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Abstract


Coefficients of ergodicity are an important tool in
measuring convergence of Markov chains. We ex-
plore possibilities to generalise the concept to impre-
cise Markov chains. We find that this can be done
in at least two different ways, which both have in-
teresting implications in the study of convergence of
imprecise Markov chains. Thus we extend the exist-
ing definition of the uniform coefficient of ergodicity
and define a new so-called weak coefficient of ergod-
icity. The definition is based on the endowment of a
structure of a metric space to the class of imprecise
probabilities. We show that this is possible to do in
some different ways, which turn out to coincide.


Keywords. Markov chain, imprecise Markov chain,
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1 Introduction


Markov chains are a very popular mathematical
model used to describe various dynamical systems.
Their properties have been studied in great detail.
The modelling of a Markov chain requires estimat-
ing a relatively large number of parameters, which is
in many practical situations very difficult to achieve
precisely. Thus sometimes parameters are estimated
with high imprecision, and the theory provides virtu-
ally no better answer than regarding the most likely
estimates as precise, leading to seemingly precise re-
sults that do not reflect the lack of certainty in the
input data.


The rapid development of the methods of imprecise
probabilities has allowed the study of Markov chains
where the imprecision in input data can be incorpo-
rated in the results. A detailed study in this topic
has been presented by Hartfiel [8] who considered the
model where precise initial and transition probabil-
ity matrices are replaced by sets of possible initial


probabilities and transition matrices. This model is
known under the name Markov set-chains (see also
Hartfiel and Seneta [9]). He pays special attention to
the case where the sets can be described using proba-
bility intervals. This basically means that every prob-
ability of an elementary event is bounded by a lower
and upper bound. A similar model was studied from
the perspective of the theory of interval probabilities
by Kozine and Utkin [11]. The more general interval
probabilities based on the Weichselberger’s model [20]
were involved in the study of Markov chains by Škulj
[16, 17]. A more recent approach by de Cooman et al.
[2] further generalises the way imprecision is involved
into Markov chains, taking an approach based on up-
per expectation operators. This approach is known
from the study of the related field of Markov deci-
sion processes used by Satia and Lave [14], followed
by [7, 10, 12, 21].


In this paper we follow the approach of de Cooman
et al. The topic we study here is the convergence of
imprecise Markov chains. The most common result
in the classical theory is the Perron-Frobenius theo-
rem that implies unique convergence for the case of
regular Markov chains. In [17] the concept of regular-
ity was generalised to imprecise Markov chains and
a similar theorem was proved. However, it turns out
that weaker conditions than regularity are sufficient
to ensure convergence of Markov chains, both in pre-
cise and imprecise case. In both cases coefficients of
ergodicity prove to be very useful tools. They have
been widely used in the precise case (see e.g. Seneta
[15]), while Hartfiel [8] generalises them to imprecise
Markov chains.


Recently, de Cooman et al. give conditions for con-
vergence of imprecise Markov chains that are substan-
tially weaker than those used by Hartfiel [8], although
in the precise case they seem to be very similar. The
different generalisations of the conditions for conver-
gence suggest that there may be different possibilities
to define coefficients of ergodicity for the case of im-







precise Markov chains. In this paper we show that
indeed a generalisation different from the one used by
Hartfiel is possible. We also believe, although we have
not yet explored this relation, that conditions implied
by our new generalised coefficients are closely related
to those found by de Cooman et al. The definition of
the new coefficient of ergodicity is based on endowing
the set of imprecise probabilities with a structure of
a metric space.


The paper has the following structure. In the next
section we review some theory on lower expectation
operators that form a basis for the model of imprecise
Markov chains. Further, in Section 3 we explore some
possibilities to endow the family of imprecise proba-
bilities with the structure of a metric space, and in
Section 4 we describe the model of imprecise Markov
chains that we use. Finally, in Section 5 we study the
generalisations of coefficients of ergodicity and com-
pare them to the existing generalisations.


2 Lower expectation operators


Let Ω be a finite set of states and let F be the set of
real-valued maps on Ω. Further let F1 denote the sub-
set of all non-negative real-valued maps with f(ω) ≤ 1
for every ω ∈ Ω. We denote by 1Ω, or sometimes just
1, the constant map on Ω such that f(ω) = 1 for
all ω ∈ Ω. For a pair of maps f and g such that
f(ω) ≥ g(ω) for every ω ∈ Ω we write f ≥ g, and if at
least one of the inequalities is strict we write f > g.


The set F can be equipped with the maximum norm
given by


||f ||∞ = max
ω∈Ω
|f(ω)|,


which induces the Chebyshev distance:


dc(f, g) = max
ω∈Ω
|f(ω)− g(ω)|.


