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Abstract

This article is devoted to the propagation of families
of confidence intervals obtained by non-parametric
methods through multivariate functions comprising
the semantics of confidence limits. At fixed confidence
level, local random sets are defined whose aggregation
admits the calculation of upper probabilities of events.
In the multivariate case, a number of ways of combi-
nations is highlighted to encompass independence and
unknown interaction using random set independence
and Fréchet bounds. For all cases we derive formulas
for the corresponding upper probabilities and elabo-
rate how they relate. The methods are exemplified by
means of an example from structural mechanics.

Keywords. Confidence intervals, non-parametric
models of uncertainty, random sets, fuzzy sets, up-
per probability, independence, unknown interaction,
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1 Introduction

In order to render models of imprecise probability the-
ory operative, their semantics have to be developed.
It has been observed [5, 10, 11] that the idea of con-
fidence limits can provide a workable basis for con-
structing imprecise probability models. In particular,
it has been argued in [12, 13] that random sets con-
structed by Tchebycheff’s inequality can serve as a
non-parametric model of the variability of a param-
eter, given its mean value and variance as sole infor-
mation.

This article develops the concept of using confidence
limits for estimating upper and lower probabilities of
events. While the papers [5, 12, 13] addressed the
univariate case only, it is demonstrated in [10] how
to generate joint fuzzy sets from families of marginal
confidence intervals using the product t-norm for in-
dependence and t-norms based on Fréchet bounds for
unknown dependency. In this paper we demonstrate

how multivariate input can be treated using a local
random set approach.

Suppose we are given confidence intervals Iα of some
parameter at level α, 0 < α ≤ 1. Then the probabil-
ity of Iα is bigger than 1 − α, while the probability
of its complement is less than α. The key idea is to
define local random sets at level α, formed by Iα and
Ic
α with weights consistent with the confidence limits.

In this way, the upper probability of an event A can
be computed as the smallest α for which A lies out-
side the confidence interval Iα. This procedure gives
a conclusive interpretation of upper probabilities in
terms of confidence limits.

The plan of this paper is as follows:

In Section 2 families of non-parametric confidence in-
tervals are generated by means of Tchebycheff’s in-
equality.

In Section 3 we introduce the concept of local random
sets and its semantics.

In Section 4 it is described how to propagate this kind
of uncertainty through univariate functions and it is
shown that the local random set approach is consis-
tent with the fuzzy and random set approaches.

In Section 5 we address the multivariate case and gen-
erate local joint random sets in various ways consis-
tent with the confidence interpretation. This leads
to different estimates for the upper probabilities of
events. We derive computational formulas for all cases
and show how the results relate to each other and to
random set and fuzzy set independence and to the
case where nothing is known about how the variables
interact.

In Section 6, the method is applied to compute upper
distribution functions for the limit state of a beam
bedded on two springs where the uncertainty of the
spring constants is modelled by families of confidence
intervals.



2 Non-parametric models of the

variability of a parameter X

In this article we model the variability of a parameter
X by a family I of non-parametric confidence intervals
Iα using Tchebycheff’s inequality, cf. [5, 13].

Let a random variable X be given with expectation
µ = E(X) and variance σ2 = V(X). Tchebycheff’s
inequality

P (|X − µ| >
σ√
α

) ≤ α, α ∈ (0, 1]

leads to non-parametric confidence intervals

Iα =

[

µ − σ√
α

, µ +
σ√
α

]

, α ∈ (0, 1]

for the variability of X at confidence level 1−α, given
its expectation and variance as sole information. This
follows from the fact that the complement Ic

α of Iα is
the set used as the argument of P in Tchebycheff’s
inequality and by

P (Ic
α) ≤ α, P (Iα) = 1 − P (Ic

α) ≥ 1 − α. (1)

Then the confidence we have in Iα is 1−α or greater.
All these confidence intervals together are a family
denoted by I = {Iα}α∈(0,1] and they are nested, since
Iα ⊇ Iβ if α ≤ β. This property will be also impor-
tant in the multivariate case later on. A family I is
visualized by plotting in Fig. 1 the interval bounds of
Iα, α ∈ (0, 1], at levels α.
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Figure 1: Example of a family I.

