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Abstract

In the first part of this paper, recalling a general dis-
cussion on iterated conditioning given by de Finetti
in the appendix of his book, vol. 2, we give a repre-
sentation of a conditional random quantity X |HK as
(X|H)|K. In this way, we obtain the classical formula
P(XH|K) =P(X|HK)P(H|K), by simply using lin-
earity of prevision. Then, we consider the notion of
general conditional prevision P(X|Y'), where X and
Y are two random quantities, introduced in 1990 in
a paper by Lad and Dickey. After recalling the case
where Y is an event, we consider the case of discrete
finite random quantities and we make some critical
comments and examples. We give a notion of coher-
ence for such more general conditional prevision as-
sessments; then, we obtain a strong generalized com-
pound prevision theorem. We study the coherence
of a general conditional prevision assessment P(X|Y)
when Y has no negative values and when Y has no
positive values. Finally, we give some results on co-
herence of P(X]Y") when Y assumes both positive and
negative values. In order to illustrate critical aspects
and remarks we examine several examples.

Keywords. conditional events, general conditional
random quantities, general conditional prevision as-
sessments, generalized compound prevision theorem,
iterated conditioning, strong generalized compound
prevision theorem.

1 Introduction

This paper takes as its starting point the definition of
general conditional prevision introduced by Lad and
Dickey in [I6] and also considered by Lad in his book
[I7]. In these works, the authors propose a general
theory of conditional prevision specifying its opera-
tional meaning. This theory, which considers condi-
tional prevision of the form P(X|Y") where both X and
Y are random quantities, generalizes the de Finetti’s
definition of a conditional prevision assertion P(X|H),
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where H is an event. We observe that, denoting the
indicator of H by the same symbol, to assume " H
true” amounts to assuming (H = 1) true, that is
(H # 0) true. Then, in the approach of Lad and
Dickey, X|H can be looked at as X|Y, where Y is
the indicator of H; hence, P(X|H) = P[X|(H = 1)].
Notice that we discard the case where Y is the con-
stant 0, as it reduces to the case X|H where (H # 0)
is impossible. We recall that, concerning (precise or
imprecise) conditional probability or prevision assess-
ments like P(E|H) or P(X|H), where E and H are
events and X is a random quantity, theoretical re-
sults and algorithms in the framework of coherence
have been given by many authors (see, for instance,
12, B, [, 5, 6 &8 9, 10, 19, 20, 21, 22]) The checking
of coherence and the extension of precise conditional
prevision assessments have been studied in [7].

In [16, 7] the general conditional prevision P(X|Y)
is defined as a number that you specify asserting your
willingness to engage any transaction yielding a suit-
able random net gain and it is shown that such a
generalization answers to questions of decision prob-
lems involving “state dependent preferences”. In his
book ([I7]), Lad introduces the notion of general con-
ditional random quantity X|Y from the definition of
conditional prevision P(X|Y"). Obviously, as usual in
a subjective setting, engaging a transaction requires
a coherency of your assertion. In [I6] [I7], the co-
herency of P(X|Y') requires that a generalized com-
pound prevision theorem is satisfied, that is the quan-
tities P(XY'), P(Y) and P(X|Y) must be such that
P(XY) = P(X|Y)P(Y). But, the general case is dif-
ferent from the case where Y is the indicator of an
event H. In fact, P(H) = 0 implies P(XH) = 0,
and using coherence ([I5] [18]) we can directly assess
P(X|H). On the contrary, P(Y) = 0 doesn’t imply
that P(XY) = 0 and it could happen that it doesn’t
exist a finite value of P(X|Y") which satisfies the gen-
eralized compound prevision theorem. Thus, in this
paper we propose a notion of coherence in order to
handle the case P(Y') = 0, integrating the Lad’s defi-