We can write F1 = {f ∈ F | f ≥ 0, ||f ||∞ ≤ 1}.


We characterise a probability measure or a probability
p as a real valued map on Ω such that∑


ω∈Ω


p(ω) = 1


and


p(ω) ≥ 0 for every ω ∈ Ω.


Therefore p(A) =
∑
ω∈A p(ω) for every A ⊆ Ω. Thus


every probability can be considered to belong to the
set F1. We also consider sets of probabilities, which
we usually assume to be closed and convex. Some-
times we assume an enumeration of elements of Ω and
for short denote, for instance, fi = f(ωi).


There is a one-to-one correspondence between closed
convex sets of probabilities and the corresponding
lower and upper expectation operators. We denote the
lower expectation operator of a closed convex set of
probabilities M by P and the upper expectation op-
erator by P . So for any f ∈ F we define:


P (f) = min
p∈M


Epf (1)


and


P (f) = max
p∈M


Epf. (2)


The min and max in the above equations can be writ-
ten because of the finiteness of the probability space
which assures that all closed sets of probabilities are
compact and therefore all minima and maxima exist.
In the case of the above correspondence between a set
of probabilities and an expectation operator we say
that M is a credal set of P and we may denote


M =M(P ).


Every lower expectation operator P has the following
properties. Let f, f1, f2 be arbitrary elements from A.
Then:


superadditivity: P (f1 + f2) ≥ P (f1) + P (f2);


non-negative homogeneity: P (λf) = λP (f) for
every λ ≥ 0;


constant additivity: P (f + µ1Ω) = P (f) + µ for
every real µ.


Further we note that any expectation operator is com-
pletely determined by its values on the space F1. To
see this take any map f ∈ F and define the corre-
sponding f̃ ∈ F1 with


f̃ =
f


2||f ||∞
+


1
2


1Ω,


if ||f ||∞ > 0, and f̃ = 1
21Ω otherwise. The value


ã = P (f̃) then determines


P (f) =
(
ã− 1


2


)
· 2||f ||∞,


as follows from non-negative homogeneity and con-
stant additivity.


3 Distance measures between
imprecise probabilities


The set of probability measures on a measurable space
(Ω,A) can be metricised using the following metric:


d(p, p′) = max
A∈A
|p(A)− p′(A)| = 1


2


∑
ω∈Ω


|p(ω)− p′(ω)|,


(3)







for every pair of probability measures p and p′.


Given a metric space M and non-empty compact sub-
sets X,Y ⊂ M the Hausdorff metric (see e.g. [1]) is
defined as


dH(X,Y ) = max
{


sup
x∈X


inf
y∈Y


d(x, y), sup
y∈Y


inf
x∈X


d(x, y)
}
.


(4)
This metric makes the set of non-empty compact sets
a metric space denoted by F (M). Moreover, if M
is a compact space, so is F (M). Note also that ev-
ery compact metric space is complete. The Hausdorff
distance can be applied to the family of compact sets
of probabilities using the distance function (3) in (4),
making it, in the case of a finite space, a complete
metric space.


Let P and P ′ be lower expectation operators. Then
we define the following distance between them:


d̃(P , P ′) = max
f∈F1


|P (f)− P ′(f)|. (5)


Because of the finiteness of Ω the max in the above
equation exists. If f is any non-negative real map


on Ω then we have that f̃ =
f


||f ||∞
∈ F1. Because


of positive homogeneity of lower expectation operator
we conclude that


|P 1(f)− P 2(f)| ≤ d̃(P 1, P 2)||f ||∞. (6)


The next proposition shows that the metrics (5) and
(3) coincide for probability measures. Therefore, from
now on we denote both distances with d.


Proposition 1. Let p and p′ be probability measures
on (Ω,A). Then we have that


max
f∈F1


|Epf − Ep′f | = d(p, p′).


Proof. Define the function


F (ω) =


{
1, p(ω) ≥ p′(ω);
0, otherwise.


For any real function f ∈ F1 we have


|Epf − Ep′f | =


∣∣∣∣∣∑
i


(pi − p′i)fi


∣∣∣∣∣
≤


∣∣∣∣∣∑
i


(pi − p′i)Fi


∣∣∣∣∣
= max


A⊂Ω
|p(A)− p′(A)|


= d(p, p′).


The following theorem shows that the metric (5) be-
tween lower expectation operators coincides with the
Hausdorff metric between their credal sets. (A similar
result can be found in [6], Lemma 6.7.)