3 The univariate case

Let a family I of confidence intervals Iα, α ∈ (0, 1],
generated as in the previous Section be given.

3.1 Local random sets at level α

We assume that α ∈ (0, 1] is fixed. Equipping the two
intervals Iα and Ic

α with weights m(Iα) and m(Ic
α) we

get a finite random set. The possible values of these
weights are determined by

m(Iα) = P (Iα) and m(Ic
α) = P (Ic

α)

and the inequalities (1) where the weight m(Iα) of Iα

corresponds to the confidence we have in the set Iα.
We call such a random set corresponding to a certain
level α local random set.

For an arbitrary event A there are three possibilities
for the relations to the two focal sets. These rela-
tions and the corresponding upper probabilities Pα

are shown in the following table:

Cases Pα(A) ∈
(i) A ∩ Iα = ∅ [0, α]

(ii) A ∩ Ic
α = ∅ [1 − α, 1]

(iii) A ∩ Iα 6= ∅ and A ∩ Ic
α 6= ∅ 1

The local upper probability Pα(A) at level α for an
event A is obtained by

Pα(A) = m(Iα)χ(A ∩ Iα 6= ∅)+

+ m(Ic
α)χ(A ∩ Ic

α 6= ∅)

where χ : R → {0, 1} is the indicator function. Here
the upper probabilities are intervals because of the
inequalities (1) for the weights.

If A has the role of the “bad” and undesired event,
case (i) is the most interesting one, because its mean-
ing is:

If A is outside the confidence interval Iα at
confidence level 1 − α, then we can say for sure that

A occurs only with probability α, at most.

To avoid interval-valued weights and upper probabil-
ities we take always the upper bounds of Pα in the
above table, that means

Pα(A) :=

{

α if A ∩ Iα = ∅,

1 otherwise.

Then we are on the safe side in all three cases.

In general we are not in the interesting case (i) for a
given A, but we can try to achieve the situation of
case (i) by increasing α. On the other hand, if we
are already in case (i), we should try to decrease α

to get a smaller upper probability Pα. This leads to
the following rule for the upper probability P (A), cf.
Fig. 2:

Find the confidence interval Iα∗ with the smallest
α∗ ∈ (0, 1] among those confidence intervals Iα with

Iα ∩ A = ∅. Then P (A) = α∗. If we do not find
such an interval Ia∗ , then P (A) = 1.

With inf{∅} = 1 to encompass the case where no Ia∗

can be found, we get the following formula for the



upper probability:

P (A) = inf{α ∈ (0, 1] : Iα ∩ A = ∅} = α∗. (2)
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Figure 2: Computation of P (A).

3.2 Interpretation of I as a random set and

fuzzy set

Together with the uniform distribution on the interval
(0, 1], the family I = {Iα}α∈(0,1] of confidence inter-
vals is an infinite random set [3, 4, 11]. Note that now
all Iα ∈ I together play the role of focal sets and not
only two sets Iα, Ic

α for fixed α as before. Then for
the upper probability P (A) (or Plausibility) we get

P (A) = Pl(A) =

∫

β: Iβ∩A 6=∅

dβ = 1 −
∫

β: Iβ∩A=∅

dβ =

= 1 −
∫ 1

inf{β: Iβ∩A=∅}=α∗

dβ = α∗,

because the confidence intervals Iβ are nested.

Now we interpret the family I of nested confidence
intervals Iα as fuzzy numbers [14] defined by the α-
level sets Iα. The membership function µ is given by
the endpoints of the intervals Iα as in Fig. 1. Then
the upper probability P (A) (or Possibility) is given
by

P (A) = Pos(A) = sup{µ(x) : x ∈ A} =

= sup{α ∈ (0, 1] : Iα ∩ A 6= ∅} =

= inf{α ∈ (0, 1] : Iα ∩ A = ∅} = α∗

where sup{∅} = 0.

So all three interpretations lead to the same result for
the upper probability P (A).