nition of P(X|Y). Then, we give a strong generalized
compound prevision theorem which follows from our
definition of coherence. The random quantities, like
X and Y, considered in this paper are finite discrete.
The paper is organized as follows. In section 2 we
recall some preliminary concepts and results. In sec-
tion 3 we deepen, in the setting of coherence, the
operational meaning of the assessments P(X|H) and
P(X|HK), where H and K are events and X is
a random quantity; then, based on a general dis-
cussion on iterated conditioning given by de Finetti
in ([I2], Vol. 2, Appendix, section 13), we look
at B|AH and X|HK, respectively, as (B|A)|H and
(X|H)|K); then, we give a representation for B|AH
and X|HK which allows to obtain the classical re-
sults P(AB|H) = P(B|AH)P(A|H) and P(XH|K) =
P(X|HK)P(H|K), by simply applying the linearity
of prevision. In section 4, we recall the definitions of
conditional prevision P(X 1Y) and conditional random
quantity X|Y; then, we examine a critical example.
In section 5, after some critical comments, we propose
an explicit definition of coherence for the conditional
prevision P(X|Y); then, we give a strong generalized
compound prevision theorem; we also examine many
examples to illustrate some further aspects. In section
6, we study the coherence of a conditional prevision
assessment P(X|Y') = u, when Y has no negative val-
ues, or Y has no positive values. In section 7, we give
some results concerning the coherence of the assess-
ment P(X]Y) = p, where Y assumes both positive
and negative values. In section 8, we show some re-
sults concerning the set of coherent prevision assess-
ments on X|Y’, where Y is a linear transformation of
Y. Finally, in section 9 we give some conclusions and
an outlook on future research, which should concern
more in general the case of imprecise conditional pre-
vision assessments on families of conditional random
quantities.

2 Some preliminary notions

We assume that each random quantity has a finite set
of possible values. We denote by Q (resp., §)) the sure
(resp., impossible) event; moreover, we denote by A°
the negation of A and by AV B (resp., AB) the dis-
junction (resp., the conjunction) of A and B. We use
the same symbol to denote an event and its indicator.
We recall that in the subjective approach to proba-
bility, your assessment P(E|H) = p means that You
accept a bet on the conditional event E|H in which
You pay an amount ps, with s # 0, by receiving the
random quantity sHFE + psH€, so that your net ran-
dom gain is

G=sHE +psH® —ps=sH(E —p).

By excluding trivial cases, the value of G is, respec-
tively, s(1 — p), or —ps, or 0, according to whether
FEH is true, or E°H is true, or H¢ is true.

We recall that, considering the restricted random
gain G|IH = s(E —p) € {s(1 — p),—ps}, it is
min G|H - max G|H = —s?p(1 — p). Then, the co-
herence of p is defined by the condition ([15] [I8]):
min G|H - max G|H < 0; that is p(1 — p) > 0, which
amounts to: 0 < p < 1.

We observe that, to determine the coherent values
of p, we don’t consider all the values of G, but only
those of G|H; in other words the value 0 of G associ-
ated with the case ” H false” is ”discarded”.

We also observe that, denoting by the same sym-
bol the (conditional) events and their indicators, by
choosing s = 1 we obtain

E|H = EH +pH® = EH + (1 — H)p,

where the indicator, or truth-value function, E|H
represents the quantity we receive when we pay the
amount p = P(E|H). Then, by the linearity of previ-
sion, we obtain:

P(E|H) = P(EH) +[1 - P(H)]p,

that is: P(EH) = P(H)P(E|H) (compound proba-
bility theorem). We recall that, starting with a pio-
neering work of de Finetti ([T1]), the notion of condi-
tional event as a three-valued (logical and/or numer-
ical) entity has been proposed by many authors (see,
e.g., [1], [13], [I4]). Based on the betting scheme, the
notions of conditional prevision and conditional ran-
dom quantity are defined and widely exploited in [17].
Truth-values of conditional events and their extension
to decomposable conditional measures of uncertainty,
with the aim of finding reasonable axioms for a gen-
eral theory, have been discussed in many papers by
Coletti and Scozzafava, see e.g. [9].

3 Representation of conditional
random quantities

We remark that the general formula P(AB|H) =
P(A|H)P(B|AH) can be obtained by using the gen-
eral coherence condition for conditional probability
assessments. The same formula can be obtained,
based on the linearity of prevision, by the following
refined reasoning. Let P = (x,y, z) a probability as-
sessment on F = {A|H, B|AH, AB|H}. We observe
that representing the indicator B|AH as

B|AH = ABH + (1 - AH)y,
we obtain

P(B|AH) =y = P(ABH) + [l — P(AH)]y,



from which it follows: P(ABH) = P(AH)y, ie.
zP(H) = zyP(H); hence, to reach the conclusion
we need to assume P(H) > 0. To bypass this ob-
stacle, based on the general discussion on iterated
conditioning given by de Finetti in ([12], Appendix
of Vol. 2, section 13), we can look at B|AH as
(B|A)|H. Moreover, defining p = P(B|A), we have
B|A = AB+ (1 — A)p. Of course, when we pass from
B|A to B|AH, we must replace p by y. Then

B|AH = (B|A)|H = AB|H + [(1— A)|Hy =

(1)
— AB|H + (A°|H)y = (AB + yA°)|H .

