LPs. SWe noted that GBR requireB}((l{;}) > 0. If only ﬁ}((l{i}) >0
Yet, our approach differs in aggregating knowledge reteteethe same holds, regular extension (6) should be employed insteadexample of
domain. the calculations required in this latter case is in Section 6




(e) Finally, assuming thanA"(él,...,én) > 0, where  we should also verify that this joint probability mass func-
(81,...,8n) € /" are the observed internal states of tion preserves the assumption of independence between

the sources, we again apply GBR, the sources giveiX. This holds since, after marginal-
ization and Bayes rule, the joint probability mass func-
Po (1{ay,...a0) 1 [9— H]) =0, (15)  tion po in (2) is such thapg(ai|x,aj) = po(ai|x) for each

i,j=1,...,n, & € #4, a; € & andx € Z". Analogous
results, in the more general framework of imprecise prob-
ability, can be obtained by considering the joint CRfin

o _ (14), which is the basis to prove the following result.
The above derivation has been achieved by complete anal- .
ogy with that in Section 1, but in the more general frame- Theorem 2. The separately coherent conditional lower

work of CLPs. Notice that, if the sources directly provide previsions_lé”X in (12) and_l%( are jointly coherent.

the CLPsEjAj ‘X, we could still apply our procedure by con-

sidering only the steps from (c) to (e). In this case, the

posterior probabilities coincide with those returned by aProof. The joint coherence of the assessmeRfsand

naive credal classifiefe.g., compare the equation in Ta- E?”X(~|x), considered for each= 1,...,n, can be proved
ble 2 with the results in [17]). This holds in spite of the by considering the joint CLBPXA" in (14). As a con-

different notion of independence assumed in [17], and can_ uence of marainal extensio® A" is iointly coher-
be verified by means of the algorithm in [4]. 9 9 e J y

ent with bothP} andPA"X(-|x). Furthermore, as a con-
The coherence between the joint CLP obtained at the stegequence of independent natural extensRH/X(-[x) is

to compute the separately coherent conditional lower
n
previsionPs ™ (-|A") on.Z(2°).7

(d) and the initial assessments will be investigated in thejointly coherent with all theE?”X(-|x) for j = 1,...,n,

next section. because of the epistemic independence between the
variables in(Ag,...,Ay) given X. Finally, assuming

4 Checking Coherence EjAn(I{al’_._,an}) > 0 because of GBR, the coherence of
PXIA"(.|ay, ..., an) follows from Theorem 1. O

The subjects involved in the derivation formalized in the
previous section (i.e., the sources and the IFC) should be

regarded as autonomous and distinct individuals. Nevergp the other side, checking the coherence of the beliefs

theless, we have assumed that the uncertain information . . is trivialPXL Aj
) ) } . . associated to a particular source is tI'IVIa|le andP;
associated to a subject can induce in another subject a ]

e : are jointly coherent because of (5), for eack 1,...,n.
model revisioni.e., the second agent can replace his "M\\e have argued that the IFC's beliefs are not required to
CLPs (even in the conditional case) with those of the first 9 q

e . . be coherent with those of the sources, as they refer to sep-
agent. More specifically, in our architecture, we allow : .
. - arate subjects. Nevertheless, let us consider what can be
for an asymmetricaimodel revision, as we assume that

each source revises the IFC’s beliefs as in (1) or in (12) said about the consistency between different subjects in

while the contrary cannot take place because of the wa;}he Baye3|an_(|.e., precise) formulation. By explomng_th
) : : Independencies between the sources, (2) rewrites as:
the sources and the IFC share the information. In this sec-

tion we discuss the coherence between the different be-

liefs specifieq in. our model. According to the preyious po(X,ay,...,an) = _n wm(x) . (16)
argument, this will be done separately for each subject, by j=1 Po(X)

considering also the beliefs induced by other subjects via

model revision. By comparing (16) with (2), it can be noticed that the joint

coherence between the IFC's beliefs and those of ithe
source cannot be guaranteed in general. In fact, we can
always imposepo(x(aj) := pj(x|a;) andpo(ay) := pj(a;),