4 Propagation of uncertainty trough

a univariate function g

4.1 Preliminaries

Let a continuous function

g : D ⊆ R −→ R : x 7→ g(x)

and a family I of confidence intervals Iα be given
where we assume that Iα ⊆ D which we achieve sim-
ply by truncating Iα if necessary.

Further we are using in the following that

P (g(X) ∈ A) = P (X ∈ g−1(A)),

Iα ∩ g−1(A) = ∅ ⇐⇒ g(Iα) ∩ A = ∅ and

Iα ∩ g−1(A) 6= ∅ ⇐⇒ g(Iα) ∩ A 6= ∅

where g(Iα) = {g(x) : x ∈ Iα} is the image of Iα

under g and g−1(A) = {x : g(x) ∈ A} the inverse
image of A.

Now we compute P (g(X) ∈ A) for the local random
set approach and show that we get the same result as
for the random set and for the fuzzy set interpretation.

4.2 Local random set approach

For the local random set approach we have

P (g(X) ∈ A) = P (X ∈ g−1(A)) =

= inf{α ∈ (0, 1] : Iα ∩ g−1(A) = ∅} =

= inf{α ∈ (0, 1] : g(Iα) ∩ A = ∅} = α∗.

The only difference to Eq. (2) is that now g(Iα) is
used instead of Iα. This motivates the definition

g(I) = {g(Iα)}α∈(0,1]

which is the family of the images of all confidence
intervals. Propagating I through a function in the
univariate case means simply replacing I by g(I) and
applying formula (2), cf. Fig. 3.
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Figure 3: Computation of P (g(X) ∈ A).

4.3 Random set and fuzzy set approach

By the arguments presented in the preliminaries and
in Section 3 we get for the random set interpretation

P (g(X) ∈ A) = Pl(g(X) ∈ A) =

∫

β: g(Iβ)∩A 6=∅

dβ =

= 1 −
∫

β: g(Iβ)∩A=∅

dβ = 1 −
∫ 1

α∗

dβ = α∗



since again the g(Iβ) are nested. Further we get for
the fuzzy set interpretation of I with α-level sets Iα:

P (g(X) ∈ A) = Pos(g(X) ∈ A) =

= sup{α ∈ (0, 1] : g(Iα) ∩ A 6= ∅}
= inf{α ∈ (0, 1] : g(Iα) ∩ A = ∅} = α∗.

4.4 Summary

As we have seen the local random set approach pre-
serves the method of searching for the “best” confi-
dence interval when applying a univariate function g.

More important is, that the result is consistent with
the random set and fuzzy set interpretation of the
family of confidence intervals. But this is only true
in the univariate case. It is a wellknown fact that the
random set and the fuzzy set approach lead to dif-
ferent results in the multivariate case which will also
have consequences for the local random set version.

5 The multivariate case

Here we assume that for n random variables
X1, . . . ,Xn families I1, . . . , In of confidence intervals
are given. Then we have to determine the joint un-
certainty of all these variables which will be done by
means of local joint random sets obtained by combin-
ing confidence intervals I1,α1

∈ I1, . . . , In,αn
∈ In.

The goal of this and the next Section is to get a for-
mula similar to the univariate version

P (g(X) ∈ A) = inf{α ∈ (0, 1] : g(Iα) ∩ A = ∅}.

But such a formula will not be uniquely defined be-
cause we have several possibilities of choice

• for the set of confidence intervals considered to
be combined and

• for the weights used for the local joint random
set.

5.1 Combination of marginal confidence

intervals

Let the joint confidence set Jα be given by

Jα = I1,α1
×· · ·×In,αn

with α = (α1, . . . , αn). Then J = {Jα}α∈S is the
family of all joint confidence sets depending on which
set S of indices α is considered.

If S = SR = (0, 1]n then all possible combinations
of confidence intervals are used, exactly as the joint
focal sets are generated for random set independence.