The representation above is not surprising, as shown
by the following remarks:

(i) with the family F we can associate the partition
{ABH, AB°H, A°H, H¢}:

(ii) under the hypothesis ” H true”, the random quan-
tities B|AH and (AB + yA€)|H coincide, as they al-
ways assume the same value, that is 1, or 0, or y,
according to whether ABH is true, or AB°H is true,
or A°H is true.

Hence, it must be: P(B|AH) = P[(AB + yA°)|H],
with P(B|AH) = P(B|AH) =y and

P(AB + yA°)|H = P(AB|H) + P(yA°|H) =
= P(AB|H)+yP(A°|H) =z+y(1 —z).

Then, we obtain: y =z 4+ y(1 — x), i.e. z=xy.
Notice that, based on this result, we have that B|AH
and (AB + yA°©)|H coincide also when H€ is true. In
fact, the value of B|AH (resp., (AB+yA°)|H) associ-
ated with H¢ is y (resp., z+y(l—z) = y+z—zy = y).
Now, by generalizing the previous reasoning, given
an event H and a discrete finite random quantity
X € {x1,29,...,2,}, in the subjective approach the
conditional prevision assessment p = P(X|H) is the
amount to be payed in order to receive the random
quantity X|H = XH + (1 — H)p. The random gain
is G=X|H — up=XH — pH and, as before, the co-
herence condition for y is: min G|H - max G|H < 0,
which amounts to: min X|H < p < max X|H.

Of course, we have

P(X|H) =p=PXH+ (1-H)u] =
=P(XH)+P(1 - H)p=PXH)+p— P(H)u,
from which it follows the well known formula:

P(XH) = P(H)u = P(H)P(X|H).
More in general, given two events H, K and a random
quantity X, let M = (z,y, 2) a conditional prevision
assessment on F = {H|K, X|HK, XH|K}.
By the same kind of reasoning, we have

X|HK = (X|H)|K =[XH+ (1-H)y||K =

(2)
— XH|K + yH°|K .

In fact, as for the case of conditional events, we can
show that the conditional random quantities X|HK
and [XH + (1 — H)y]|K coincide by the following re-
marks:

(i) we denote by {x1,...,z,} the set of possible values
of X and, for the sake of simplicity by {z1,..., 2.}
(vesp., {x1,...,&p,...,2+}) the set of values of X
compatible with HK (resp., with K), where r <t <
n; moreover, we set F; = (X = x;) and with the fam-
ily F we associate the partition (of the sure event (2)
{E1HK,...,E,HK H°K, K°};

(ii) we have X =>"" | 2;E; and XH =Y.' | x; E; H;
then

X|HK =Y EHK + (1 - HEK)y;
i=1

T
XH|K +yH|K =) a,EHK +(1-K)z +
i=1
+yH° K+ (1-K)y(l—2z);

(iii) assuming " K true”, if H is true, then X = z; for
some i < r and X|HK = [XH + (1 — H)y]|K = a;;
if H is false, then X = x; for some i, with r < i < ¢,
and X|HK = XH|K + yH°|K = y; hence, under the
hypothesis ” K true”, X|HK and [XH + (1 — H)y]|K
coincide. Then

P(X|HK) =y =P(XH + (1 - H)y||K) =

=P(XH|K)+ yP(H|K) =z +y(1 — ),

from which it follows: z = xy, that is:
P(XH|K)=P(X|H)P(H|K).

Notice that, by the previous formula, if K is false we
have X|HK =y and

XHIK+yH|K=z4y(l—a)=y+z—ay=1y.

Therefore, the conditional random quantities X|H K
and XH|K+yH¢|K = (XH+yH¢)|K coincide in all

cases.

4 General conditional random
quantities

Let be given two random quantities X and Y. In [I7]
it is proposed the notion of general conditional ran-
dom quantity X|Y based on the following definition
for the prevision of X|Y, introduced in [16].

Definition 1. The conditional prevision for X given
Y, denoted P(XY), is a number you specify with the
understanding that you accept to engage any transac-
tion yielding a random net gain G = sY[X —P(X|Y)].



The following definition is given for the conditional
random quantity X|Y.

Definition 2. Having asserted your conditional pre-
vision P(X|Y) = u, the conditional random quantity
XY is defined as

X[V =XY+(1-Y)u=p+YX-p). (3)

Notice that, if Y assumes only the value 0, that is
Y = 0, you can pay every real number u = P(X|Y),
as you always receive the same amount u; in fact, the
net gain is always 0. To avoid this trivial case we will
assume that (Y = 0) # Q.