%ut, at least in general, it is not possible to have at the
. . ) same timepp(X) = p;j(X), for eachj =1,...,n. In fact,

for eachj = 1,...,n, which are obtained through model since each source and the IFC are considered autonomous

reV|s!0tr1 frombtht\jl sourt%es, and the margtglpa(g(). The id subpjects and the information flows from the sources to the
consistency between hese assessments when consider , We cannot require that the sources agree on their

jointly follows from the existence of a joint probability inal ; LX) — pi(X) f hii —
mass function, which is clearly the one in (2), from which marglrr: a_ls_h%vserf e’ III.:eC.’ 0%51 (iefin@; gin(g)]:ee(;(c:)bla,llj proba-
these mass functions can be obtained. Concerning the IF ilistic model over all the variables that reproduces al th

7Note that, also in this case, if we only have tﬁé}"(él__wén) >0, inputs from the sources only if the IFC and all the sources
the regular extension (6) can be used instead. have the same prior oveX.

Let us start from the coherence of the IFC’s beliefs. In
order to do that, we first consider the derivation in the pre-
cise case as in Section 1. As outlined in Figure 1, the mas
functions to be considered are the conditior@A||x),




5 Mathematical Derivation for o = (1), and the solutior®’™ (f;[%) of (22)
Linear-Vacuous Mixtures is9

Let us detail the derivation described in Section 3 in the S P (aj)[e?j pj(Xlaj) + (1— e?j)lﬂj* (a))]fj (X, &)

special case where the marginal associated to the IFC and ~ 2i€¥]

the separately coherent conditional lower previsions-spec > pi(a)) [e?j pj(Xlaj) + (1— £jaj )Idj* (aj)]

ified for the sources are linear-vacuous mixtures, while the aj€

marginals overzj are linea This corresponds to the fol- (23)

lowing settings:

(c) The (separately coherent) conditional lower prevision

PY(h):=g $ po(X)h(X)+ (1— &) mlp h(x), associated to the sources and defined as in (23) induce
XEx X the followingmodel revisiorinto the IFC’s beliefs,
X|A -
P (fla) =g 3 Py fica) (A7) . .
X o RO (51 == PP (1), (24)
+(1-¢) mL? fj(X,aj), Vaj € |
A x* for eachfj € Z (), j=1,...,nandxc Z". Their
P9 = Y pi(aj)gj(a)), (18) independent natural extension4d” can be therefore
i€ considered:
where p;j(X|a;j), pj(A;j) and po(X) are probability mass A X .
functions, f;j € .,2”(3&” x o), gj € Z(o), and h € (g%)=  sup it {g(ialw--,an)
ZL(Z),forall j =1,...,n. The derivation is as follows. glei(l‘%xnp{j) 21
(a) In this particular case, (10) rewrites as _ [gj (%,a,...,an)

=1

Pi(fj)= > pi(@)- (

A X ~ o~
ajedj _EOJ‘ (gj(x7a17""aj*l7"a’j+l"'aan)|x):|}7 (25)

% pj(xlaj) - fj(x.aj)

for each X' 2.

+ (1) min f,-<x,a,->), (19)

foreachfj ¢ Z(2 x o) andj=1,...,n

(b) Thus, for eacx & 2", (11) becomes:

> pj(aj)-(Sfj[fj(iaaj)—u]pj(ilaj)

aj €

+(1- €M) min{0, fj(%.a;) u}) —0. (20)
Define the subset;" (i) of <7 as follows:

A (n) ={aj € #: fj(Xaj)—pu <0}, (21)

wheref;, Xare omitted from the arguments.of" for
sake of simpler notation. Equation (20) rewrites as:

S pia))le pi(Rag) + (L)L (@) fj (%ay)

aj€ ]
—u S pi@)le pi(Klay) + (L&) () (3)] = O.
aj €]
(22)

The solution of (20) is non-trivial becauseg:* is a
function of . Yet, we can compute;*(u) for the

Notice that the gamble
gj(X,a1,...,a8j-1,-,j41...,8n) is in L(Z x ).
Let us consider, in (25), only gamblgse £ (2" x
2/") such that, foX = X and eachay,...,an) € &",
factorize as follows:

n

aan) = I_l glj ()?, aj)a (26)

=1

g(X ay,...

with gj € £ (2" x o) for eachj = 1,...,n. Assume
also that the gamblg| (X, -) € £ () has a constant
sign in.<7, and denote its sign by; = o;(X)'°. Un-
der these assumptions, if we intend, for fixed as a
gamble on", we have thag has constant sign and
(25) reduces to:

" PO (g% if g>0
P g = { MaPy @R o=
- |_|J:1Po (0igj[X) ifg<O

(27)

Whereg’j is theg; defined in (25), foreach=1,...,n
The proof is in [10]. The gambles we consider in the
following factorize as in (26), and we can therefore
use (27) instead of (25).

particular valuefi of u that solves (20), without ex-
plicitly solving this equation. Accordingly, we set

8The last assumption will be relaxed at the end of this section

1°Setoj
erwise.