A second possibility is to combine only confidence in-
tervals of the same level α similar to the combination
of the α-level sets for fuzzy set independence. In this
case we have the set

S = SF = {α ∈ (0, 1]n : α1 = α2 = · · · = αn} ⊆ SR

which has the advantage that the number of joint con-
fidence sets does not grow with the number of vari-
ables. For simplification we will then also use the
notation

J = {Jα}α∈[0,1] = {I1,α×· · ·×In,α}α∈[0,1]

for the family of joint confidence sets.

5.2 Local joint random sets

For two variables X1 and X2 the combination of a
confidence interval I1,α1

∈ I1 at confidence level 1−α1

with a confidence interval I2,α2
∈ I2 at confidence

level 1 − α2 means to generate a local joint random
set with focal sets

I1,α1
× I2,α2

, Ic
1,α1

× I2,α2
, I1,α1

× Ic
2,α2

, Ic
1,α1

× Ic
2,α2

from the marginal local random set at level α1 with
focal sets I1,α1

, Ic
1,α1

for the first variable and from
the marginal local random set at level α2 with focal
sets I2,α2

, Ic
2,α2

for the second one, cf. Fig. 4. The
focal set Jα = I1,α1

× I2,α2
, α = (α1, α2), is then the

joint confidence set.
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Figure 4: Joint focal sets I1,α1
× I2,α2

, Ic
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,

I1,α1
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2,α2
and Ic

1,α1
× Ic

2,α2
.

Computation of the local upper probability Pα(A):

In the following we do not care about how an event A

with empty intersection with the joint confidence set
I1,α1

× I2,α2
hits the remaining three focals sets. We



assume the worst case (hitting all three focals sets),
that means

Pα(A) = m(I1,α1
× Ic

2,α2
) + m(I1,α1

× Ic
2,α2

)+

+ m(Ic
1,α1

× I2,α2
)

= 1 − m(I1,α1
× I2,α2

) = P ((I1,α1
× I2,α2

)c)

which relieves us from computing images of sets where
the complements are involved.

For n variables we have then

Pα(A) = 1 − m(I1,α1
×· · ·×In,αn

)

for (I1,α1
×· · ·×In,αn

) ∩ A = ∅.

5.3 The local joint weight

The main task is to determine the weight m(I1,α1
×

I2,α2
) of the joint confidence set I1,α1

× I2,α2
which

represents the confidence we have in this set.

This weight is not uniquely determined, because joint
probability distributions are not unique in general.
The weights of all four joint focal sets (see Fig. 4) has
to be chosen in a way that the horizontal and verti-
cal sums in the following table lead to the marginal
weights mi which are either α1 or 1 − α1 for the first
variable and either α2 or 1 − α2 for the second one:

m2(I
c
2,α2

) = α2 m(I1,α1
× I

c
2,α2

) m(Ic
1,α1

× I
c
2,α2

)

m2(I2,α2
) = 1 − α2 m(I1,α1

× I2,α2
) m(Ic

1,α1
× I2,α2

)

m1(I1,α1
) = 1 − α1 m1(I

c
1,α1

) = α1

5.3.1 Random set independence

In the case of random set independence the weight of
the joint confidence set is given by the product of the
marginal weights. For n variables we have then

m(I1,α1
×· · ·×In,αn

) =

n
∏

i=1

mi(Ii,αi
) =

n
∏

i=1

(1 − αi)

which leads to the local upper probability

Pα(A) = 1 − m(I1,α1
×· · ·×In,αn

) = 1 −
n
∏

i=1

(1 − αi)

if (I1,α1
×· · ·×In,αn

) ∩ A = ∅.

If it is known that the uncertain variables are inde-
pendent, random set independence is one possibility
to take the independence of the variables into account.
We note that there are other notions of independence
such as strong independence and epistemic indepen-
dence [2, 6, 7, 8].

5.3.2 Lower and upper bounds for the focal

weights m(I1,α1
×· · ·×In,αn

)

Using the bounds of Fréchet [9] for joint probability
distributions we get in the 2-dimensional case for the
joint weight m(I1,α1

× I2,α2
)

max(m(I1,α1
) + m(I2,α2

) − 1, 0) ≤ m(I1,α1
×I2,α2

) ≤
≤ min(m(I1,α1

),m(I2,α2
))

and with m(Ii,αi
) = 1 − αi

max(1 − α1 − α2, 0) ≤ m(I1,α1
× I2,α2

) ≤
≤ min(1 − α1, 1 − α2).