We remark that such a general notion of conditional
random quantity reduces to the classical one X|H =
XH+ (1 - H)p when Y coincides with an event H.
Lad remarks that the direction of the net gain (or
loss) depends on the difference (X — p), while the
scale depends on the numerical value of Y. Lad also
remarks that for Y = 0 (resp., Y = 1) the net gain is 0
(resp., s(X — u)), i.e. the possible net gains obtained
when Y is an event. Then, by computing the prevision
on both sides of (3)), Lad obtains

p=p+PY(X —p)]=p+PXY)—puPY),

so that P(XY) = P(X|Y)P(Y), which becomes
2Py PIX (Y = y;)] = P(X[Y) >, pjy;, where
p; = P(Y = y;). This condition, which we call
?generalized compound prevision theorem”, general-
izes the classical one P(XH) = P(X|H)P(H), where
H is an event. Then, when P(Y) # 0 it imme-
diately follows P(X]Y) = 507 (actually, we will
see that the generalized compound prevision theo-
rem holds in a stronger sense). Several properties
are obtained by Lad, under the condition P(Y") # 0.
We also notice that, when X and Y are uncorre-
lated, i.e. Cov(X,Y) =0, it is P(XY) = P(X)P(Y);
then, under the hypothesis P(Y) # 0, it follows
P(X|Y) = P(X). We can say that, under the con-
dition P(Y) # 0, X and Y are uncorrelated if and
only if the prevision of "X given Y ’ coincides with the
prevision of X.

We examine below an example, in which Y is not an
event, to illustrate a critical aspect.

Example 1. We recall that by the formula P(XH) =
P(H)P(X|H), when P(H) > 0 it follows P(X|H) =
PI(D)((;)). Moreover, if P(H) = 0, then P(XH) = 0; in
this case, based on coherence principle ([15] [18]) and
assuming () # H # , it can be proved that the as-
sessment (0,0, ) on {H, X H, X|H} is coherent if and
only if: min X|H < u < max X|H. But, replacing
H by a random quantity Y, we are in a very different
situation, as P(Y) = 0 doesn’t imply P(XY) = 0. To
illustrate this aspect, let us consider a random vector

(X7 Y) €eC= {(07 _1)7 (07 1)7 (17 _1)7 (17 1)} y

with

—

1
7p(17_1) = 6; p(171) =3

| =

p(0,~1) = 3, p(0,1) =

w

z,Y = y). We denote the

Y) by the vector (3, %, %, 3).

where p(z,y) = P(X
joint distribution of (X
We have

b

Y ely = {—1,1}, XY eCxy = {—1,0,1},
with P(Y = —1) = P(Y = 1) = £, and with P(XY =
—1) =}, P(XY =0) = §, P(XY =1) = £, so that
P(Y) =0and P(XY) = ¢. In this case, it doesn’t ex-
ist any finite value P(X|Y") which satisfies the equality
P(XY) =P(X|Y)P(Y). In fact, given any assessment
P(X|Y) = p, the values of Y (X — u) associated with
that of (X,Y") are, respectively, u, —p, —1 + p, 1 — u;
then, assuming (for the sake of simplicity) s = 1, one
has

P(G) = PY (X — )] =

1 1 1 1 1

=ghtgp)+g(=1+p)+3A-p) = #0, Vu.
Hence, by starting with a joint probability distribution
on (X,Y), it may happen that the equation P(XY') =
P(X|Y)P(Y) has no finite solutions in the unknown
P(X|Y).
If we assign the joint distribution (3 —e,% +¢, %, %)
on (X,Y), with e € [-},0) U (0, 1], we obtains

1 1

P(Y=-1)=;-c, P(Y =1) = J+e, B(Y) =2,

1 1
PYy=-1)= 3¢ PyY=1= 54—5, P(Y) = 2¢,
while the distribution of XY doesn’t change; more-
over,

P(G) = (5 —hwt (5 +e) (—p)+ 5 (- L)+ 3 (1—p) =

_ é ~2ep = P(XY) — P(Y)P(X]Y),

and imposing P(G) = 0, it follows

1 1 1
=PX|Y)=— ——,0)U(0,=].
p=P(XIY) = o, cel-5,0U0.3)
In particular, for € € [f%, 0) it is u € (—o0, —31], while
for e € (0, 3] it is pu € [, +00).
Finally, if we assign a uniform distribution on (X,Y),
that is

p(0,~1) =p(0.1) = p(1,~1) =p(1,1) = |

it follows P(Y) = P(XY) = 0; then, the equality
P(XY) = P(Y)P(X|Y) becomes 0 = 0-P(X]Y). In
this case, we need a direct assessment of P(X|Y) and
the problem of coherence arises. This basic problem
will be addressed in the next section.



