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Abstract

This paper presents concentration inequalities and
laws of large numbers under weak assumptions of ir-
relevance, expressed through lower and upper expec-
tations. The results are variants and extensions of De
Cooman and Miranda’s recent inequalities and laws
of large numbers. The proofs indicate connections
between concepts of irrelevance for lower/upper ex-
pectations and the standard theory of martingales.1

1 Introduction

This paper investigates concentration inequalities and
laws of large numbers under weak assumptions of “ir-
relevance” that are expressed using lower and upper
expectations. The starting point is the assumption
that, given bounded variables X1, . . . , Xn, we have:

for each i ∈ [2, n], variables X1, . . . , Xi−1

are epistemically irrelevant to Xi.
(1)

Epistemic irrelevance of variables X1, . . . , Xi−1 to Xi

obtains when [26, Def. 9.2.1]

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (2)

for any bounded function f of Xi and any nonempty
event A(X1:i−1) defined by variables X1:i−1, where
the functional E is an upper expectation (Section 2).
Here and in the remainder of the paper we simplify
notation by using X1:i for X1, . . . , Xi.

A judgement of epistemic irrelevance can be inter-
preted as a relaxed judgement of stochastic indepen-
dence, perhaps motivated by a robustness analysis
or by disagreements amongst a set of decision mak-
ers. Alternatively, one might consider epistemic ir-
relevance as the appropriate concept of independence
when expectations are not known precisely.

1This is a revised version of the paper presented at ISIPTA
2009, with three corrections: Example 1 has been changed (the
original example was flawed), and the definition of Bi and some
inequalities in the proof of limits in Theorem 4 have been cor-
rected.

De Cooman and Miranda have recently proven a num-
ber of inequalities and laws of large numbers that also
deal with judgements of irrelevance expressed through
lower/upper expectations [5]. De Cooman and Mi-
randa’s weak law of large numbers implies that, given
Assumption (1), for any ε > 0,

P

(

µ
n
− ε ≤

∑n
i=1 Xi

n
≤ µn + ε

)

≥ 1 − 2e
−

nε2/4

(maxi Bi)
2 ,

where Bi is such that supXi − inf Xi ≤ Bi, and

µ
n

.
=

∑n
i=1 E[Xi]

n
, µn

.
=

∑n
i=1 E[Xi]

n
.

Moreover, De Cooman and Miranda’s results and As-
sumption (1) imply a two-part strong law of large
numbers: for any ε > 0, there is N ∈ N+ such that
for any N ′ ∈ N+,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

< ε,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≤ µ − ε

)

< ε.

This law of large numbers corresponds to a finitary
version of the usual strong law of large numbers [9];
the focus on a finitary law is justified by the fact that
De Cooman and Miranda do not assume countable
additivity. If countable additivity holds, the finitary
strong law of large numbers implies convergence of
empirical means with probability one [5, Sec. 5.3].

To obtain their results, De Cooman and Miranda as-
sume, following Walley’s theory of lower previsions,
that all variables are bounded, and that conglom-
erability (and consequently disintegrability) holds.
These assumptions are discussed in more detail later.

The present paper derives laws of large numbers by
exploiting concentration and martingale inequalities
that are adapted to the setting of lower/upper expec-
tations. These results use either Assumption (1) or



the weaker assumption that, for each i ∈ [2, n] and
any nonempty event A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi]
and

E[Xi|A(X1:i−1)] = E[Xi].
(3)

Several results for bounded variables presented in this
paper are basically implied by De Cooman and Mi-
randa’s work. Regarding bounded variables our con-
tribution lies in offering tighter inequalities and alter-
native proof techniques that are more closely related
to established methods in standard probability the-
ory (in particular, close to Hoeffding’s and Azuma’s
inequalities). In Section 4 we offer more significant
contributions as we lift the assumption of bounded-
ness for variables, and use martingale theory to prove
laws of large numbers under elementwise disintegra-
bility.

2 Expectations, disintegrability, and

zero probabilities

In this section we present notation and terminology.
Throughout the paper we assume that an expectation
functional E maps bounded variables into real num-
bers, and satisfies:
(1) if α ≤ X ≤ β, then α ≤ E[X ] ≤ β;
(2) E[X + Y ] = E[X ] + E[Y ];
where X, Y are bounded variables and α, β are real
numbers (inequalities are understood pointwise).

From such an expectation functional, a finitely addi-
tive probability measure P is induced by P (A)

.
= E[A]

for any event A; note that A denotes both the event
and its indicator function.2

Given a set of expectation functionals, the lower and
upper expectations of variable X are respectively

E[X ] = inf E[X ] , E[X ] = sup E[X ] .

