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Abstract

We give a preliminary study of a new procedure to
correct incoherent imprecise conditional probability
assessments. The procedure is based on parametric
optimization problems which have as objective func-
tion a new discrepancy measure. We show through
simple examples how the procedure of correcting in-
coherent assessments can be properly extended to ag-
gregate conflicting opinions, and can be generalized
to embed importance weights of each assessment.
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1 Introduction

In this paper we illustrate a preliminary study for the
adoption of a new procedure to correct inconsistent
imprecise conditional probability assessments. The
procedure is based on parametric optimization prob-
lems the objective function of which is a discrepancy
measure recently introduced in [4] for a similar pur-
pose with respect to precise assessments. Such dis-
crepancy originates from a peculiar choice of a scoring
rule, and it behaves like ordinary divergences among
probability distributions.

Care must be taken for the notion of incoherence.
In fact, for imprecise conditional probability assess-
ments, different coherence requirements are possi-
ble (see e.g. the comparison among them done in
[20, 21]). We choose to proceed along the line of
de Finetti [12, 13], adopting the most stringent gen-
eralization of his coherence notion for precise as-
sessments to imprecise ones, as proposed by Co-
letti and Scozzafava (see e.g. [7]).

Assessments inconsistency can naturally arise when-
ever there is the need to merge different sources of
uncertainty information. The extension of our correc-
tion procedure to aggregation of opinions comes quite

naturally. It is in fact sufficient to formally dupli-
cate the elements in common among the assessments
to have a joint one, and treat it as generated by a
unique source.

Aggregation of different opinions is actually a sub-
ject which has been studied in depth, both in pre-
cise (see e.g. [10, 14, 22, 25]) and imprecise (see e.g.
[11, 16, 19, 23, 24]) evaluation frameworks. Some ag-
gregation rules are based solely on the assessed values,
others rely on auxiliary over structures, like for exam-
ple second order assessments or risk neutral probabil-
ities. Our choice lies in between: once a specific scor-
ing rule is chosen, the aggregation proceeds “alone”
by working only on the assessed values.

The procedure we propose reveals its efficacy espe-
cially whenever opinions are given on different do-
mains and the envelope of opinions union turns out
to be incoherent “per se”.

While theoretical details will be the object of a future
contribution, we present here some simple examples to
show peculiarities and potentialities of our procedure.

The paper continues with Section 2, where the nota-
tion and basic notions are introduced. In particular,
the discrepancy mentioned above is described and its
justification and properties are reported. After that,
in Section 3 we illustrate how to use such discrep-
ancy as objective function of parametric optimization
problems, so that, by an iteration, it is possible to se-
lect a set of coherent precise assessments whose lower-
upper envelopes induce the correction of an initially
incoherent assessment. In Section 4 we extend the
procedure to the aim of aggregating different opin-
ions. This generalization comes quite naturally by a
simple rewriting of the joint assessment. After that
we generalize the discrepancy measure by introducing
a weighted version. In fact, it is possible to differenti-
ate the importance of the single opinions, and inside
them of the single assessed values. Finally, we end by
Section 6, where a short conclusion is reported.



2 Basic notions

We formalize the domain of the evaluation through
a finite family of conditional events of the type E =
[E1|H1, . . . , En|Hn].

Events Ei-s usually represent the situations under
consideration, while the Hi-s usually represent the dif-
ferent contexts, or scenarios, under which the Ei-s are
evaluated.

The basic events E1, . . . , En,H1, . . . ,Hn can be en-
dowed with logical constraints, that represent depen-
dencies among particular configurations of them (e.g.
incompatibilities, implications, partial or total coinci-
dences, etc.).

In the following EiHi will denote the logical connec-
tion “Ei and Hi”, ¬Ei will indicate “not Ei” and the
event H0 =

∨n
i=1 Hi will represent the whole set of

contexts considered.

By the basic events E1, . . . , En,H1, . . . , Hn it is pos-
sible to span a sample space Ω = {ω1, . . . , ωk}, where
ωj represents generic atoms, in some context named
“possible worlds ”. Note that the sample space Ω and
H0 are not part of the assessment but only auxiliary
tools.