5 Coherence of general conditional
prevision assessments

A crucial problem arises when P(Y') = 0; what can be
said about coherence of a given assessment P(X|Y) =
©? We remark that this case has not been examined
in the book of Lad. We also observe that when Y
equals 0 Lad notices that the net gain is 0 without
further comments. But, concerning the classical case
of a conditional random quantity X|H, in order to
check the coherence of the assessment P(X|H) = p,
as is well known the value 0 of the net gain associated
with the case H = 0 is discarded by the set of values
of the net gain G, i.e. coherence checking is based
on the values of G|H. Hence, in order to integrate
the analysis of Lad by properly managing the case
P(Y) = 0, we propose:

(i) to give an explicit definition of coherence for a
given assessment P(X 1Y) = y;

(ii) to discard, in the definition of coherence, the value
0 of the net gain associated with the case Y = 0.
Then, based on [I5] [I8], we give the following

Definition 3. Given two random quantities X, Y and
a conditional prevision assessment P(X|Y) = p, let
G = s(X|Y — p) = sY(X — u) be the net random
gain, where s is an arbitrary real quantity, with s £
0. Defining the event H = (Y # 0), the assessment
P(X|Y) = p is coherent if and only if: inf G|H -
sup G|H <0, for every s.

In what follows, without loss of generality, we will set
s=1.

5.1 A strong generalized compound
prevision theorem

Based on Definition [3] we will obtain a stronger ver-
sion of the generalized compound prevision theorem.
We recall that H is the event (Y # 0); then, we
make the following reasoning (where we assume that
w,P(Y|H), and P(XY|H) are finite):

(i) by Definition [3| x is the quantity to be payed, in
order to receive X|Y, under the hypothesis H true;
hence, operatively u is the prevision of X|Y, condi-
tional on H; (ii) hence, a more appropriate represen-
tation of X|Y is given by: X|Y = [u+ Y (X — p)]|H;
(iii) then, by computing the prevision on both sides
of the previous equality, we have:

i = P(X|Y) = Plu+Y (X—p)| H] = p+PlY (X —p0)|H]
so that P[Y(X — p)|H] = P[(XY — pY)|H] = 0; then,
by the linearity of prevision, it follows

P(XY|H) =P(X|Y)P(Y|H). (4)

Notice that, if Y is a finite discrete random quantity,
with Y >0, or Y <0, surely it is P(Y|H) # 0; then,

by () it follows P(X|y) = FA.
We recall that H® is the event (Y = 0); moreover, we

observe that P(Y|H¢) = P(XY|H®) = 0; hence,

P(Y) = P(Y|H)P(H) 4+ P(Y|H®)P(H®) =

(5)
=P(Y|H)P(H) =P(YH),

P(XY)=P(XY|H)P(H) + P(XY|H®)P(H®) =

=P(XY|H)P(H)=P(XYH).
(6)
Then, by , 7 and @, one has

P(XY|H)P(H) =P(X|Y)P(Y|H)P(H),

that is, the formula P(XY) = P(X|Y)P(Y), given
in [16] and [I7], which we call weak generalized com-
pound prevision theorem.

5.2 Some examples and remarks

In the finite case, denoting respectively by Cx,Cy and
C the sets of possible values of X,Y and (X,Y), with
each (zp,yr) € C it is associated for the net gain G the
value gpr = yr(zn — p). We set Co = {(zp,yx) €C :
yr 7 0}; of course Cyp C C. Then, by Definition (3] the
assessment g is coherent if and only if: m <0 < M,
where
min

(zn,yK)€Co

m = max

Th— .
o Y (xp—p)

Ye(xn—p), M=
We denote by II the set of coherent assessments y;
then, we remark that, assuming Cq # 0, the assess-
ment p = xj is coherent, as it trivially satisfies the
condition of coherence (it is gpr, = 0, V (21, yx) € Co).
Hence, Cx CII.

Example 2. Given a random vector (X,Y) € C =
{(-1,0),(1,1)}, consider the assessment P(Y|X) = p
on the conditional random quantity X|Y. We have
H = (Y # 0); hence Cyp = {(1,1)}. Moreover, one
has G =Y (X —p) € {0,1 — p}, with G|H =1 — p.
We observe that Y coincides with the indicator of H,
so that X|Y = X|H. Then, by Definition [3} p is
coherent if and only if 1 —p = 0, that is ¢ = 1. Notice
that this result is consistent with the usual approach
to the notion of conditional prevision.