Lower and upper probabilities are defined similarly
using indicator functions. Given an event A, a
conditional expectation functional is constrained by
E[X |A] P (A) = E[XA]. If we have a set of expecta-
tion functionals, then a set of conditional expectation
functionals given an event A is produced by elemen-
twise conditioning on event A (that is, each expecta-
tion functional is conditioned on A).

2A probability measure defined on a field completely charac-
terizes an expectation functional on bounded functions that are
measurable with respect to the field and vice-versa [26, Theo-
rem 3.2.2].

2.1 Disintegrability and factorization

We will employ an assumption of disintegrability in
our proofs; namely,

E[W ] ≤ E
[

E[W |Z]
]

(4)

for any W ≥ 0, Z ≥ 0 of interest, where W and Z may
stand for sets of (non-negative) variables. Note that
disintegrability can fail for a single finitely additive
probability measure over an infinite space [6, 10]; that
is, there is a finitely additive probability measure P
such that

EP [W ] > EP [EP [W |Z]] .

One way to obtain disintegrability is to restrict atten-
tion to simple variables; that is, variables that take on
finitely many distinct values. In particular, indicator
functions are simple variables; hence simple variables
suffice to express convergence of relative frequencies,
and our results apply then.

Another way to obtain disintegrability for every prob-
ability measure P is to adopt countable additivity [1].
That is, assume that if

A1 ⊃ A2 ⊃ . . .

is a countable sequence of events, then

∩iAi = ∅ implies lim
n→∞

P (An) = 0. (5)

This assumption says that if ∩iAi = ∅, then
limn→∞ P (An) = 0 for every possible probability
measure.

A third way to obtain disintegrability is simply to
impose it. One may consider disintegrability a “ratio-
nality” requirement.

• The theories of coherent behavior by Heath and
Sudderty [14] and by Lane and Sudderth [19] fol-
low this path by axiomatizing the strategic mea-
sures of Dubins and Savage [11], and thus pre-
scribing probability measures that disintegrate
appropriately along some predefined partitions.
This would be sufficient for our purposes, but
there are limitations in the approach as summa-
rized by Kadane et al [16]. The disintegrability
of strategic measures has actually been used to
prove various laws of large numbers in a finitely
additive setting [17].

• Another scheme that imposes disintegrability is
Walley’s theory of lower previsions; in that the-
ory, Expression (4) is a consequence of axioms for
“coherent” behavior. This is the path adopted by
De Cooman and Miranda, who consequently have
Expression (4) at their disposal.



When disintegrability holds, recursive application of
Expression (4) yields: if fi(Xi) ≥ 0 for i ∈ {1, . . . , n},
then

E

[

n
∏

i=1

fi(Xi)

]

≤ E

[

. . . E

[

E

[

n
∏

i=1

fi(Xi)|X1:n−1

]

|X1:n−2

]

. . .

]

;

Assumption (1) then implies an inequality we use
later: for bounded and nonnegative functions,

E

[

n
∏

i=1

fi(Xi)

]

≤
n
∏

i=1

E[fi(Xi)] . (6)

2.2 Zero probabilities, full conditional

measures and weak irrelevance

It should be noted that the definition of epistemic ir-
relevance (Expression (2)) does not contain any clause
concerning zero probabilities. Indeed, Walley’s the-
ory of lower previsions follows de Finetti in adopting
full conditional measures, and in this setting Expres-
sion (2) can be imposed without concerns about zero
probabilities. Recall that a full conditional measure
P : B × (B\∅) → <, where B is a Boolean algebra, is
a set-function that for every nonempty event C satis-
fies [10, 18]:
(1) P (C|C) = 1;
(2) P (A|C) ≥ 0 for all A;
(3) P (A ∪ B|C) = P (A|C) + P (B|C) for all disjoint
A and B;
(4) P (A ∩ B|C) = P (A|B ∩ C) P (B|C) for all A and
B such that B ∩ C 6= ∅.

Full conditional measures are not adopted in the usual
Kolmogorovian theory, and if countable additivity is
adopted and conditioning is defined through Radon-
Nykodym derivatives, it may be impossible to sat-
isfy the axioms for full conditional measures [23, 24].
Thus there are are some differences between epistemic
irrelevance (at least as defined by Walley) and the
usual Kolmogorovian set-up, besides the obvious set-
valued/point-valued distinction.

Suppose that one wishes to deal with sets of proba-
bility measures and associated lower/upper expecta-
tions, but chooses to adopt the Kolmogorovian set-
up for each measure. That is, each measure satis-
fies countable additivity and thus disintegrability, and
conditioning is left undefined when the conditioning
event has probability zero. It might seem reasonable
to amend Expression (2) as follows:

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (7)

if P (A(X1:i−1)) > 0.