The numerical part of the assessment is elicited
through interval values

lub = ([lb1, ub1], . . . , [lbn, ubn]) (1)

thought as honest ranges for the probabilities pi =
P (Ei|Hi), i = 1, . . . , n. Of course, some of the in-
tervals [lbi, ubi]-s could degenerate to precise values
pi-s.

For assessments like (E , lub), although defined on fi-
nite spaces, there could be different kinds of consis-
tency requirements (for a detailed exposition, among
others, refer to [20]). In this paper we focus on the
most stringent one: (strong) coherence. By adopting
a Bayesian sensitivity analysis interpretation, coher-
ent lower-upper conditional probability assessments
(E , lub) are those the numerical part lub of which
can be obtained as lower-upper envelopes of sets of
coherent precise, i.e. linear, conditional probability
assessments on E ; coherence for precise assessments is
thought in the most general sense of restrictions on E
of full finitely additive conditional probability distri-
butions. For a complete and rigorous description see
the exhaustive treatise [9].

It follows that to have a coherent assessment on E ,
there should exist a set of probability distributions
over Ω such that, on one hand it induces probabilities
for the Ei|Hi-s inside the ranges [lbi, ubi], and on the
other hand it is such that each lower (lbis) and upper

(ubis) bound of the ranges is attained through at least
one distribution in the set.

We denote by M such set of coherent precise condi-
tional assessments compatible with (E , lub)

M := {P coherent |lbi ≤ P (Ei|Hi) ≤ ubi,

i = 1, . . . , n}. (2)

We shall focus on the situations with an empty
M that characterize incoherent assessments (E , lub).
Such kind of incoherence is usually denoted as “incur-
ring in uniform loss” (see [27]) or as “not g-coherent”
(see [1]).

In literature it is commonly faced an other kind of
incoherence: M is not empty but there exist at least
one index i ∈ {1, . . . , n} such that

lbi < inf
P∈M

P (Ei|Hi) or sup
P∈M

P (Ei|Hi) < ubi .

(3)
In this cases (E , lub) is said to “avoid uniform loss but
not strong coherent” (see [26, 28]), or simply “incoher-
ent” (see [7]). This second kind of incoherence can be
directly solved by computing the “natural extension”
of (E , lub) (see again [1, 21, 27], among others).

Actually, there is a third type of incoherence: when
the assessment is not “weak coherent” (see again [26]).
For finite domains, this subtle “weak incoherence” de-
rives, as well illustrated in [20, 21], by the exclusion
of conditioning on events with zero probability. Since,
on the contrary, we believe that it is important to in-
clude such assessments in M (see e.g. [8]), we do not
tackle this further type of inconsistency.

Whenever (E , lub) incurs in a uniform loss, there is no
unique way to adjust it. In this paper we propose to
find out the “closest” correction, with a specific choice
for the “distance” notion. In [4] we already did this
for precise assessments taking advantage of the afore-
mentioned discrepancy measure. We propose now to
extend such method to imprecise assessments by gen-
eralizing the discrepancy among sets of assessments.

Before introducing the discrepancy measure, we need
some further auxiliary notions.

Every probability distribution α : P (Ω) → R cor-
responds to a non-negative vector α = [α1, . . . , αk],
with αj = α(ωj); then for every event E it will be
α(E) =

∑
ωj⊆E αj . We will refer to a nested hierarchy

of probability distributions over Ω. This to properly
separate inner from boundary situations:

• let A := {α = [α1, . . . , αk] | ∑k
1 αi = 1, αj ≥ 0,

j = 1, . . . , k} represents the whole set of proba-
bility distributions on Ω;



• let A0 :=
{
α ∈ A|α(H0) = α(

∨
Hi) = 1

}
be the

subset of probability distributions on Ω that con-
centrate all the probability mass on the contem-
plated scenarios1;

• let A1 := {α ∈ A0|α(Hi) =
∑

ωj∈Hi
αj > 0,

i = 1, . . . , n} be the subset of probability dis-
tributions on Ω that give positive probability to
every scenario;

• let A2 = {α ∈ A1|0 <

∑

j: ωj⊂EiHi

αj

∑

j: ωj⊂Hi

αj

< 1,

i = 1, . . . , n} be the subset of probability dis-
tributions that avoid boundary values {0, 1} for
the conditional probabilities.