Theorem 1. Let M1 and M2 be closed convex sets
of probabilities and let P 1 and P 2 be their lower ex-
pectation operators. Then we have that


d(P 1, P 2) = dH(M1,M2). (7)


Proof. First we show that for any probabilities p1 and
p2 we have that


max
f∈F1


|Ep1f − Ep2f | = max
f∈F1


Ep1f − Ep2f. (8)


This follows from the fact that f ∈ F1 implies 1Ω−f ∈
F1 and Ep1f − Ep2f = −(Ep1(1 − f) − Ep2(1 − f))
which implies


max
f∈F1


|Ep1f − Ep2f | = max
f∈F1


max{Ep1f − Ep2f,


Ep1(1− f)− Ep2(1− f)}
= max
f∈F1


Ep1f − Ep2f.


The definition of the Hausdorff distance and the equa-
tion (8) implies that


dH(M1,M2) = max
p1∈M1


min
p2∈M2


max
f∈F1


Ep1f − Ep2f (9)


or in the last expression the roles ofM1 andM2 can
be exchanged, and that case would be treated equally
because of symmetry. Now fix any p1 ∈ M1 and
consider the map:


Γ: M2 ×F1 → R


where


(p2, f) 7→ Ep1f − Ep2f.


Now the set M2 is compact by definition, and the
mapping p2 7→ Γ(p2, f) is continuous and linear,
therefore also convex, for any fixed f ∈ F1. Fur-
thermore for a fixed p2 the mapping f 7→ Γ(p2, f) is
also linear, and therefore concave. Now we can use
the minimax theorem (see [5]: Theorem 2) to obtain:


min
p2∈M2


max
f∈F1


Γ(p2, f) = max
f∈F1


min
p2∈M2


Γ(p2, f).


That is


min
p2∈M2


max
f∈F1


Ep1f − Ep2f = max
f∈F1


min
p2∈M2


Ep1f − Ep2f.







Using the above equality we obtain:


max
p1∈M1


min
p2∈M2


d(p1, p2)


= max
p1∈M1


min
p2∈M2


max
f∈F1


Ep1f − Ep2f


= max
p1∈M1


max
f∈F1


min
p2∈M2


Ep1f − Ep2f


= max
f∈F1


max
p1∈M1


min
p2∈M2


Ep1f − Ep2f


= max
f∈F1


P 1(f)− P 2(f)


= max
f∈F1


P 1(1− f)− P 2(1− f)


= max
f∈F1


P 2(f)− P 1(f).


Finally, using this and the symmetry betweenM1 and
M2, we get


dH(M1,M2) = max{ max
p1∈M1


min
p2∈M2


d(p1, p2),


max
p2∈M2


min
p1∈M1


d(p1, p2)}


= max
f∈F1
{P 2(f)− P 1(f), P 1(f)− P 2(f)}


= max
f∈F1


|P 1(f)− P 2(f)|


= d(P 1, P 2),


which completes the proof.


We will also need the maximal distance between prob-
ability measures belonging to a pair of credal setsM1


and M2 with the corresponding lower and upper ex-
pectation operators P 1, P 1 and P 2, P 2 respectively.
Using Proposition 1 we have that


max
p1∈M1
p2∈M2


d(p1, p2) = max
p1∈M1
p2∈M2


max
f∈F1


|Ep1f − Ep2f |


= max
f∈F1


max
p1∈M1
p2∈M2


|Ep1f − Ep2f |


= max
f∈F1


max{P 1(f)− P 2(f),


P 2(f)− P 1(f)}.


However, instead of taking the maxima over the whole
F1 in the above equation it would be enough to only
consider characteristic functions of subsets of Ω, as
follows from Proposition 1. Therefore


max
p1∈M1
p2∈M2


d(p1, p2) = max
A⊂Ω


max{P 1(1A)− P 2(1A),


P 2(1A)− P 1(1A)}.


It follows that for any pair of lower and upper expec-
tation operators P 1 and P 2 we have that


max
f∈F1
{P 2(f)−P 1(f)} = max


A⊂Ω
{P 2(1A)−P 1(1A)}.


(10)


We will also need some results on convergence of
lower expectation operators. We study the conver-
gence in the metric (5). In proving the convergence
results we will use the result that any decreasing se-
quence of non-empty compact sets is non-empty (see
[4]: Lemma I.5.6).


Proposition 2. Let {Pn}n∈N be an increasing se-
quence of lower expectation operators and {Mn}n∈N
the sequence of the corresponding credal sets. Then
the sequence {Mn}n∈N is decreasing with respect to
set inclusion and the limit


P∞ = lim
n→∞


Pn


exists and
M(P∞) =


⋂
n∈N
Mn.