This condition is a natural for theories that do not
define conditioning on events of lower probability zero,
such as Giron and Rios’ theory [13]. Alas, this weaker
condition is really too weak to produce laws of large
numbers, as the following example shows.

Example 1 Consider binary variables X1, X2, . . .
(values 0 and 1). Define events A0

.
= {X1 = 0, X2 =

0, . . . } and A1
.
= {X1 = 1, X2 = 1, . . . }. Consider

a convex and closed set K of joint distributions for
these variables, built as the convex hull of three dis-
tributions, P1, P2 and P3, as follows.

Distribution P1 simply assigns probability one to A1.
Distribution P2 assigns probability δ to A0 and proba-
bility 1−δ to A1, for some δ ∈ (0, 1). Distribution P3

is the product of identical marginals: for any integer
n > 0, P3(X1 = x1, . . . , Xn = xn) =

∏n
i=1 P3(Xi =

xi), where P3(Xi = 1) = 1 − δ.

For the convex hull of P1, P2 and P3, Expression (7)
is satisfied. This conclusion is reached by analyzing
each distribution in turn. For distribution P1, we
have P1(X1 = 1) = 1 and for any i > 1 we have
P1(Xi = 1|A(X1:i−1)) = 1 whenever P (A(X1:i−1)) >
0. Note that for any event A(X1:i−1): if A1 ∈ A, then
P1(A) = 1; if A1 6⊆ A, then P1(A) = 0. For distribu-
tion P2, P2(Xi = 1) = 1 − δ for any i > 0. Addition-
ally, for any event A(X1:i−1) we have P2(Xi = 1|A)
either equal to 1 − δ or 1 whenever P (A) > 0. [If
A1 6⊆ A, then P (A) = 0 (due to P1). So suppose
A1 ⊆ A: If A0 ⊆ A, then P2(Xi = 1|A) = 1 − δ;
if A0 6⊆ A, then P2(Xi = 1|A) = 1.] For distri-
bution P3, we have P3(Xi = 1) = 1 − δ and for
any i > 1 we have P3(Xi = 1|A) = 1 − δ for any
nonempty event A(X1:i−1). In short, for all probabil-
ity measures in the credal set we have P (Xi = 1) ∈
[1 − δ, 1] and P (Xi = 1|A(X1:i−1)) ∈ [1 − δ, 1] when-
ever P (A(X1:i−1)) > 0..

The weak law of larger numbers fails because, for any
ε ∈ (0, 1− δ),

lim
n→∞

P

(

µ
n
− ε ≤

∑n
i=1 Xi

n
≤ µn + ε

)

= 1 − δ.

This follows from the fact that, for any integer
n > 0, we have P1 (

∑n
i=1 Xi/n = 1) = 1 and

P2 (
∑n

i=1 Xi/n = 1) = 1 − P2(A0) = 1 − δ, and for
any ε > 0 (due to standard weak law of large num-
bers),

lim
n→∞

P3

(

(1 − δ) − ε <

n
∑

i=1

Xi/n < (1 − δ) + ε

)

= 1.

We might thus consider an alternative to Expres-



sion (7):

E[f(Xi)|A(X1:i−1)] = E[f(Xi)] (8)

if P (A(X1:i−1)) > 0.

The concept of irrelevance conveyed by Expression (8)
does lead to Expression (6). To see this, note that for
nonnegative X and Y , we have

E[XY ] ≤ sup
P

EP

[

E[XY |Y ]
]

= sup
P

EP

[

AE[XY |Y ] + AcE[XY |Y ]
]

,

using disintegrability and defining A as the set of all
values of Y such that P (Ac) = 0. Hence P (Ac) = 0
for every P and using Expression (8):

E[XY ] ≤ sup
P

EP

[

AY E[X |Y ]
]

= sup
P

EP

[

AY E[X ]
]

= sup
P

EP [AY ] E[X ]

= E[X ] sup
P

EP [Y ]

= E[X ]E[Y ] .

[As a digression, note that one might define condi-
tional expectations as E[X |A] = infP :P(A)>0 EP [X |A]

and E[X |A] = supP :P(A)>0 EP [X |A]. This form of
conditioning has been advocated by several authors
[27, 28], and it is quite similar to Walley’s concept
of regular extension [26, Ap. J]. For such a form of
conditioning, Expression (8) seems to be the natural
definition of irrelevance.]