Any α ∈ A1 induces a coherent precise conditional
assessment on E

qα := [qi =

∑

j: ωj⊂EiHi

αj

∑

j: ωj⊂Hi

αj

, i = 1, . . . , n]. (4)

Associated to any (coherent or not) precise as-
sessment p = [p1, . . . , pn] ∈ (0, 1)n over E =
[E1|H1, . . . , En|Hn] we can introduce a scoring rule

S(p) :=
n∑

i=1

|EiHi| ln pi +
n∑

i=1

|¬EiHi| ln(1− pi) (5)

with | · | indicator function of unconditional events.

Note that such scoring rule is not defined for boundary
values 0 or 1 of the assessed probabilities. This is of
course a limitation of our approach, but all the same
we believe it is significant. In fact if the assessor had
so strong a belief in assessing such extreme values,
it could mean that the component did not want to
be the object of a settlement. Hence if any of the
lbis or of the ubis turn out to be 0 or 1, they are
maintained fixed in their values, if this of course will
not induce any evident contradiction, otherwise they
must be treated outside our procedure.

This score S(p) is an “adaptation” of the “proper
scoring rule” for probability distributions proposed by
Lad in [18](pag. 355). We have extended it to partial
and conditional probability assessments.

Such a score is motivated by a conditional event Ei|Hi

being a three-valued logical entity, partitioning Ω in
1This is commonly done in conditional frameworks to avoid

unpleasant consequences. See Walley[26] about Avoiding Uni-
form Loss assessments or Holzer[17] about the Principle of Con-
ditional Coherence

three parts (omnia Gallia divisa est in partes tres):
the atoms satisfying EiHi and therefore verifying the
conditional, those satisfying ¬EiHi, thus falsifying
the conditional, and those not fulfilling the context
Hi, to which the conditional may not be applied at
all. Hence the assessor of p “loses less” the higher are
the probabilities assessed for events that are verified,
and at the same time, the lower are the probabilities
assessed for those that are not verified. The values
assessed on events that turn out to be undetermined
do not influence the score. In fact the realization of
the random value S(p) when the atom ωj occurs is

Sj(p) =
∑

i: EiHi⊃ωj

ln pi +
∑

i:¬EiHi⊃ωj

ln(1− pi). (6)

The simultaneous involvement in this score of events
that turn out to be true and of those that turn out
to be false modifies the peculiar property of the usual
logarithmic scoring rule to depend only on the true
ones.

We now have all the elements to introduce the “dis-
crepancy” between a precise assessment p over E and
a distribution α ∈ A2, with respect to its induced
conditional coherent assessment qα, as

∆(p, α) := Eα(S(qα)− S(p)) (7)

=
k∑

j=1

αj [Sj(qα)− Sj(p)] . (8)

The distributions α are restricted to be in A2 because
only there the scoring rule S(qα) is properly defined.
It is however possible to extend by continuity the pre-
vious definition of ∆(p,α) to any distribution α in A0

through the expression

∆(p, α) =
n∑

i=1

ln(
qi

pi
)α(EiHi) + ln(

1− qi

1− pi
)α(¬EiHi)

(9)

=
n∑

i=1

α(Hi)
(

qi ln(
qi

pi
) + (1− qi) ln(

1− qi

1− pi
)
)

. (10)

This discrepancy ∆(p, α) behaves in a way that is
analogous to other usual Bregman divergences2 (see
[2]). In fact in[5] we formally proved that the following
properties hold:

• ∆(p, α) ≥ 0 ∀α ∈ A;

• ∆(p, α) = 0 iff p ≡ qα;

• ∆(p, ·) is convex on A2;

• ∆(p, ·) always admits a minimum on A0;
2Actually ∆(p, α) turns out to be a generalization of the

sum of two different “Bregman divergences”.