Moreover, the above credal set is non-empty.


Proof. For every f ∈ F1 we have that the sequence
{Pn(f)} is an increasing sequence bounded from
above by 1 and is therefore convergent. Now take any
p ∈


⋂
n∈NMn. Then by definition, for every f ∈ F1


we have that Epf ≥ P∞(f), so
⋂
n∈NMn ⊆M(P∞).


To see the converse inclusion take any probability p
such that Epf ≥ P∞(f) ≥ Pn for every n ∈ N.
Therefore p ∈ Mn for every n ∈ N and every
f ∈ F1, which implies that p ∈


⋂
n∈NMn. Thus,


M(P∞) ⊆
⋂
n∈NMn. As follows from the above re-


mark, the set
⋂
n∈NMn is non-empty.


Proposition 3. Let {Pn}n∈N be any convergent se-
quence of lower expectation operators and {Mn}n∈N
the sequence of the corresponding credal sets. Then
the set


M∞ =
⋂
n∈N


co
( ⋃
m≥n


Mm


)
,


where co denotes the convex hull, is the credal
set of the limit lower expectation operator P∞ =
limn→∞ Pn. Moreover, the setM∞ is non-empty and
therefore the lower expectation operator P∞ is well
defined.


Proof. First we define the following sequence of lower
expectation operators:


P̃n = inf
m≥n


Pm.


Clearly, the convergence of the sequence {Pn} implies
the convergence of {P̃n} with the same limit. We only
need to see that the credal set of P̃n is co(


⋃
m≥nMm).


To see this take any convergent sequence {pr} in⋃
m≥nMm. For every f ∈ F we have that Epr


f ≥
P̃n(f) and therefore limr→∞Epr


f = Elimr→∞ pr
f ≥







P̃n(f), and thus limr→∞ pr belongs to the credal set
of P̃n(f). Further, given any f ∈ F1 there is some
pr ∈ Mm, for m ≥ n so that Epr


f ≤ P̃n(f) + 1
r .


Since the set of all probabilities on a finite set is com-
pact, the sequence {pr} has a convergent subsequence
converging to a probability p and Epf = P̃n(f).
Thus, P̃n is the lower expectation operator of the set⋃
m≥nMm which implies that its closure is the credal


set of P̃n.


To finish the proof we apply Proposition 2 to the in-
creasing sequence {P̃n} and the corresponding credal
sets co(


⋃
m≥nMn).


Corollary 1. The set of all lower expectation opera-
tors is complete in the metric (5).


4 Imprecise Markov chains


One of the most natural ways to involve imprecision in
a probabilistic model is to allow a set of possible prob-
ability distributions instead of a single one. In the
case of Markov chains such sets can be allowed in place
of transition probabilities as well as initial probability
distributions. Additionally, we usually assume such
sets are closed and convex. This assumption is par-
ticularly useful because, as described in Section 2, the
sets can be equivalently described using lower or up-
per expectation operators. There are of course many
models that allow description of sets of probabilities,
such as interval probabilities (see e.g. [20]) or lower
and upper previsions (see e.g. [18, 19]).


The most basic form used in most of the approaches
taken until now is to put constraints, usually in the
form of intervals, on the probabilities belonging to
the elementary sets (see [8], [11]). The imprecision
concerning the initial distribution is thus presented
through the intervals [pi, qi] which are supposed to
contain the unknown initial probability P (X0 = i).
Similarly, the probabilities of transition from the state
i to j are given in the form of intervals [pij , qij ] sup-
posed to contain the unknown true transition prob-
ability P (Xn+1 = j|Xn = i). Even though the true
probabilities are unknown, it is certain that the sum
of all probabilities is 1. Thus the values within the in-
tervals must be taken so that they sum to 1, or in the
case of transition interval matrices, all rows must sum
to 1. An additional assumption that is usually made
about the intervals is that all values within the inter-
val are reachable or, in particular, that the interval
bounds are reachable. In the common terminology
of imprecise probabilities this requirement is named
coherence. To each set of intervals, the set of prob-
abilities assuming their values within those intervals
can be assigned.


One of the crucial differences between precise and im-
precise probabilities is that a precise probability can
be fully determined by far less information than an
imprecise probability. Thus to determine any pre-
cise probability, only its values on elementary sets are
needed to be found, while the sets of probabilities
able to be represented via simple intervals described
above is fairly limited. (Many examples can be found
e.g. in [20], [19], [18].) Another difference compared
to the classical model is that transition probabilities
that govern transitions of a Markov chain in the im-
precise case may change in time. Thus, we are dealing
with possibly non-homogeneous chains, which conse-
quently require considering non-homogeneous matrix
products.