Further using that the local upper probability
Pα(A) = 1−m(I1,α1

×I2,α2
) for (I1,α1

×I2,α2
)∩A = ∅

leads to lower and upper bounds

max(α1, α2) ≤ Pα(A) ≤ min(α1 + α2, 1)

for Pα(A).

With Frechet’s version of the inequality for n variables
we get then the bounds

max
i=1,...,n

(αi) ≤ Pα(A) ≤ min(α1 + · · · + αn, 1).

We use these bounds if nothing is known about how
the uncertain variables interact.

5.4 Levels of the joint confidence set

These different approaches have only an influence on
the level of the joint confidence sets, but not on the
sets itself.

For the three different approaches (random set inde-
pendence, lower bound and upper bound) we have
different levels described by the level function

ℓ(α) =



















max
i=1,...,n

(αi) lower bound,

1 −∏n

i=1(1 − αi)
random set
independence,

min(α1 + · · · + αn, 1) upper bound

which leads to the upper probability

P
S

ℓ (A) = inf
α∈S

{ℓ(α) : Jα ∩ A = ∅}

where the subscript ℓ indicates the level function and
the superscript S the set of the (α1, . . . , αn) consid-
ered.

5.5 Propagating uncertainty through a

multivariate function g

Let a continuous multivariate function

g : D ⊆ R
n → R : x 7→ g(x)



be given.

Using the same ideas as in the univariate case we get
now the desired formula for the upper probability

P
S

ℓ (g(X) ∈ A) =

= inf
α∈S

{ℓ(α) : Jα ∩ g−1(A) = ∅} =

= inf
α∈S

{ℓ(α) : g(Jα) ∩ A = ∅}.

We note that this is the same formula as in the uni-
variate case with the only difference that the level ℓ(α)
of the resulting interval g(Jα) = g(I1,α1

×· · ·×In,αn
)

may change according to the chosen level function ℓ

and that the upper probability depends on the set of
confidence intervals considered for combination which
is indicated again by ℓ and S.

5.6 Notations

We introduce the following notations for the upper

probability P
S

ℓ (A) = infα∈S{ℓ(α) : Jα ∩ A = ∅}
depending on ℓ and S.

If all possible combinations of confidence intervals are
allowed, S = SR, we indicate this by the superscript
R:

Notation level ℓ(α)

P
R

lower max
i=1,...,n

(αi) lower Fréchet bound

P
R

indep 1−∏n

i=1(1−αi) random set
independence

P
R

upper min
(
∑n

i=1 αi, 1
)

upper Fréchet bound

If we consider only combinations of confidence inter-
vals of the same level α, S = SF, we indicate this by
the superscript F:

Notation level ℓ(α)

P
F

lower α lower Fréchet bound

P
F

indep 1 − (1 − α)n random set
independence

P
F

upper min(nα, 1) upper Fréchet bound

Now we recall the definitions of the upper probabili-
ties for random set independence, fuzzy set indepen-
dence and unknown interaction in the multivariate
case where the notations are given in the following
table:

Notation

PR random set independence

PF fuzzy set independence

PU unknown interaction

The upper probability for random set independence

(joint plausibility measure) is defined by

PR(A) =

∫

(0,1]n

χ(Jβ ∩ A 6= ∅) dβ

where the Jβ = I1,β1
×· · ·×In,βn

has the meaning of
joint focal sets.

The upper probability for fuzzy set independence
(joint possibility measure) is given by

PF(A) = sup{α ∈ (0, 1] : Jα ∩ A 6= ∅}

where Jα = I1,α×· · ·×In,α are now the joint α-level
sets.

In the case where we do not know how the variables
are correlated or interact the upper probability for
unknown interaction is defined by

PU(A) = sup{P (A) : P ∈ MU}

where MU is the biggest set of all joint probability
measures generated by marginal probability measures
compatible with the families of confidence intervals.