9This is possible unlesB; (1)« ) = . EZW pj(aj )sjaj pj(Xla;) > 0.
j €47

=+1if gj(%-) >0, 0j = ~1if ¢j(X,-) <0 andoj = 0 oth-



(d) By marginal extension (14), the following joint CLP The assumption of linearity for the prior beliefs over the
sources can be relaxed to the case where the previsions

E?j are CLPs generated by the lower envelope of a finite

can be calculated:
Bo(h) =B (B3 (X)) =20 5 B5"(hpo(x)

+ (1 &) min P"*(hx).  (28)

(e) Thus, by GBR giveddy,...,a,} € &/", the condi-
tional CLPPO‘ (9l81,...,8n) is the solution of:

Po(l{a)x-x{a) (9—H)) =0, (29)

where we assumBy(lia}x..x{s}) > 0. Note also
that the only values of the gambtethat should be

set of linear previsions [13, Chapter 3].

In this case, we

solve the equation in Table 1 for each element of this set,
and the minimum over these values is the solution in the
general case. The following results can be easily verified
to follow from our derivation.

considered for the solution of (29) are those such that

A" £ 8", because otherwise the argumentRyf is
zero. Furthermore, for fixed, g(x,8s1,...,8n) — U

is constant. Thus, the gamble factorizes as in (26),

with g{(X, &) = ligy Vi< nandgi(X,a,) = lia,y(9() —

U). Therefore, notice thati = 1 Vi < n ando, =
sgn(g(-) — u). Thus, (27) holds and we can writé:
PAX () = PR (1 )+ PR (1 gy 1X)
[g(x as, . -;an) - l-‘] {g(x a,....an)—u>0}
P (g 100 P (1 gy %)
[g(xa a,... 7an) - H]I{g(x,él,...,én)fu<0} (30)

According to (30), (29) can be written as in Table 1,

where from (23) it can be derived that:

pi(&)e;” pj(x1&
> pi(a)le] pj(xlaj)+ (1—

aj E‘Wj

P (1a 1% = !,
Byl J}|X) 8 D @/]\{a,}(aj)]

(31)
It can be easily verified that/|" = «j\{&;} in this
case. Again from (23) it follows that:
pi(a)e}” pj(xay)
(1— & )a; (3]

(32)
where, in this casey]" = {&;}. According to the du-

ajed] aﬁaJ

Z/ Pj (aj)[e p; (x[ay) +

ajed]

i (I{,Q/j\aj}\X) =

ality relation reviewed in Section 2, the corresgonding
ability

upper probability is one minus the lower pro
in (32), and hence:

(1- eéﬂ
[(Xay) + (1—€)lga ) (@)
(33)

5[8 pJ X)+
()[a

A i)

aie i

Finally, by solving the equation in Table 1 with re-

spect tou, the conditional CLP330 (g|a1,
can be calculated for eadly, ..., 8,} € &".

=)

1INote that the indicator functions in (30) refer to sets thatimplic-
itly defined through inequalities over gambles. This kindjécification
will be employed also in the followings.

6

1. If Eé is vacuous (i.e.§o = 0), then alsd®;

X|Aj . . a;
2. Iij‘ "isvacuous (i.eg;’

3.

X|AM .
| IS vac-

uous. This is consistent with the results in [11].

=0)foreachj=1,...,n,
thenEj(I{;(}Myj) = 0 and, (20) cannot be solved by
(23). In this case, from (20) it is straightforward

to verify thatE?” (fj|X) is vacuous (ifp;(a) > 0
for eachi), thatP"X(g|%) is also vacuous and that
Eé‘A (9las,. .., &n) is equal toPX (g).