In short, more than one combination of definitions
and assumptions lead to the results presented in the
remainder of this paper. For instance, Expression
(6) obtains when Assumption (1) holds and disin-
tegrability holds (because all variables are simple,
or because countable additivity is assumed, or be-
cause disintegrability is imposed). Alternatively, Ex-
pression (6) obtains when Expression (8) holds for
any i ∈ [2, n], any bounded function f of Xi, and
any event A(X1:i−1), and additionally disintegrabil-
ity holds.

Similar remarks concerning zero probabilities can be
directed at Assumption (3). We say that weak irrele-
vance obtains when either one of:

• For any i ∈ [2, n] and any nonempty event
A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi]
and

E[Xi|A(X1:i−1)] = E[Xi]

[this is Assumption (3), and it requires full con-
ditional measures].

• For any i ∈ [2, n] and any event A(X1:i−1),

E[Xi|A(X1:i−1)] = E[Xi] if P (A(X1:i−1)) > 0
and

E[Xi|A(X1:i−1)] = E[Xi] if P (A(X1:i−1)) > 0.

3 Bounded variables

Take variables X1, . . . , Xn such that sup Xi−inf Xi ≤
Bi and define

γn
.
=

n
∑

i=1

B2
i > 0.

We start by deriving two concentration inequalities.

3.1 Concentration inequalities

The following inequality is a counterpart of Hoeffding
inequality [8, 15] in the context of lower/upper expec-
tations; it is slightly tighter than similar inequalities
by De Cooman and Miranda [5]. It is interesting to
note that the proof is remarkably similar to the proof
of the original Hoeffding inequality.

Theorem 1 If bounded variables X1, . . . , Xn satisfy
Expression (6), then if γn > 0,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−2ε2/γn ,

P

(

n
∑

i=1

(Xi − E[Xi]) ≤ −ε

)

≤ e−2ε2/γn .

Proof. By Markov inequality, if X ≥ 0, then for any
ε > 0 we have P (X ≥ ε) ≤ E[X ] /ε. Consequently,
for s > 0, any variable X satisfies

P (X ≥ ε) = P
(

esX ≥ esε
)

≤ e−sεE[exp(sX)] .

Using this inequality and Expression (6):

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

≤ e−sε
n
∏

i=1

E
[

exp
(

s(Xi − E[Xi])
)]

.

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a ≤ X ≤ b and E[X ] ≤ 0, then



E[exp(sX)] ≤ exp(s2(b − a)2/8) for any s > 0. Thus
for any P , EP

[

exp(s(Xi − E[Xi]))
]

≤ exp(s2B2
i /8),

and then E
[

exp
(

s(Xi − E[Xi])
)]

≤ exp(s2B2
i /8).

Consequently,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεes2γn/8 ≤ e−2ε2/γn ,

where the last inequality is obtained by taking
s = 4ε/γn. This proves the first inequality in the
theorem; the second inequality is proved by tak-
ing P

(
∑n

i=1((−Xi) − E[−Xi]) ≥ ε
)

and noting that

E[Xi] = −E[−Xi]. 2

We now move to weak irrelevance and obtain an ana-
logue of Azuma’s inequality [2, 7]. It is again interest-
ing to note that the proof is remarkably similar to the
proof of the original Azuma inequality. De Cooman
and Miranda [5, Sec. 4.1] show that their inequalities
are valid under weak irrelevance; the next inequality
is slightly tighter than theirs.

Theorem 2 If bounded variables X1, . . . , Xn satisfy
weak irrelevance and disintegrability (Expression (4))
holds, then if γn > 0,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−2ε2/γn ,

P

(

n
∑

i=1

(Xi − E[Xi]) ≤ −ε

)

≤ e−2ε2/γn .

Proof. Using both Markov’s inequality (as in the proof
of Theorem 1) and disintegrability, for any s > 0 we
get

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

≤ e−sεE

[

E

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)

| X1:n−1

]]

≤ e−sεE

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)

h(X1:n−1)

]

,

where

h(X1:n−1) = E
[

exp
(

s(Xn − E[Xn])
)

| X1:n−1

]

.

Due to weak irrelevance,

EP [Xn|X1:n−1] ≤ E[Xn|X1:n−1] = E[Xn] ;

consequently, for any P ,

EP

[

Xn − E[Xn] |X1:n−1

]

≤ 0.