Remark 1. Notice that in Example [2] while the co-
herence condition inf G|H - sup G|H < 0 is satisfied
uniquely with g = 1, the condition inf G - sup G <
0 is satisfied for every p. Then, if the condition
inf G|H - sup G|H < 0 were replaced by inf G -
sup G < 0, it would follow that every assessment
P(X|Y) = p would be coherent, which is clearly un-
reasonable (however, as we will show by other exam-
ples, still applying the condition inf G|H - sup G|H <



0, it may be IT = R). Example [2| confirms that, in or-
der to look at X|Y as X|H in the usual sense, when
checking coherence we must discard the value 0 of the
random gain G associated with the case Y = 0. In
this way, we can look at the family of conditional ran-
dom quantities like X|H, where H is an event, as a
sub-family of the family of general conditional random
quantities like XY, where Y is a random quantity.

We recall that, given any event H # (), if X is a con-
stant, say X = ¢, then P(X|H) = ¢. The following
example shows that, if X = cand Y is a random quan-
tity, with min ¥ < 0 < max Y, then the assessment
P(X|Y) = u is coherent for every u € R.

Example 3. Given (X,Y) € C = {(¢,—v1), (¢, y2)},
with ¢ € R and y1,y2 > 0, consider the coherence of
any assessment P(X|Y) = u. We have Cy = C, so
that H = (Y #£0) = Q and G|H = G =Y (c — p).
The values of G|H are: —yi(c— ), y2(c — p), and the
coherence condition inf G|H -sup G|H < 0 is satisfied
for every p € R. Moreover, given a joint distribution
on (X,Y), say (p,1 — p), where

p=PX=cY=-y), l-p=PX=cY=yp),,
with 0 < p <1, we have P(Y) = ya — p(y1 + y2) and
P(XY) = cP(Y) = cly2 — p(y1 + y2)] .

Then, if p # ylynya one has P(Y) # 0 and c is the

unique coherent value of p associated with the dis-

tribution (p,1 — p). Whereas, if p = ylfy27 then

P(Y) =P(XY) = 0, and the assessment P(X|Y) = p,

associated with the distribution (22— —%) ig co-
Y1+y2’ y1+y2

herent for every p € R.

Example 4. We continue the study of Example
[ by examining the coherence of a given assess-
ment P(X]Y) = p. We recall that (X,Y) € C =
{(0,-1),(0,1),(1,-1),(1,1)}; moreover, we observe
that Co = C, as H = (Y # 0) =  and hence
G|H = G =Y (X — u). With the values of (X,Y) are
associated respectively the following values of G|H:
wy, —, —1 4+ @, 1 — p; hence, the coherence condition
inf G|H - sup G|H < 0 is satisfied for every pu.

Example 5. We assume that (X,Y) € C =
{(0,-1),(1,1)}, by examining the coherence of a
given assessment P(X|Y) = p. We have Cy = C;
so that H = (Y # 0) = Q and we have G|H =
G = Y(X — p). The values of G|H are: p,1 —p
and, as it can be verified, the coherence condition
inf G|H - sup G|H < 0 is satisfied if and only if
w ¢ (0,1), that is u is coherent if and only if u €
(=00, 0]U[1, +00). In this example with each coherent
assessment p it is associated a unique joint distribu-
tion on (X,Y), say (p,1 — p), where

p=P(X=0,Y =—1),

l1-p=PX=1Y=1), 0<p<1.

The parameter p is determined by requiring that the
prevision of the random gain be 0, that is

ppu+ (1 =p)(1—p)=0. (7)
As it can be verified, one has

_1l-n
C1—-2u’

p=f(u)

moreover, when p < 0 it is % <p<1; when > 11t
is0<p< % Notice that

that is: f~!' = f. This result depends on the symme-
try of the equation with respect to p and p.

As shown by Example[3], the set I1 of the coherent as-
sessments p may be not conver.
To better analyze this aspect, in what follows we ex-

amine separately two cases:
(1)) Y>0,0r Y<0; (i) mnY <0 < maxY.