In (3), it is shown that, since the posterior probabil-
ity distribution pp(x|a,...,an) does not depend on
p(a;), the only pieces of information to be shared be-
tween sources and IFC amg(x) and pj(x/aj). In

the imprecise case, additional information must be
shared between sources and IFC. In fact, from Ta-
ble 1 and from (31) and (33), it can be seen that
Eé‘An(g|é1, ...,8n) depends on the sources’ pri@
and on(1— £?j)p(éj). Notice, in fact, that the de-
nominator in (31) is just equal t@?(l{x}) - (1-
£/)P(E)) = PX (17 x)) — (1—&)p(&)), while the
denominator in (33) isPX(Iy) + (1 — sf‘j)p(aj).
Conversely, the dependency @(é;) in the numer-
ators of (31) and (33) is dropped in Table 1, since
the sum and the minimum are oweland, thus, the
p(&;) can be simplified. Summarizing, the pieces of
information to be shared between sources and IFC
are: the marginal CLIPX, which corresponds to the
prior CLP of the sources; the quantity— sjaj )p(&;),
which is equal to the probability that thjeth source

is in the statep(&;) multiplied by thedegree of un-

certaintyP; ™ (1) — B (1) = 1— .

Zadeh's Par adox

The problem of aggregating beliefs over the same variable
has been already considered in other uncertainty theories.
In the case of Dempster-Shafer (DS) theory [7], Demp-
ster's combination rule allows for the following aggrega-
tion of two belief functionsn, andmy:12

mlz(X) OJ ; ml(Xl) . mz(Xg). (34)
X1, X2: X3 NXo=X

12\e point to [7] for details about DS theory.



Table 1: The unique solutiom of GBR corresponding to the conditional CIB%‘An(gml, ceeydn)

0 = & ;{{Egl‘x(l{él}|x)"'Eén‘x(I{ﬁn}|X)I{9(X,§1,---,5n)*l»120}
xXeX

+ P g b P

et ) x,2n)a<0} | (0GB, En) — H)Po(X) }
+ (1- 50))[2@}}/‘ { [E’Sl‘x(l{al}lx) = 'Eén‘x(l{an} X g(x.41,....8) — =0}

+ o (1 D PO (g ) g, ) a<0) | (G0 ) — 1)}

Yet, in the 1980s, DS theory suffered a serious blow whenand py(x2|a2) = 0.99 for Doctor 2. Notice that, by set-
Zadeh proposed his “paradox”, an example for whichting ¢ = ¢,% = 0, it has been assumed thaf "

the Dem_pst_e_rs rule of combination gave an apparentlyandEiqﬂaz are vacuous, i.e., when the doctors are unre-
counter-intuitive result [16].

liable they do not provide any useful information. Further-
Zadeh's example is as follows. Two doctors examine a painore, we assume thai(a;) = p2(az) = d with 6 € (0,1)
tient and agree that he suffers from either meningitiy,( andé& = 1, po(X1) = po(X2) = po(X3s) = 1/3. The goal
contusion Xz) or brain tumor Xs). Thus, 2" = {x1,X2,X3}  is the evaluate the posterior beIiEE‘Al’AZ(I{mél,ég),

is the frame of the variable of interest. The doctors agreewhich represents the lower probability of the diagnosis
in considering a tumor quite unlikely, but disagree in the x ¢ .2 conditional on the fact that the sources are in a

likely cause, thus providing the following diagnosis: particular staté&;,&,). In this case, we can compute the
o XIALAY L 1x & . .
Doctor 1—  my(xq) = 0.99, my(xs) = 0.01, lower probability Py (I{zy/81,82) by simply putting

(35)  g(x.&;,8) = Iy in the equation in Table 1. The fi-
nal conditional are shown in Table 2. For Doctor 1, the

while the basic belief masses of the other elements of the:LPsE/i\”X for X = x3 or X = x3 can be derived by ap-

power set of2™ are null. By (34) one gets plying equations (32)-(33). Conversely, fér= x», since

Py (lxp1x.1) = 0, the GBR cannot be applied to @ﬁ" e

and, thus, (32)-(33) are not valid anymore. However, since

Hence, from direct application of the DS theory, it turns _

Doctor 2— mp(x2) =0.99, mp(x3) =0.01,

mi2(X1) =0, ma(%2) =0, mya(x3) =1. (36)