Now we introduce the terminology used to describe
imprecise Markov chains. We will assume a non-
empty set Ω whose elements are called states. For
simplicity we will assume they are the consecutive in-
tegers 1, . . . ,m, since in the basic model their val-
ues have no special consequences. We will follow the
approach similar to the one taken by de Cooman et
al. [2] to describe the sets of probabilities using the
corresponding expectation operators, usually this will
mean lower expectation operators.


We will thus assume a set M0 of initial probability
distributions and let P 0 be its lower expectation oper-
ator (see (1)). Further, we assume a set of transition
matrices P, whose rows are separately specified, i.e.
for any two transition matrices p and p′ with rows pi
and p′i replacing the ith row of p with p′i results in a
matrix that still belongs to P. By adopting this prop-
erty we can associate row sets of distributions Pi to P
so that any independent choice of rows from the row
sets gives a transition matrix in P. If additionally we
assume that row sets are closed and convex, we have
the following important property.


Lemma 1. Let P be a convex set of transition ma-
trices with separtely specified rows and let M be a
convex set of probabilities. Then the set of probability
distributions at the next step M · P is a convex set.


We slightly modify the proof of [8]: Lemma 2.5.


Proof. We prove the lemma by showing that given the
probabilities q and q′ ∈ M and transition matrices p
and p′ ∈ P then, whenever α, β ≥ 0 and α+ β = 1,


(αq · p+ βq′ · p′) = (αq + βq′)r (11)


with r ∈ P.







Take j ∈ Ω. We have


(αq · p+ βq′ · p′)j = α


m∑
i=1


qipij + β


m∑
i=1


q′ip
′
ij


=
m∑
i=1


(αqipij + βq′ip
′
ij)


=
m∑
i=1


(αqi + βq′i)
(


αqi
αqi + βq′i


pij +
βq′i


αqi + βq′i
p′ij


)
.


Thus taking r with rij = αqi


αqi+βq′i
pij + βq′i


αqi+βq′i
p′ij sat-


isfies (11). Notice that ith row of r is a convex com-
bination of some elements of Pi and therefore itself
a member of Pi too. Now, because rows are sepa-
rately specified the resulting matrix is also a member
of P.


To each row set of probabilities we associate the lower
expectation operator T i. Let T then be the matrix
lower expectation operator whose ith row is T i. We
will say that the set P is the credal set of T .


Let X0, X1, . . . , Xn, . . . be a sequence of random vari-
ables assuming the values in Ω. According to the
given assumptions we have


P (X0 = i) = q0
i ,


where q0 ∈ M0. The role of the transition matrices
is given by


P (Xn+1 = j|Xn = i) = pnij ,


where pn ∈ P.


A basic feature of the theory of Markov chains is the
ability to calculate the probability of being in some
state j at time n given an initial probability. Of
course, since the initial and transition probabilities
are imprecise, the answer will also be given in the
form of an imprecise probability, that is, in the form
of a set of probabilities. Previous works such as Hart-
fiel’s [8] provide the general answer to this question
based on the classical theory. The set of possible prob-
ability distributions at step n is equal to the set of all
possible initial distributions multiplied by all possi-
ble sequences of transition matrices. Let Mn denote
the set of possible probability distributions at step n
given the initial distribution M0. Then we have


Mn = {q · p1 · . . . · pn | q ∈M0, pi ∈ P
for every i = 1, . . . , n} =Mn−1 · P. (12)


It follows from Lemma 1 that in the case where the set
of transition matrices P has closed convex separately
specified row sets, everyMn is also a closed convex set


of probabilities. Therefore, they can be equivalently
represented using lower expectation operators. The
lower expectation operator corresponding to the set
Mn is denoted by Pn.


To calculate the values of Pn on real functions on Ω
we follow the approach proposed in [2]. They first
calculate the nth power of the transition operator T
using so-called backwards recursion. This method can
be described in the following way. Let f be any real
valued map on Ω. Every expectation operator assigns
to it a real number corresponding to the lower ex-
pectation. In particular, every row lower expectation
operator T i assigns to it the value T i(f). A transition
operator T thus assign to every f a vector of values


T (f) =



T 1(f)
T 2(f)


...
Tm(f)


 . (13)


Now T (f) is another real valued function on Ω to
which a new instance of T can be applied to obtain
T 2(f) and so on. Finally, applying P 0 to Tn(f) gives
exactly the lower expectation of the lower expectation
operator Pn corresponding to the set Mn. For the
proof see [2].