For upper distribution functions defined by

F
S

ℓ (x) = P
S

ℓ ((∞, x])

we use the analogous notation as presented in the

above tables, e.g. F
R

indep is the upper distribution
function for ℓ(α) = 1 −∏n

i=1(1 − αi) and S = SR.

5.7 The ordering of the upper probabilities

With β ≤ α defined by βi ≤ αi, i = 1, . . . , n, we have
the order relation

Jα ⊆ Jβ ⇐⇒ β ≤ α

since all Ii are families of nested confidence intervals.

Let an event A be given. Then we have always an
α ∈ SR such that

P
SR

ℓ (A) = inf
β∈SR

{ℓ(β) : Jβ ∩ A = ∅} = ℓ(α),

because all level functions ℓ are continuous.

Inspired by a figure in [1] used in a different context
we define for above A and α the sets :

Shit(A) = {α ∈ SR : Jα ∩ A 6= ∅},
S(α) = {β ∈ SR : ℓ(β) ≤ ℓ(α) = P

SR

ℓ (A)}

and

S(α) = (0, 1]n \ ((α1, 1] × · · · × (αn, 1]),
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Figure 5: Contourlines of 1− (1−α1)(1−α2) and the
sets Shit(A), S(α) and S(α) for a given α.

cf. Fig. 5.

For α ∈ Shit(A) the set Shit(A) has the property

β ≤ α =⇒ β ∈ Shit(A).

Since all level functions are increasing in all directions
S(α) and obviously S(α) also have this property.

Then we have S(α) ⊆ Shit(A) ⊆ S(α). See Fig. 5.

Since SF ⊆ SR we have always P
SR

ℓ (A) ≤ P
SF

ℓ .

5.7.1 PR(A) ≤ P
R

indep(A) ≤ P
F

indep(A)

Let α ∈ SR, such that

P
R

indep(A) = ℓ(α) = 1 −
n
∏

i=1

(1 − αi).

Then

PR(A) =

∫

Shit(A)

dβ ≤
∫

S(α)

dβ =

= 1 −
n
∏

i=1

(1 − αi) = P
R

indep(A).

5.7.2 PU(A) ≤ P
R

upper(A) ≤ P
F

upper(A)

Let p[0,1] the probability measure representing the
uniform distribution on [0, 1], M

′
U the set of all proba-

bility measures p on (0, 1]n whose marginals are p[0,1]

and p(S) = sup{p(S) : p ∈ M
′
U}. Then we have

p(Shit(A)) = PU(A) ≤ p(S(α)).

α2
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ℓ(α)

α
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β
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β1
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= 1−α1−α2
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1

Figure 6: 2-dimensional visualization of the proof in
Sec. 5.7.2

The least probability we can concentrate in S(α)
c

is
given by

p(S(α)
c
) = max

(

n
∑

i=1

p[0,1]((αi, 1]) − (n − 1), 0

)

=

= max

(

n
∑

i=1

(1 − αi) − (n − 1), 0

)

using the lower Fréchet bound which leads to

p(S(α)) = 1 − p(S(α)
c
) =

= min

(

n
∑

i=1

αi, 1

)

= P
R

upper(A),

cf. Fig. 6 for the 2-dimensional case.

5.7.3 P
R

lower(A) = P
F

lower(A) = PF(A)

First we show that P
F

lower(A) = PF(A):

PF(A) = sup
α∈(0,1]

{Jα ∩ A 6= ∅} =

= inf
α∈(0,1]=SF

{Jα ∩ A = ∅} = P
F

lower(A)

with Jα = I1,α × · · · × In,α which is both the joint
confidence at level α and the corresponding joint α-
level set.

Again let α ∈ SR, such that

P
R

lower(A) = ℓ(α) = max
i=1,...,n

(αi) =: α.

But then also (α, . . . , α) ∈ S(α) and P
F

lower(A) = α

which proves the first equality.