~ aj ~
out that the patient suffers from brain tumor with certainty P1(l ) xn) = ~va{ JICHE ("fjJ ng p1(X|&;j)
This result arises from the fact that the two doctors agree . S1e A s .
that the patient most likely does not suffer from tumor but 1} xa (X&) + (1= g J)Q%X|{Xz}xﬂ1(x’ a; )) ’
are in almost full contradiction for the other causes of the = p1(—a1) >0

disease. Since doctors’ diagnoses are modeled by precise . )
probability mass functions, also Bayesian approaches likdn€ regular extension (6) can be used to derive
the one in Section 1 might be applied to Zadeh'’s example; Ailxo

yet the same result is obtained. B (ghe) = mL?XE(I{XZ}X‘% l9-1))=0

Haenni has shown that the controversy of Zadeh’s examwhere the gambles we are interested in are only and

ple can be overcome by assuming that the doctors are nqt Ajlx2 '
. o {~ay}- From (22),P;""*(g|x2) can be calculated by find-

fully reliable [8]. To take this into account, one has to ina the maximum val for which

build a model that includes two more variables, modeling g the maximum value of fo ¢

the reliabilities of the doctors. LeA; = a; correspond . & 5 A 5 5

to the statement “Doctor 1 is reliable”, and = —a; to > Pi@)le 'Pi O2f&)) + (1= &) (8))]9(&))

« ; : " . djea

Doctor 1 is unreliable”,pi(a;) can be therefore inter- N .

preted as the probability that the first source is reliable, — u z Pj (zij)[.efIJ P; (X2|éj)+(1*€?)I’Wf(“)(éj)] >0.

p1(—a;) = 1— pi(a1) that is unreliable, and similarly for djca

Doctor 2. By following this idea, our aggregation rule (37)

can be applied to Zadeh's example. The doctors’ diag- _ ) )

noses (35) can be formalized as in (17) by settifig= 1, The values ofu which satisfy (37) in the caseg =

pr(xtar) = 0.99, py(¥olar) = O, pi(xslar) = 0.01 and e} andg = lj-a)) arep = 0 and, respectively = 1.

&, =0 for Doctor 1, and similarly but witip, (xq|a) =0 Hence, it follows thaE?j ‘Xz(l{a1}|x2) = ﬁ?”xz(l{al} [X2) =



Table 2: Upper and lower conditional probability for the 2a& example for, j,k=1,2,3 andi # j #k

AalX (|
PR 1 ) = B (1 )RS (12 %)
P 1y 1 )P52™ (1 1) + P 1y 1 P52 (g 1) -+ P2 (1 [ P52 (1 )
Aq|X X
Po "2 (18, 8) = Pe "l 40P g )
P 1y 1 P52 1y 1) P 1y 1 P52 (g 1) -+ P2 (1 130 P52 (1 )

0 andPy’ (1 a,) ) = P} (1 x2) =1 . Asimi-_ property: PA*X(1 e ot = 1= P X (a0 =
lar derivation can be clearly achieved for Doctor 2. The 1_ PAlix 2|X B
posterior lower and upper probabilities calculated for the (ler2\ay.a0} X) =
reliability value = 0.8 are shown in Table 3. The values 1—P*™(1a, a,)1%) = 1= PAX (1 a1 [OPX (1 0} ).
of the conditionals which depend @nare highlighted in

(I{a} )P FalX (Hag}1X) andP”

SALIX SA2IX
bold-face. It can be noticed that, in the case the sourceSiNCe P " (L{ag [X)P 7 (g, [xi) =0 and
are in the states; ™= a; anda = ay, i.e., both sources PMX (153 )PA2X (115 |x) = 0 for i = 1,2, and
are reliable, ‘one gets the fO||0WI?g precise conditional p/*lix {a1}|X3)|3A2‘X(|{az}|X3) = 1, the lower and up-
probabilityP Avhe %1 |a1,82) P ALh x|aL,82) = per probabilities are those in Table 4. Because of
0 xa) 0 lxe)

X|Ag,A;
EO‘ 15 2(

0, Py A (o)1, 82) = Al (}la1,82) = 0, and o2\ fana0)) = Po A ( o2\ fag,a0)) =
pXIALA
Po