Once probabilities of states on different steps are cal-
culated, we are often interested in the limiting be-
haviour of these probabilities. Thus, the question is
what can be said about the probability P (Xn = i) for
a large n and how does it depend on the initial dis-
tribution? In the classical theory, Perron-Frobenius
theorem assures convergence for the class of regu-
lar Markov chains (a Markov chain with the transi-
tion matrix p is regular if for some positive integer r
the power pr has only strictly positive entries). The
Perron-Frobenius theorem states that the probabili-
ties p(n)


i = P (Xn = i) converge to some unique limit
probabilities independently on the initial distribution.


Regularity is therefore a sufficient condition for
unique convergence of a Markov chain, but not also
a necessary one. This is true already in the case of
precise Markov chains, where a more general criteria
are derived using coefficients of ergodicity that besides
telling whether a chain is convergent also measure the
rate of convergence (see e.g. Seneta [15]). Hartfiel [8]
then applies a generalised coefficient of ergodicity to
study the convergence of Markov set-chains. Recently,
de Cooman et al. [2] find that the conditions applied
by Hartfiel are in general too strong to assure the con-
vergence of imprecise Markov chains. They define a
class of regularly absorbing imprecise Markov chains,
based on the accessibility between states, for which
they show unique convergence.







5 Coefficients of ergodicity


Coefficients of ergodicity or contraction coefficients
measure the rate of convergence of Markov chains.
Seneta in his paper [15] defines a general coefficient
of ergodicity for a stochastic matrix p with no zero
columns to be


τ(p) = sup
x,y


d(xp, yp)
d(x, y)


where d is some metric on the set of vectors with
positive coordinates and whose components sum to 1
and x, y are such vectors. The value of τ(p) is between
0 and 1 and further τ has the following properties:


(i) τ(p1p2) ≤ τ(p1)τ(p2) for every pair of stochastic
matrices with no zero columns p1 and p2;


(ii) τ(p) = 0 whenever rank of p is 1 i.e. p = 1v for
some vector v.


Depending on the metrics, different coefficients of er-
godicity are used. In this paper we are concerned with
the coefficient generated by the metric (3). This coef-
ficient was introduced by Dobrushin [3] and its direct
evaluation is derived by Paz [13]:


τ(p) =
1
2


max
i,j


m∑
s=1


|pis − pjs|.


In view of (3), the above can be stated as


τ(p) = max
i,j


d(pi, pj). (14)


where pi and pj denote the ith and jth row of p re-
spectively.


For the case of imprecise Markov chains, Hartfiel [8]
extends the concept of a coefficient of ergodicity to
Markov chains where sets of transition probabilities
are considered. For a set of transition matrices P he
defines the uniform coefficient of ergodicity as


τ(P) = sup
p∈P


τ(p).


If P is an interval [P,Q], i.e. P = {p | p is a stochastic
matrix such that P ≤ p ≤ Q}, then he finds that


τ(P) ≤ 1
2


max
i,j


m∑
k=1


max{|qik − pjk|, |qjk − pik|}.


where pik and qik are the components of P and Q
respectively.


In our setting of lower and upper expectation opera-
tors, the calculation of the uniform coefficient of er-
godicity is given by the following proposition.


Proposition 4. Let P be a set of transition matrices
and let T and T be its lower and upper expectation
matrices. Then we have that


τ(P) = max
i,j


max
f∈F1


T i(f)− T j(f)


= max
i,j


max
A⊂Ω


T i(1A)− T j(1A).


Proof. The second equality follows from (10). Let p ∈
P be arbitrary transition matrix. Then its ith and jth
row are arbitrary probability distributions belonging
to the credal sets of ith and jth row of P. We have
that


τ(P) = max
p∈P


τ(p)


= max
i,j


max
pi∈Mi
pj∈Mj


d(pi, pj)


= max
i,j


max
A⊂Ω


max{T i(1A)− T j(1A),


T j(1A)− T i(1A)}
= max


i,j
max
A⊂Ω


T i(1A)− T j(1A),


as required.


Thus, we may define τ(T ) = τ(M(T )).


The uniform coefficient of ergodicity can be used as a
contraction measure for a set of transition matrices.
The following theorem holds ([8]: Theorem 3.3):


Theorem 2. LetM1 andM2 be non-empty compact
sets of probabilities. Then


dH(M1 · P,M2 · P) ≤ τ(P)dH(M1,M2).