• If ∆(p, ·) attains its minimum value on A1; then
there is a unique coherent assessment qα on E
such that ∆(p, α) is minimum;

• If ∆(p, ·) attains its minimum value on
A0 \ A1, then any distribution α ∈ A0 that
minimizes ∆(p, ·) induces the same significant
conditional probabilities (qα)j on the conditional
events Ej |Hj such that α(Hj) > 0.

The last two items are the crucial ones: for precise
numerical evaluations p, they always guarantee the
existence of a coherent assessment (E ,qα̃) “close as
much as possible” to (E ,p). And this also with respect
to the most general notion of conditional coherence
that contemplates the hierarchy of the so called “zero
layers” (see again [9] for details about this delicate
and crucial notion).

3 Correcting incoherent assessments

Let us see how the properties of ∆(p,α) could help
us in the correction of an incoherent assessment.

The starting point is that incoherence of (E , lub) is
equivalent to the incoherence of any precise assess-
ment v = (v1, . . . , vn) with lbi ≤ vi ≤ ubi. On the
other hand, the assessor elicitates the bounds lbi-s
and ubi-s as effectively attainable. For this reason,
we iteratively fix a specific bound lbf (or ubf ) and
we find the precise coherent assessment q̃ that is the
closest to the subset of precise assessments v-s that
reach lbf (or ubf ), while remaining inside the ranges
[lbi, ubi]-s for the others elements.

More precisely, by fixing an index f ∈ {1, . . . , n}, we
can find two coherent assessments q

f
and qf on E ,

induced respectively, by the solutions of the following
two parametric optimization problems, with parame-
ter v:

minimize ∆(v,α) (11)
under the constraints

vf = lbf or vf = ubf (12)
∀i 6= f lbi ≤ vi ≤ ubi , i ∈ {1, . . . , n} (13)∑

j: ωj⊂EkHk

αj = qk

∑

j: ωj⊂Hk

αj , k = 1, . . . , n (14)

α ∈ A0 . (15)

The choice in (12) of whether to fix the lower or upper
bound distinguishes one problem from the other.

The n − 1 constraints (13) reflect the compatibility
of v with the other intervals in lub, while the n con-
straints (14) impose the coherence of the assessment
qα induced by a solution α.

Note that if any optimal solution α̃ of (11) is in
A0 \ A1, the associated conditional assessment qα̃
is properly defined only for those conditional events
Ek|Hk with α̃(Hk) > 0, some component of q

f
(or

of qf ) remaining unspecified. Hence, in these cases,
we need to explore other “zero layers”. This can be
simply done by reiterating the optimization problem
over the part of E with probability of the condition-
ing events induced by α̃ equal to 0. The new optimal
solutions are distributions defined on sample spaces
spanned by the sub-domain, so that they significantly
induce some of the unspecified component of q

f
(or

qf ). Since for each iteration there will be at least one
conditioning event Hk with strictly positive induced
probability, at worst in n−1 steps the assessments q

f

(or qf ) are fully determined.

By letting the index f vary over the full range 1, . . . , n
we obtain a set of 2n coherent assessments

Q = {q
f
,qf , f = 1, . . . , n}. (16)

By definition, the imprecise assessment on E

luc = ([lc1, uc1], . . . , [lcn, ucn]), (17)

which is bounded by the lower and upper envelope of
Q, i.e.

lci := min
q̃∈Q

q̃(Ei|Hi) uci := max
q̃∈Q

q̃(Ei|Hi), (18)

is coherent and can be adopted as correction of lub.