?(Iix} a1, 82) :ﬁé‘Al’A2(|{X3}|a1,a2) =1. Thisre- _ Lo} 12\ (a8} ): the IFC can infer that the
sult holds for each value af and shows that, when both patient suffers fronx; or x, but not fromx. It can be no-
the sources are reliable, the answer provided in (36) byticed that when the reliability approaches one, the lower
both DS and Bayesian theory is coherent with the initial and upper probabilities converge to the following precise
assessments. In fact, since Doctor 1 says implicitly thatprobability mass function: pX‘ LA 2(lxy o2\ (ag.a0)) =
X2 is wrong (with almost absolute certainty), and Doctor 2 _x|A, Az( [ )=1/2
says that; is wrong, it follows then thaks must be the Po Ho) Il (a0} '
true diagnosis when both doctors are reliable. Summarizing, the results of this section generalize those i
[8, 1] to CLPs by showing that: (i) if both the doctors are
reliable the result obtained by the Bayes’ and Dempster’s
Fule in (36) is correct and coherent with the initial assess-
ents; (ii) if we assume that at least one of the doctors
is unreliable, we obtain that the patient must suffer from
eitherxl or Xo.

ﬁg(iAl,Az(

According to Table 3 it can also be noticed that when
both doctors are unreliable the conditionals are vacuou
for all the diseases. Conversely, in the case only on
doctor is reliable, e.g., Doctor 1 in Table 3, the disease;
that he believes wrong has precisely zero probability. For

d > 0.9, it can be verified thal:’X‘Al () I8, ~a2) >

f%(‘Al’Az( l{x} /a1, ~@2) and, thus, the lower probability of 7 conclusions and Outlooks
x; dominates the upper probability of the other element.

In this case, the IFC can decide, without doubts, that theA general aggregation rule for coherent lower previsions

patient suffers from the diseasge defined on the same domain has been proposed. This is
In general, in this kind of reliability problems, the sousce achieved by a simultaneonsdel revisiorof beliefs asso-

of information do not provide their reliability status ciated to different sources of information. The coherence

{&;,8,} and, thus, the IFC cannot know it. However, Of the aggregated beliefs is also discussed. Furthermore,
since the doctors’ diagnoses are almost in full contradic-in the particular case of linear-vacuous mixtures, a closed

tion, the IFC can infer that at least one of the doctorsformulafor the aggregated beliefs has been derived. As an
must be unreliable and, thus, apply the aggregation ruleexample of applications of this approach, Zadeh’s paradox
by computing the following lower conditional probabil- is treated and an alternative explanation is concluded.

ity Eé‘Al’AZ(iWZ\{alvaz})- In practice, the condition-  As a future work, we aim to generalize our formula for
ing event is the complementary event{@f;,a>}, which  |inear-vacuous mixtures to the more general case of 2-
means that at least one doctor is unreliable. monotone capacities. That would be the basis for a recur-
Since |2\ ay.c0) do not factorize as in (26), we can- sive gppiication of our gpproach. Furtherrr_iore, altiiough
#X(.lx). However. since the size of the p053|bility space of the variai:)Ie of inter-
”°§ apply _(30) to comput®™1(:[x) ) P2 est has been assumed finite, it seems possible to extend
PAX(x) is a CLP, we can exploit the following qur results to the infinite case. Yet, further investigasion



Table 3: Posterior lower and upper probabilities in the &ase0.8

XM (o ap) | PR (Jag,ap) || BIM2(Jay,~an) | By ™2 (far, —ay) || PRPP2(Jay, —ay) | PRVP2( | may, —ay)
X1 0 0 0.45 1 0 1
X2 0 0 0 0 0 1
X3 1 1 0 0.54 0 1

Table 4: Upper and lower conditional probabilities corafied onl 2, (5, 5,3 fori=1,2

1 prlALA
Liag) X6) P2 X (g Ixa) " °

_1- PAIX (11 1x3)PA2X (15,1 1Xa)
3—PAX (153 1%a) P2 X (110, %3)

X|AA
Po 2 (oo 2 fag ag)) = 3 palX(

1
(L2 fag 1) = 5

X|Ag,A; |Ag,A
EO‘ 1 2( 1 2(

=X
Lo\ (ag,00)) =0 Po L 12\ 2y, 20})

about the coherence of the corresponding model should be[7] Shafer G A mathematical theory of evidend®rince-

considered. We also want to investigate the relationships
between our approach in the case of a single source and
Jeffrey’s updating. Finally, we intend to apply our rule to
practical problems of information fusion in signal and data
processing and communications.
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