6 ThecaseY >0,o0rY <0.

We assume X € Cx = {z1,...,zp} and Y € Cy =
{y1,--.,yr}, with yp > 0, Vk. Moreover, we denote
by X° the subset of Cx such that for each z; € X°
there exists (xp,yx) € Co. Then, we set

zo =min X°, 2°=max X°. (8)

We first consider the case Y > 0; we have

Theorem 1. Given two finite random quantities
X,Y, with Y > 0, the prevision assessment P(X|Y) =
p is coherent if and only if zo < pu < 20.

Proof. Given any u, with each pair (z5,yx) € Co we
associate the inequality yr(zp, — ) > 0. Under the
hypothesis Y # 0 it is y; > 0; then the inequality is
satisfied if and only if 4 < xj. We observe that, for
each 7, € X, there exists (at least) a value y; > 0
such that (zp,yx) € Cyp. Then, we distinguish three
cases: (i) u < @o; (i) p > 2% (iii) 2o < p < 2°. In the
first case it is yx(ap — pu) > 0 for every (ap, yx) € Co,
so that inf G|H - sup G|H > 0 and hence pu is not
coherent. In the second case it is yg(zp — p) < 0
for every (zn,yr) € Co, so that inf G|H - sup G|H >
0 and hence p is not coherent. In the third case,
denoting by y; and y,s two positive values of Y such
that (zo,yx) € Co, (2%, ys) € Co, it is yp(zo — 1) <
0, ys(x®—p) >0, so that inf G|H <0, sup G|H > 0
and hence inf G|H - sup G|H < 0. Therefore, for
every u € [zg,2°], p is coherent. O



We illustrate the previous result by the following

Example 6. Given a random vector (X,Y) € C =
{(0,1),(1,0),(1,1),(2,2)}, let us determine the set
IT of coherent prevision assessment P(X|Y) = p on
X|Y. We observe that X° = X, so that zp =
min Cx = 0, 2° = max Cx = 2; moreover, it is
Co ={(0,1),(1,1),(2,2)} and the values of Y (X — ),
under the restriction (X,Y) € Cy are, respectively,
—p, 1 — p,2(2 — p); such values are all positive (resp.,
all negative) when g < 0 (resp., p > 2); hence
each pu ¢ [0,2] is not coherent. Finally, when p €
[0,2] one has —pu(2 — ) < 0, so that the condition
inf G|H - sup G|H < 0 is satisfied. Hence, we have
I = [z, 2°] = [0, 2].

We now consider the case Y < 0; we have

Theorem 2. Given two finite random quantities
XY, with Y < 0, the conditional prevision assess-
ment P(X|Y) = p is coherent if and only if g < p <
x”.

Proof. We observe that, as —Y > 0, by Theorem
the assessment P(X| —Y') = p is coherent if and only
if zg < u < 2% On the other hand, defining G'|H =
Y (X — p)|H, we have G|H =Y (X —pu) = -G'|H.
Then

inf G|[H = —sup G'|H, sup G|H = —inf G'|H,

and hence: inf G|H -sup G|H = inf G'|H - sup G'|H;
thus, the assessment P(X|H) = p is coherent if and
only if xg Sugxo. O

7 The case min Y <0 <maxVY.

We now examine the general case in which there exist
positive and negative values of Y. We set

X = {xh e€Cx: El(mh,yk) € Coyr < 0},
Xt ={an € Cx : Ian, yx) € Co,yr > 0} ;
™= {(xhvyk) € CO e < 0}7
CT ={(xn,yx) € Co: yx > 0}.
Of course, C"NCT =0 and C~ UCT = Cy. We have

Theorem 3. Let be given two random quantities
X,)Y, withminY <0 <maxY. F X" NX*t #£0,
then the conditional prevision assessment P(X|Y) =
1 is coherent, for every real number p.

Proof. Let be given z, € X~ N X",y € Cy,y; € Cy
such that (zp,yx) € C~ and (zh,y:) € Ct; more-
over, let p be any real number. It is gprgn: =
y(en — 1) - ye(en — 1) = yeye(zn — p)* <0, so that
inf G|H - sup G|H < 0. Therefore, for every u € &,
1 is coherent. O

We illustrate the previous result by the following

Example 7. We determine the set IT of coherent
prevision assessment P(X|Y) = p on X|Y, where
(X,Y) € ¢ = {(0,1),(0,-1),(1,-1),(1,1)}, as in
Example We have X~ = X* = {0,1}, so that
X~ N X" #0; hence, by Theorem [3} IT = R.