Note moreover that we have no guarantees about the
uniqueness of q

f
, or of qf , because the set of optimal

solutions

Of = {α̃ ∈ A0|α̃ optimal solution of (11− 15)}
(19)

could induce different coherent precise assessments
over E . At the moment, numerical experiments sup-
port uniqueness, but further theoretical investigations
are needed. In any case, if there were different assess-
ments induced by (19), we could take the whole set
of them instead of the single q

f
(or qf ) to determine

the envelope (18).

Let us see how our correction procedure works with a
simple example.

Example 1 By borrowing the framework from [15],
we consider the domain E = [C|A,C|B,C|A ∨ B]
built by three basic unconditional logically independent
events A,B, C. Hence the whole sample space would
be of 8 atoms, but only 6 are inside H0 ≡ A∨B. The
set of coherent assessments on E is made by the triples



[q1, q2, q3] ∈ [0, 1]3, with the last component forced to
be in the range

q3 ∈
[

q1 q2

q1 + q2 − q1 q2
,
q1 + q2 − 2q1 q2

1− q1 q2

]
(20)

(see Fig.1). Note the evident non-convexity of this
coherent set.

Figure 1: Lower and upper bounds for coherent as-
sessments on E = [C|A,C|B, C|A ∨B]

Let us firstly consider an assessments lub that incurs
in a uniform loss

E C|A C|B C|A ∨B

lbi .1 .2 .6
ubi .3 .4 .8

. (21)

Incoherence can be highlighted by taking as good the
first two components of lub, so that the coherent (nat-
ural) extension to C|A∨B should be, by (20), the in-
terval [.0714, .5227], that does not overlap the assessed
range [.6, .8]. Hence we have that the set M of precise
assessments compatible with lub is empty.
By performing 3 the 6 optimization problems of type
(11), we obtain the following coherent precise assess-
ments:

E C|A C|B C|A ∨B

q
1

.1196 .4797 .5140
q1 .3263 .4344 .5560
q

2
.3830 .2558 .4910

q2 .3263 .4344 .5560
q

3
.3263 .4344 .5560

q3 .4078 .5440 .6530

, (22)

whose lower-upper envelope results the following co-
herent imprecise assessment:

E C|A C|B C|A ∨B

lci .1196 .2558 .4910
uci .4078 .5440 .6530

. (23)

3Numerical results obtained with the nonlinear optimization
software CONOPT of the GAMS package [3]

4 Aggregating conflicting opinions

The merging, or aggregation, of different opinions
has a considerable importance for both theoretical
and practical aspects. This subject has been widely
treated in several scientific fields, and even restrict-
ing attention to probabilistic models, there is a great
number of proposals. An interesting feature occurs
when the different opinions are in conflict, i.e. the
whole assessment results incoherent (see e.g. [6, 25]
for precise assessments and [16, 19] for imprecise
ones).

In our approach, conflict among opinions can be ex-
pressed through disjoint intervals associated to the
same conditional events, and/or through incoherence
of the joint assessment.

Here we propose to adopt the previous procedure,
which we have seen to correct incoherent imprecise
assessments, also for aggregation purposes.

First of all, if we have evaluations assessed on Es =
[E1.s|H1.s, . . . , En.s|Hn.s], with the index s ∈ S ex-
pressing the different sources, we denote the joint do-
main by E =

∨
s∈S Es.

Secondly, we can replace the possible multiple ranges
assigned to single elements of E duplicating such ele-
ments and adding coincidence constraints in list of the
logical relationships. For example, if we have two dif-
ferent ranges [lb′i, ub′i] and [lb′′i , ub′′i ] associated to the
same Ei|Hi ∈ E , we can actually associate the second
interval [lb′′i , ub′′i ] to a new conditional event E′′

i |H ′′
i

added to E , and increase the logical relationships with
the constraints

EiHi ≡ E′′
i H ′′

i ; (24)
Hi ≡ H ′′

i . (25)

In this way, we will have the different opinions joined
in a single imprecise (and incoherent) assessment of
the type (E , lub), so that its correction (E , luc) will
represent an aggregation result. Of course, since luc
is a coherent imprecise assessment, equal intervals
([lc′i, uc′i] = [lc′′i , uc′′i ]) will be associated to coincident
elements of E (Ei|Hi and E′′

i |H ′′
i ).