We now use Hoeffding’s result (Expression (11)) that
if variable X satisfies a ≤ X ≤ b and E[X ] ≤ 0, then
E[exp(sX)] ≤ exp(s2(b − a)2/8) for any s > 0. Thus
for any P we have

EP

[

exp
(

s(Xn − E[Xn])
)

|X1:n−1

]

≤ exp(s2B2
n/8)

and then h(X1:n−1) ≤ exp(s2B2
n/8). Thus

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sεE

[

exp

(

n
∑

i=1

s(Xi − E[Xi])

)]

≤ e−sεE

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)

exp(s2B2
n/8)

]

≤ e−sε exp(s2B2
n/8)E

[

exp

(

n−1
∑

i=1

s(Xi − E[Xi])

)]

.

These inequalities can be iterated to produce:

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−sε exp

(

s2
n
∑

i=1

B2
i /8

)

.

Finally, by taking s = 4ε/γn,

P

(

n
∑

i=1

(Xi − E[Xi]) ≥ ε

)

≤ e−2ε2/γn .

The second inequality in the theorem is proved by not-
ing that weak irrelevance of X1, . . . , Xn implies weak
irrelevance of −X1, . . . ,−Xn (as E[Xi] = −E[−Xi]),
and then by taking P

(
∑n

i=1((−Xi) − E[−Xi]) ≥ ε
)

.
2

3.2 Laws of large numbers

Theorem 1 leads to simple proofs of laws of large num-
bers already stated by De Cooman and Miranda [5].
To start, take Assumption (1). Using subadditivity of
upper probability and Theorem 1,

P

((

n
∑

i=1

Xi ≥ nµn + ε

)

∪

(

n
∑

i=1

Xi ≤ nµ − ε

))

≤2e−
2ε2

γn ,

where as before, µ
n

.
= (1/n)

∑n
i=1 E[Xi] and µn

.
=

(1/n)
∑n

i=1 E[Xi]. By noting that P (A) = 1− P (Ac)
for any event A, by including the endpoints of relevant
inequalities, and by using nε instead of ε:

P

(

µ − ε ≤

∑n
i=1 Xi

n
≤ µ + ε

)

≥

P

(

µ − ε <

∑n
i=1 Xi

n
< µ + ε

)

≥ 1 − 2e−
2nε2

B2 ,



where we define B
.
= maxi Bi. By taking limits, we

obtain a weak law of large numbers:

lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1.

An analogue of De Cooman and Miranda’s finitary
strong law of large numbers can be deduced as well
from the previous inequalities, as follows. Here and
in the remainder of the paper, n, N and N ′ denote
positive integers. For all ε > 0, N > 0 and N ′ > 0,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′

∑

n=N

P

(∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′

∑

n=N

e−2nε2/B2

=
(

e−2Nε2/B2
)

N ′

∑

n=0

e−2nε2/B2

=
(

e−2Nε2/B2
) 1 − e2(N ′+1)ε2/B2

1 − e−2ε2/B2

<
e−2Nε2/B2

1 − e−2ε2/B2 .

Consequently,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

< ε,

provided that N is a positive integer such that

N > −(B2/(2ε2)) ln ε(1 − e−2ε2/B2

).

An analogous argument leads to

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≤ µ − ε

)

< ε.

By superadditivity of upper probability, we obtain a
perhaps more intuitive statement of the strong law of
large numbers: for all ε > 0, there is N such that for
any N ′,

P

(

∀n∈ [N, N +N ′] :µ
n
−ε<

∑n
i=1 Xi

n
<µn+ε

)

>1−2ε,

thus reproducing De Cooman and Miranda’s strong
laws.

We now present a pair of weak/strong laws of large
numbers under weak irrelevance. De Cooman and Mi-
randa prove a similar pair of laws by resorting to their
previous results on forward irrelevant natural exten-
sions [5, Sec. 4.1]. The proof offered now is perhaps
more direct, using our analogue of Azuma’s inequal-
ity.

Theorem 3 If bounded variables X1, . . . , Xn satisfy
weak irrelevance and Expression (4) holds, then for
any ε > 0,

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ 1 − 2e−2nε2/B2

,

and there is N such that for any N ′,

P

(

∀n∈ [N, N +N ′] :µ
n
−ε<

∑n
i=1Xi

n
<µn+ε

)

>1−2ε.

Proof. Using subadditivity of upper probability and
Theorem 2, and defining again B

.
= maxi Bi,

P

((

n
∑

i=1

Xi ≥ nµn + ε

)

∪

(

n
∑

i=1

Xi ≤ nµ − ε

))

≤2e−
2nε2

B2 ,

and we obtain the first expression in the theorem. To
produce the second inequality (strong law), note:

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′

∑

n=N

P

(∑n
i=1 Xi

n
≥ µ + ε

)

≤
N+N ′

∑

n=N

e−2nε2/B2

<
e−2Nε2/B2

1 − e−2ε2/B2 .