5.8 The special case S = SF

In the case of S = SF the joint confidence sets are
nested. Let

Gα = g(Jα), α ∈ (0, 1]



be the image of the joint confidence set Jα under g.
The index α does correspond only to the case where
ℓ(α) = α. But if we lift the images of the joint con-
fidence sets to the right level by the transformation
Hα = Gℓ−1(α), α = 1, . . . , n, we get the family

Hℓ = {Hα}α∈(0,1]

where ℓ indicates the level function used for the trans-
formation. Then the upper probability corresponding
to ℓ is simply obtained by

P ℓ(A) = inf
α∈(0,1]

{Hα ∩ A = ∅}

as in Section 3 and 4 where no ℓ appears in the for-
mula. In Fig. 7 families Hℓ are plotted for the three
different level functions ℓ presented in this paper.
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Figure 7: An example of families Hℓ for ℓ correspond-
ing to the upper bound (solid) and lower bound (dash-
dotted) and for random set independence (dashed).

6 A Numerical Example

As a numerical example we consider a beam of length
3 m supported on both ends and additionally bedded
on two springs, cf. Fig. 8. The values of the beam
rigidity EI = 1 kNm2 and of the equally distributed
load f(x) = 100 kN/m are assumed to be determinis-
tic, but the values of the two spring constants λ1 and
λ2 are uncertain.

In this example we assume that the expectations and
variances of the two variables λ1 and λ2 are given as
in the following table.

variable expectation variance

λ1 30 2

λ2 35 1.5

The corresponding families of confidence intervals
generated by means of Tchebycheff’s inequality are
truncated by the interval [0, 50] and depicted in Fig. 9.

λ
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λ
2

3 m

100 kN/m

Figure 8: A beam bedded on two springs.
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Figure 9: Families of confidence intervals for the two
spring constants.

Now we want to compute the upper probability of
failure of the beam. The criterion of failure is

max
x∈[0,3]

|M(x, λ1, λ2)| ≥ Myield

where M(x) is the bending moment at point x ∈ [0, 3]
depending on the two spring constants λ1, λ2 and
Myield = 12 kNm the elastic limit moment. We re-
formulate the failure criterion as failure function

g(λ1, λ2) = Myield − max
x∈[0,3]

|M(x, λ1, λ2)|

where now g(λ1, λ2) ≤ 0 means failure. In Fig. 10
the failure function g is depicted as a contour plot for
values (λ1, λ2) ∈ [10, 45] × [10, 45] where we can see
that g is a concave function in both directions.

Since we want to know if g(λ1, λ2) becomes zero it is
sufficient to have only the lower bounds of the images

Gα = [Gα, Gα] = g(Jα)

of the joint confidence sets Jα = λ1,α1
× λ2,α2

. These
lower bounds can be easily obtained by minimizing
the function values at the vertices of the joint confi-
dence set which is not true for the upper bounds.

The function values g(λ1, λ2) are computed by the fi-
nite element method. To omit a large number of func-
tion evaluations for a large number of joint confidence
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Figure 10: Contour plot of the failure function g. The
gray rectangle is the joint confidence set λ1,α1

×λ2,α2

for (α1, α2) = (1, 1).

sets to be considered we evaluate g on grid points on
[0, 50] × [0, 50] and get g(λ1, λ2) using interpolation.

We get the upper probability distribution functions

F
S

ℓ by

F
S

ℓ (x) = P
S

ℓ ((∞, x]) = inf
α∈S

{ℓ(α) : Gα > x}.

The results are plotted for x ∈ [−0.5, 1.75] in Fig. 11.

The upper probabilities P
S

ℓ ((∞, 0]) of failure are given
by the upper distribution functions at zero.
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Figure 11: Upper probability distribution functions.

Conclusion

The notion of local random sets was introduced in
this article in order to provide a conclusive semantic

connection between confidence intervals and random
sets. We showed how upper probabilities of events
can be calculated from families confidence intervals.
The upper probabilities are unique in the univariate
case, while in the multivariate case different methods
of combinations leading to different upper probabil-
ities are admissible. Further we gave computational
formulas for all cases and showed how the resulting
upper probabilities are ordered. We demonstrated
how the method can be applied in an example from
structural mechanics.
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