Let us see how this works with an example.

Example 2 Let us consider again the framework of
the previous Example 1, but now with two differ-
ent opinions given on separate, but overlapping, sub-
domains:

C|A C|B C|A ∨B

lub′ [.1, .3] [.2, .4] −
lub′′ − [.5, .7] [.6, .8]

, (26)



by duplicating C|B, we obtain a unique whole assess-
ment:

E C|A C|B C ′′|B′′ C|A ∨B

lub [.1, .3] [.2, .4] [.5, .7] [.6, .8]
(27)

with the logical constraints

C ′′B′′ ≡ CB , B′′ ≡ B. (28)

The 8 iterations of the optimization problem of type
(11) give the following set Q of coherent precise as-
sessments:

E C|A C|B C ′′|B′′ C|A ∨B

q
1

.1193 .4872 .4872 .5205
q1 .3196 .4612 .4612 .5700
q

2
.4053 .3678 .3678 .4855

q2 .3196 .4612 .4612 .5700
q

3
.3196 .4612 .4612 .5700

q3 .3547 .5749 .5749 .5380
q

4
.3196 .4612 .4612 .5700

q4 .4078 .5440 .5440 .6530

(29)

lower-upper envelope of which gives us the coherent
aggregation

E C|A C|B C|A ∨B

luc [.1193, .4078] [.3678, .5749] [.4855, .6530]
.

(30)

Of course, the approach doesn’t change if more than
two assessments are given to the same conditional
event Ei|Hi. We simply have as many coincidence
constraints (24,25) as assessed intervals for Ei|Hi.

Note that the aggregation (30) we obtained in the pre-
vious example deforms all the original opinions (26).
This is because the two assessments are strongly in
conflict. In fact, apart from the obvious inconsistence
due to the two disjoint intervals given on C|B, the
range [.6, .8], in lub′′ associated to C|A∨B, does not
overlap the natural extension of lub′

[lb′C|A∨B , ub′C|A∨B ] = [.0714, .5227] . (31)

But there are cases in which our procedure gives an
aggregation result that reconciles, without misshap-
ing, the original assessments. We can see this in the
next example.

Example 3 If we modify the two separate opinions
(26) of the previous example to

C|A C|B C|A ∨B

lub′ [.1, .3] [.35, .6] −
lub′′ − [.3, .55] [.1, .6]

, (32)

our procedure (we skip here the detailed computations
of Q) gives as lower-upper envelope the assessment

E C|A C|B C|A ∨B

luc [.1, .3] [.3, .6] [.1, .6] (33)

that coincide with the least commitment aggregation
of (32), that is the lower-upper envelope of the union
of the single intervals.

More generally, we can emphasize that our aggrega-
tion procedure is particularly significant when join-
ing the different opinions gives an incoherent result,
so that each assessed interval influences the result of
the merging. On the other hand, note that if all the
original opinions are coherent and given on the same
domain E , our aggregation result coincides with the
least commitment aggregation mentioned above, also
named ”unanimity rule”. Although a “weak” result,
this coincidence allows us to compare the behavior of
our procedure with many properties for aggregation
rules suggested by various authors (see for example
[10, 14, 19, 24] among others). In fact, in such situa-
tions we trivially have that

• Unanimity Preservation: if all the experts agree
and give the same assessments for the same
events, then the aggregate agrees with all the ex-
perts;

• Symmetry : for any permutation in the set of the
experts, we have the same aggregate;

• Invariance with respect to noninformative opin-
ion: the aggregated assessment of N experts
yields the same result as the aggregation of the
N opinions with a further noninformative opin-
ion, i.e. with one already implied by the natural
extension of the aggregation of the first N;

• Generalized External Bayesianity : the aggrega-
tion of the original assessments, followed by the
coherent extension to a new event, gives the same
result as the aggregation of the coherent exten-
sions of the initial assessments.