Again,

P

(

∃n ∈ [N, N + N ′] :

∑n
i=1 Xi

n
≥ µ + ε

)

< ε

provided that N is a positive integer such that

N > −(B2/(2ε2)) ln ε(1 − e−2ε2/B2

).

This is “half” of the second expression in the theorem;
the other “half” is proved analogously. 2

The theorem easily implies the following concise weak
law of large numbers, by taking limits:

lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1.

4 Laws of large numbers without

boundedness

We now consider variables without bounds in their
ranges under the assumption of weak irrelevance; the
resulting laws of large numbers are the main contri-
bution of the paper. We will assume in this section



that countable additivity holds (Expression (5)). This
assumption of countable addivity implies disintegra-
bility; that is, EP [W ] = EP [EP [W |Z]] for any P , W
and Z. Thus our setup is close to the standard (Kol-
mogorovian) one, where any expectation functional
is a linear monotone and monotonically convergent
functional that can be expressed through Lebesgue
integration. We only depart from the Kolmogorovian
tradition in explicitly letting a set of such functionals
to be permissible given a set of assessments.

We will use a sequence of variables {Yn} defined as
follows:

Yn
.
=

n
∑

i=1

Xi − EP [Xi|X1:i−1] .

The key observation is that Yn is a function of all
variables X1:n such that

EP [Yn|X1:n−1] =

(

n−1
∑

i=1

Xi − EP [Xi|X1:i−1]

)

+

EP [Xn−EP [Xn|X1:n−1] |X1:n−1]

= Yn−1 +

EP [Xn|X1:n−1] − EP [Xn|X1:n−1]

= Yn−1;

so, {Yn} is a martingale with respect to P . Thus,

EP

[

(Yn − Yn−1)
2|X1:n−1

]

= EP

[

Y 2
n |X1:n−1

]

− 2EP [Yn−1Yn|X1:n−1] + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− 2Yn−1EP [Yn|X1:n−1] + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− 2Yn−1Yn−1 + Y 2
n−1

= EP

[

Y 2
n |X1:n−1

]

− Y 2
n−1.

And by taking expectations on both sides and noting
that Yi − Yi−1 = Xi − EP [Xi|X1:i−1], we get

EP

[

Y 2
n

]

= EP

[

(Xn − EP [Xn|X1:n−1])
2
]

+EP

[

Y 2
n−1

]

.

Iterating this expression, we obtain:

EP

[

Y 2
n

]

=

n
∑

i=1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

. (9)

With these preliminaries, we have:

Theorem 4 Assume countable additivity. If vari-
ables X1, . . . , Xn satisfy weak irrelevance, and E[Xi]
and E[Xi] are finite quantities such that E[Xi] −
E[Xi] ≤ δ, and the variance of any Xi is no larger
than a finite quantity σ2, then for any ε > 0,

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ 1 −
σ2 + δ2

ε2n
,

and there is N > 0 such that for any N ′ > 0,

P

(

∀n∈ [N, N +N ′] :µ
n
−ε<

∑n
i=1Xi

n
<µn+ε

)

>1−2ε.

Consequently,

∀ε > 0 : lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1,

P

(

lim sup
n→∞

(∑n
i=1 Xi

n
− µn

)

≤ 0

)

= 1,

P

(

lim inf
n→∞

(∑n
i=1 Xi

n
− µ

n

)

≥ 0

)

= 1.

Proof. For a fixed P and for all ε > 0,

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= P

(

n
∑

i=1

E[Xi] − εn <
n
∑

i=1

Xi <
n
∑

i=1

E[Xi] + εn

)

≥ P

(

n
∑

i=1

EP [Xi|X1:i−1] − εn <

n
∑

i=1

Xi

<

n
∑

i=1

EP [Xi|X1:i−1] + εn

)

(using weak irrelevance)

= P

(

−ε <

∑n
i=1 Xi − EP [Xi|X1:i−1]

n
< ε

)

= P (−ε < Yn/n < ε)

= P (|Yn/n| < ε) .

Applying Chebyshev’s inequality and Expression (9),

P (|Yn/n| ≥ ε) ≤
EP

[

Y 2
n

]

ε2n2

=

∑n
i=1EP

[

(Xi−EP [Xi|X1:i−1])
2
]

ε2n2
.

Now write (Xi − EP [Xi|X1:i−1])
2 as

((Xi − EP [Xi]) + (EP [Xi] − EP [Xi|X1:i−1]))
2
,

and then:
n
∑

i=1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

=

n
∑

i=1

EP

[

(Xi − EP [Xi])
2
]

+2EP [(Xi − EP [Xi])(EP [Xi] − EP [Xi|X1:i−1])]

+EP

[

(EP [Xi] − EP [Xi|X1:i−1])
2
]

≤
n
∑

i=1

σ2 + δ2

+2(EP [Xi] − EP [Xi|X1:i−1])EP [Xi − EP [Xi]]

=
n
∑

i=1

σ2 + δ2.