A stochastic matrix p whose coefficient of ergodicity
τ(p) is strictly smaller than 1 is called scrambling (see
[15]). Further if P is a set of transition matrices such
that τ(p1 · p2 · · · pr) < 1 for any matrices pi ∈ P then
such a set is called product scrambling (see [8]), and
r is then called its scrambling integer. Thus we have
that τ(Pr) < 1. Something very similar can be said
about lower expectation matrices. We will say that
a lower expectation matrix T is scrambling whenever
τ(T ) < 1 and if instead only τ(T r) < 1 we will say
that it is product scrambling with scrambling integer
r.


Theorem 2 implies the following more general corol-
lary ([8]: Theorem 3.4):


Corollary 2. Let P be be product scrambling with
scrambling integer r and letM0 be a non-empty com-
pact set of probabilities. Then, for any positive integer
h,


dH(M0Ph,M∞) ≤ Kβh







where K = τ(Pr)−1dH(M0,M∞) and β = τ(Pr) 1
r <


1 and M∞ is the unique compact set of probabilities
such that


M∞P =M∞.
Thus,


lim
h→∞


M0Ph =M∞.


Theorem 2 implies the convergence of a Markov set-
chain in the Hausdorff metric. Moreover, if τ(P) < 1
for a set of transition matrices then given any initial
probability distribution q0 and a sequence of tran-
sition matrices {pi}i∈N such that every pi ∈ P we
have that the sequence qn = q0p1 · · · pn converges
to some p∞. This is a consequence of the fact that
τ(p1 · · · pn)→ 0 as n tends to infinity. Moreover, since
clearly τ(P ′) ≤ τ(P) for every P ′ ⊆ P, it follows that
given a convergent Markov chain with the set of tran-
sition probabilities P then a Markov chain with the
set of transition probabilities P ′ is also convergent.


De Cooman et al. [2] show that it not necessary to
require that every possible transition matrix is a con-
traction, but instead, what is needed is only that the
corresponding upper (or lower) expectations are be-
coming more and more similar. As a simple demon-
stration consider the following example.
Example 1. Let a set of transition matrices on the
set Ω = {1, 2} be given by the following lower and
upper transition matrix


P =
(


0 0
0 0


)
and Q =


(
1 1
1 1


)
.


Clearly this set contains the matrix(
0 1
1 0


)
which is not contractive. However, given any initial
set of distributions the Markov chain with the above
set of transition matrices converges to the set of all
probability distributions on Ω.


De Cooman et al. further find sufficient conditions
for unique convergence by studying the accessibility
relation between states. Our aim here is to find a
coefficient of ergodicity that would describe this type
of convergence for imprecise Markov chains. We im-
plement the following idea. Given a lower transition
matrix T , the backwards recursion allows the calcula-
tion of its powers Tn for every positive integer n. In
the case of a precise transition matrix, the rows of its
consequent powers get more and more similar, which
is measured by the coefficient of ergodicity (14). In
the case of a lower expectation matrix, the same effect
will be achieved by measuring the distances between
the row lower expectation operators corresponding to
the powers of T .


Definition 1. Let T be a transition lower expecta-
tion matrix. Then we define the weak coefficient of
ergodicity as


ρ(T ) = max
f∈F1
i,j


|T i(f)− T j(f)|,


where T i and T j are ith and jth row lower expectation
operators respectively.


The following proposition is an immediate conse-
quence of the definitions.


Proposition 5. Let T be a transition lower expecta-
tion matrix with rows T i. Then:


ρ(T ) = max
i,j


d(T i, T j).


Proposition 6. Let P 1 and P 2 be lower expectation
operators and T a transition lower expectation matrix.
Then we have that


d(P 1T , P 2T ) ≤ ρ(T )d(P 1, P 2).


Proof. Denote cf = T (f) (see (13)) and let cf and
cf be its minimal and maximal element respectively.
Further let P̃1 = P 1T and P̃2 = P 2T . Then using
constant additivity and (6) we obtain


|P̃1(f)− P̃2(f)| = |P1(cf )− P2(cf )|
= |P 1((cf − cf ) + cf )


− P 2((cf − cf ) + cf )|
≤ d(P 1, P 2)||cf − cf ||∞
= d(P 1, P 2)(cf − cf )


≤ d(P 1, P 2)ρ(T )


Corollary 3. Let R and S be any transition lower
expectation matrices. Then:


ρ(RS) ≤ ρ(R)ρ(S).


Proof. Denote T = RS and let T i and T j be the ith
and jth row lower expectation operators. We have
that, for instance,


T i(f) = RiS(f).


Proposition 6 then yields


|T i(f)− T j(f)| = |RiS(f), RjS(f)|
≤ d(Ri, Rj)ρ(S)


≤ ρ(R)ρ(S),


as required.







The next corollary is now immediate.


Corollary 4. For any lower expectation operator T
we have that


ρ(Tn) ≤ ρ(T )n.