Moreover, we leave to a future investigation some fur-
ther basic properties, like for example those proposed
by Moral and del Sagrado [23].

5 Weighted aggregation

It is possible to associate different weights to the el-
ements of the joined assessment (E , lub), as we have
already done for precise assessments, reflecting either
possible repetitions of the values or different trust on



the various sources of information. If we denote by
w = [w1, . . . , wn] such weights, we can adjust the ex-
pression of ∆(v,α) in the optimization problems (11)
as

∆w(v, α) :=
n∑

i=1

wiα(Hi)
(

qi ln(
qi

vi
)+ (34)

(1− qi) ln(
(1− qi)
(1− vi)

)
)

.

We can see directly the effects of this adjustment by
a slight modification of Example 2

Example 4 Let us modify the two original assess-
ments (26) by adding exact overlapping to the previ-
ously missing intervals:

C|A C|B C|A ∨B

lub′ [.1, .3] [.2, .4] [.6, .8]
lub′′ [.1, .3] [.5, .7] [.6, .8]

. (35)

We can now avoid duplicating identical conditional
events with identical intervals in the joint assessment
lub, and yet maintain the information of their multi-
plicity by using the following frequencies weights:

E C|A C|B C ′′|B′′ C|A ∨B

lub [.1, .3] [.2, .4] [.5, .7] [.6, .8]
w 2 1 1 2

. (36)

Performing the 8 optimizations with the new objective
function (34) under the same constraints (12-15), we
obtain as lower-upper envelope of Q
E C|A C|B C|A ∨B

luc [.1139, .3747] [.3750, .6242] [.5355, .6933] .

(37)
Note how the highest weights have “attracted” the ag-
gregation ranges to the corresponding initial assess-
ments.

Weights wi could be given in an “imprecise” fashion
through intervals [wi, wi], especially when they repre-
sent trust levels on the sources of information. This
does not change the method, but increases the pro-
cedure complexity. In fact, in such cases, we can
think of the wi in (34) as further variables in the
optimization problems (11-15), with additional con-
straints wi ≤ wi ≤ wi. This will affect the numerical
expression of the elements inside Q in (16), but all
other considerations will remain the same.

6 Conclusion

The core of our proposal is in the parametric op-
timization problems (11), based on the discrepancy

measure ∆(·, α). Such discrepancy was originally pro-
posed in [4] by a generalization of the logarithmic
scoring rule to partial conditional assessments, and
has been used to adjust precise evaluations. In [6]
we have extended its use to merge different sources of
information, and now to correct incoherent imprecise
conditional probability assessments.

We have seen through examples (1-4) that the proce-
dure to correct incoherent assessments can be prop-
erly extended to aggregate different opinions and gen-
eralized to embed importance weights of each assess-
ment. Effectiveness changes if the joint assessment
has a coherent least commitment aggregation or not.
In fact, if the lower-upper envelope of the union of
the opinions turned out to be coherent, our procedure
weakens its peculiarity and reduces to the so called
“unanimity rule”. Anyhow, our proposal is meaning-
ful in the situations when most of the known rules do
not apply. In fact, our procedure applies also when
the domains of the opinions do not coincide and the
numerical parts are strongly inconsistent, so that the
aggregation turns out to be a reasonable compromise
between the elicited values and the consistency re-
quirement.

This paper reflects just a preliminary study, because,
as already mentioned, theoretical aspects will have to
be fixed. To begin with, we need to investigate the
presumed uniqueness of the assessments induced by
the optimal solutions of the parametric optimization
problems (11). In fact, the same method applies also
when the solution is not unique, but some operational
troubles could appear.

Another open problem is about complexity. The
check of coherence is already a NP-complete prob-
lem “per se”. As a consequence, our parametric non-
linear optimization problems (11 - 15) are even harder.
Modern optimization tools like GAMS make medium-
size problems treatable with some tens of events. One
would need heuristic procedures for larger domain
problems.

Yet another important further investigation would
be to study the relationships with other aggregation
rules, in particular comparing properties, and charac-
terizing possible coincidences.
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