Hence

n
∑

i=1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

≤ n(σ2 + δ2), (10)

and combining these inequalities, we obtain:

P (|Yn/n| ≥ ε) ≤
σ2 + δ2

ε2n
,

and then

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

≥ 1 −
σ2 + δ2

ε2n

for any P , as desired. By taking the limit as n grows
without bound, we obtain

lim
n→∞

P

(

µ
n
− ε <

∑n
i=1 Xi

n
< µn + ε

)

= 1.

The proof of the strong law of large numbers uses
the same strategy, but replaces the appeal to Cheby-
shev’s inequality by an appeal to the Kolmogorov-
Hajek-Renyi inequality (described in the Appendix),
following the proof of the strong law of large numbers
by Whittle [29, Thm. 14.2.3].So, for a fixed P and for
all ε > 0, we proceed as previously to obtain:

P

(

∀n∈ [N, N +N ′] : µ
n
−ε<

∑n
i=1Xi

n
<µn+ε

)

≥ P

(

∀n∈ [N, N +N ′] : −ε <
Yn

n
< ε

)

= P (∀n∈ [N, N +N ′] : |Yn/n| < ε) .

As {YN , YN+1, . . . , YN+N ′} forms a martingale, we
use the Kolmogorov-Hajek-Renyi inequality to pro-
duce:

P (∀n∈ [N, N +N ′] : |Yn/n| < ε)

≥ 1 −

∑N
i=1 EP

[

(Xi − EP [Xi|X1:i−1])
2
]

ε2N2

−
N+N ′

∑

i=N+1

EP

[

(Xi − EP [Xi|X1:i−1])
2
]

ε2i2

≥ 1 −
σ2 + δ2

ε2N
−

N+N ′

∑

i=N+1

σ2 + δ2

ε2i2

(using Expression (10))

≥ 1 −
σ2 + δ2

ε2N
−

∞
∑

i=N+1

σ2 + δ2

ε2i2

≥ 1 −
σ2 + δ2

ε2

(

1

N
+

∫

∞

N

1/i2di

)

= 1 −
σ2 + δ2

ε2

(

1

N
+

1

N

)

= 1 − 2
σ2 + δ2

ε2N
.

Consequently, for integer N > (σ2 +δ2)/ε3, we obtain
the desired inequality

P

(

∀n∈ [N, N +N ′] :µ
n
−ε<

∑n
i=1Xi

n
<µn+ε

)

>1−2ε.

The proof of the Kolmogorov-Hajek-Renyi can be
extended to an infinite intersection of (decreasing)
events expressed as {∀j ≥ 1 : |Xj | < εj}; thus

∀ε > 0 : ∀δ > 0 : ∃N > 0 :

P

(

∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
< ε

)

≥ 1 − δ,

and this is equivalent to:

∀ε > 0 : lim
N→∞

P

(

∀m≥N :

∑m
i=1 Xi − E[Xi]

m
< ε

)

= 1.

As the events in these probability values form an in-
creasing sequence, we have, for all ε > 0,

P

(

∃N > 0 : ∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
< ε

)

= 1.

Now this is equivalent to ∀k > 0 : P (Ak) = 1, where
Ak = {∃N > 0 : ∀m ≥ N : (1/m)

∑m
i=1 Xi − E[Xi] >

1/k}, and because P (∪k>0¬Ak) ≤
∑

k>0 P (¬Ak) =
0, we have P (∀k > 0 : Ak) = 1, so

P

(

∀k>0: ∃N >0: ∀m≥N :

∑m
i=1 Xi − E[Xi]

m
< ε

)

= 1.

This is exactly the desired expression

P

(

lim sup
n→∞

(∑n
i=1 Xi

n
− µn

)

≤ 0

)

= 1.

A similar argument proves the last inequality in the
theorem, starting from:

∀ε > 0 : ∀δ > 0 : ∃N > 0 :

P

(

∀m ≥ N :

∑m
i=1 Xi − E[Xi]

m
> −ε

)

≥ 1 − δ.

2

5 Discussion

The concentration inequalities and laws of large num-
bers proved in this paper assume rather weak con-
ditions of epistemic irrelevance. When compared to
usual laws of large numbers, both premises and con-
sequences are weaker: expectations are not assumed
precisely known, and convergence is interval-valued.