Thus, it may happen that even if ρ(T ) = 1 it may be
that ρ(Tn) < 1.


The following proposition shows that the credal set
of a contractive lower expectation operator contains
at least one contractive transition matrix. The con-
verse does not hold, as demonstrated by the example
following the proposition.


Proposition 7. Let T be a transition lower expec-
tation matrix such that ρ(T ) < 1. Then there ex-
ists a precise transition matrix p ∈ M(T ) such that
τ(p) < 1.


Proof. Denote ρ := ρ(T ). Then for any pair of indices
i and j we have d(T i, T j) ≤ ρ. Coherence of T implies
that for every set A ⊂ Ω we have a probability mea-
sure pA such that pAi (A) = T (1A) for every 1 ≤ i ≤ m.
Then |pAi (A)− pAj (A)| < 1 and |pAi (A′)− pAj (A′)| ≤ 1
for any A′ ⊂ Ω. Let λA > 0 for every A ⊂ Ω and
let
∑
A⊂Ω λA = 1. Let p =


∑
A⊂Ω λAp


A. Clearly
then pi(A) − pj(A) < 1 for every A ⊂ Ω and thus
τ(p) < 1.


Example 2. Let the lower expectation operator T =(
1 0
0 0


)
be given. Thus the credal set of T contains all


possible stochastic matrices with the first row equal
to (1, 0). Clearly, the weak coefficient of ergodicity
of T = Tn, for every n ∈ N, is equal to 1; however,
the credal set contains, for instance, the matrix p =(


1 0
0.5 0.5


)
, whose coefficient of ergodicity is equal to


0.5.


Proposition 8. Let T be a transition lower expecta-
tion matrix such that ρ(T ) < 1. Then there exists a
lower expectation operator P∞ satisfying the property:


P∞T = P∞. (15)


We will call a lower expectation operator satisfying
the property (15) an invariant lower expectation op-
erator for a transition lower expectation matrix T .


Proof. Consider the sequence Pn = P 0T
n. We will


show that it is a Cauchy sequence in the metric (5).
To see this, take some positive integers m and n with
m > n. Using the fact that d(P , P ′) ≤ 1 for any pair


of expectation operators, we have that


d(Pn, Pm) = d(P 0T
n, P 0T


m)


= d(P 0T
n, P 0T


m−nTn)


≤ d(P 0, P 0T
m−n)ρ(Tn)


≤ ρ(Tn)
≤ ρ(T )n,


and since ρ(T ) < 1 it follows that, with n large
enough, this distance can be arbitrarily small. Be-
cause of the completeness of the set of lower expecta-
tion operators (Corollary (1)), the sequence converges
to some lower expectation operator P∞.


Clearly the invariant lower operators of T is the same
as the one for Tn, and thus the above result also holds
for a transition lower expectation matrix T such that
ρ(Tn) < 1.
Theorem 3. Let T be a transition lower expectation
matrix with ρ(T ) < 1 and P 0 an initial lower expecta-
tion operator and P∞ the invariant lower expectation
operator for T . Then


d(P 0T
n, P∞) ≤ d(P 0, P∞)ρ(T )n.


Therefore,
lim
n→∞


P 0T
n = P∞


independently of P 0, and P∞ is thus the unique in-
variant lower expectation operator for T .


Proof. Using (15) and Proposition 6 and Corollary 4
we obtain


d(P 0T
n, P∞) = d(P 0T


n, P∞T
n)


≤ d(P 0, P∞)ρ(T )n.


Now since ρ(T ) < 1 the right hand side converges to
0.


A corollary analogous to Corollary 2 of the last the-
orem can also be stated. We extend the notion of
scrambling lower expectation matrices to the case
where the weak coefficient of ergodicity is used. We
will say a lower expectation matrix T is weakly scram-
bling if ρ(T ) < 1 and if ρ(T ) = 1 but ρ(T r) < 1
for some positive integer r that it is weakly product
scrambling with scrambling integer r.
Corollary 5. Let T be weakly product scrambling with
scrambling integer r and let P 0 be a lower expectation
operator. Then, for any positive integer h,


d(P 0T
h, P∞) ≤ Kβh


where K = ρ(T r)−1d(P 0, P∞) and β = ρ(T r)
1
r .


Thus,
lim
k→∞


P 0T
k = P∞.







The type of convergence measured by the weak coef-
ficient of ergodicity is clearly closely related to that
described in [2]. This suggests that regularly absorb-
ing and weakly scrambling lower expectation matrices
are closely related, if not identical. One of the direc-
tions in our future research is therefore to clarify this
relation.
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