Theorems 1 and 2 and their ensuing laws of large num-
bers are implied by De Cooman and Miranda’s semi-
nal work [5] (and their results generalize several previ-
ous efforts [12]). Actually, De Cooman and Miranda



start from a weaker condition of forward factorization
that is implied both by Assumption (1) and weak ir-
relevance. The possible advantage of our proof tech-
niques for these two theorems is that they are rather
close to well-known methods in standard probability
theory, such as Hoeffding’s inequality (it should be
noted that De Cooman and Miranda already indicate
the similarity between their inequalities and Hoeffd-
ing’s).

The most significant results of the paper employ
weak irrelevance to produce concentration inequali-
ties (Theorem 2) and laws of large numbers (Theo-
rems 3 and 4). The latter theorem is possibly the
most valuable contribution. The strategy for most
proofs is to translate assumptions of weak irrelevance
into facts regarding martingales, and to adapt results
for martingales to this setting. This strategy keeps
the proof relatively short and close to well-known re-
sults in probability theory. The connection between
lower/upper expectations and the theory of martin-
gales seems rather natural [4, 25], but the relation-
ship between epistemic irrelevance and martingales
does not appear to have been explored in depth so far.
We note that the basic constraint defining martingales
(that is, E[Yn|X1:n−1] = Yn−1) is preserved by convex
combination of mixtures; therefore, the study of mar-
tingales seems appropriate when one deals with con-
vex sets of probability measures — certainly it seems
less contorted than the analysis through stochastic
independence, as stochastic independence is not pre-
served by convex combination.

The proofs presented in this paper need assumptions
of disintegrability that can be easily satisfied if count-
able additivity is adopted. It is an open question
whether similar results can be proven without disinte-
grability, particularly when one deals with unbounded
variables.
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A Two auxiliary inequalities

The following inequality is a simple extension of a
basic result by Hoeffding [8, 15]: If variable X satisfies
a ≤ X ≤ b and E[X ] ≤ 0, then for any s > 0,

E[exp(sX)] ≤ exp(s2(b − a)2/8). (11)

First, the inequality is clearly valid if a = b, or if
a = 0, or if b < 0. From now on, suppose b ≥ 0 > a.
By convexity of the exponential function,

exp(sx) ≤
x − a

b − a
esb +

b − x

b − a
esa for x ∈ [a, b].

Given monotonicity of expectations and E[X ] ≤ 0,

E[exp(sX)] ≤
b

b − a
esa −

a

b − a
esb .

= exp(φ(s(b−a)))

for φ(u) = −pu+log(1−p+peu) with p = −a/(b−a)
(and note that p ∈ (0, 1] in the situation under
consideration). Given that φ(0) = φ′(0) = 0 and
φ′′(u) ≤ 1/4 for u > 0 (as the maximum of φ′′(u)
is 1/4, attained at eu = (1 − p)/p), we can use
Taylor’s theorem as follows. For some v ∈ (0, u),
φ(u) = φ(0) + uφ′(0) + (u2/2)φ′′(v) ≤ (u2/8) and
consequently φ(s(b − a)) ≤ s2(b − a)2/8. By putting
together these inequalities, we obtain Expression (11).

We now review the Kolmogorov-Hajek-Renyi inequal-
ity, almost exactly as proved by Whittle [29]; this is
presented just to indicate the role of (elementwise)
disintegrability in the derivation. Let {Xi} be a mar-
tingale with X0 = 0, and let {εi} be a sequence
0 = ε0 ≤ ε1 ≤ . . . ; the inequality is

P (∀j ∈ [1, n] : |Xj | < εj) ≥ 1−
n
∑

i=1

E
[

(Xi − Xi−1)
2
]

ε2i
.

To prove this inequality, define An
.
= {∀j ∈ [1, n] :

|Xj | < εj}. Using ξi = Xi − Xi−1, and again denot-
ing an event and its indicator function by the same
symbol, we have

P (An) = EP [An] = EP [An−1{|Xn| < εn}]

≥ EP

[

An−1(1 − X2
n/ε2n)

]

(as {|X | < ε} ≥ 1 − X2/ε2)

= EP

[

An−1(1 − (X2
n−1 + ξ2

n)/ε2n)
]

(by the martingale property)

≥ EP

[

An−2(1 − X2
n−1/ε2n−1)

]

− EP

[

ξ2
n/ε2n

]

(as εn−1 ≤ εn and

{|X | < ε}(1 − X2/ε2) ≥ (1 − X2/ε2)).

Iteration of the last inequality yields the result. Note
that it was necessary to apply disintegrability of P
when applying the martingale property (that is, ele-
mentwise disintegrability is used).
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