In what follows, we examine the cases
min X~ =max XT, max X~ =min XT;

then, we study in depth the case X "NXT = ). Given
any (zp,ys) €C™, (zk,yt) € CT, we set

Mpp, = min{xp, v}, Mpp = max {zp, 11} ;

moreover, we denote by Ip; the open interval
(mpg, Mpx). Then, we set

I= N I - (9)

rph€X T, xp€XT
Notice that, defining

Ho = MaXy, eX—, zex+ Mhk,
(10)
0 _ .
ne = mlnmh€X7 rreXt tha

s

one has I # () if and only if o < p® and, in this case,
I = (o, u°). We have

Theorem 4. Let the quantities ug, p° be defined
as in ; then o = min (max X, max XT) and
p® = max (min X, min XT).

Proof. We first prove that pg coincides with
min (max X ~,max X*). Let be z, = max X,
zp, = max X~. Then z, < z,Vz, € X+ and z; <
xp,Vo; € X~. Let be min (max X~ ,max X+) = z.
Then, there exists z, € X1 such that z, > xp,
i.e. there exist (zp,ys) € C~ and (z,,y;) € CT,
such that mp, = xzp. Suppose that po # zp,
ie. po # min(max X, max X1); then po > zp
and, as xp = max X, it must be pyg = z; for
some x; € XT. Then, there exist (z,,y,) € C7,
(z¢,9s) € CT such that z; < z,,. From z, < mzp, it is
z < xy < ap, ie. pg < xp, which is absurd; hence
po = min (max X, max X*). The proof is similar if
min (max X ~,max X ) = xy, where r; = max X*.
We now prove that p® = max (min X, min XT).
Let be £, = min X*, x5, = min X~. Then z, >
2, Ve, € X1 and x; > xp,Vzy € X—. Let be
max (min X ~,min X*) = z;. Then, there exists
x, € X1 such that z, <z, i.e. there exist (Th,ys) €
C~ and (z,,y:) € CT, such that My, = ;. Suppose
that u° # xp,, i.e. pu® # max (min X, min XT); then
,uo < xp and, as xp = min X, it must be ,uo = 2
for some z; € X*. Then, there exist (z,,y.) € C7,



(w¢,ys) € CT such that z; > x,. From z, >z, it is
Ty > Xy > xh, ie. p® >z, which is absurd; hence
p® = max(min X, min X ).

The proof is similar if max (min X ~, min X+) = z,
where z;, = min X .

O

Thus, if po < w° it is I = (po,p’) =
(min (max X~ ,max X*), max (min X, min XT)).
We set X~ < X7* (resp., X~ > XT) if and only
if max X~ < min XT (resp., min X~ > max XT),
otherwise we set X~ ~ X+. We have

Theorem 5. I # () if and only if X~ < X%, or
X—> X" .

Proof. Obviously, I # () if and only if gy < pu°. We
prove that pg > p° if and only if X~ «~ XT. Such a
situation happens if and only if 1o € X~ and u¥ € X~
or fig € XT and p° € X*. Suppose that py = xp, €
Xt and p° = 2, € XT. It is pp = max X T and

p® = min X*. From pg = min(max X, max X 1),
there exists x4 € X~ such that z, > x5 and, from
p® = max(min X, min X *)], there exists =, € X~

such that z; < xj, that is X~ ~ X . Moreover, from
po =max X, u = min X*, it is go > p® and I = 0.
If we suppose that pg = 25, € X~ and p® = 2, € X,
by a similar reasoning, we have that X~ »~ X and
po > pO so that I = 0.

Suppose that I # () that is po < u°. Thus, puy =
o € XTand p =2, € X~ or uo = x5, € X~ and
u =z, € XT. In the first case it is XT < X~ in
the other case it is X < X~. Conversely, if X+ <
X7, it is max Xt < max X~ and pp = maxX™T.
Moreover, it is min X+ < min X~ and px° = min X,
with po < p®. If, XT > X~ it is max X T > max X~
and pp = max X ~. Moreover, it is min X > min X
and p® = min X+, with po < u°. O

Based on the previous result, we have the following
three cases

1. Xt <X~ & T#0and I = (ug, u°), with pg =
max X+, p® =min X—.

2. XT>X" & I#0and I = (uo, u°), with pg =
max X, p° = min X+.

3. X Xt & T=0.

We have

Theorem 6. Let be given two random quantities
XY, with min Y < 0 < max Y. If case 1, or case 2,
holds, then X~ N X+ = ) and the conditional previ-
sion assessment P(X|Y') = p is coherent if and only if
¢ I. In the case 3, the assessment P(X|Y) = p is
coherent for every real number u.

Proof. Case 1. Suppose u < pg. We prove that u is
coherent. It is u < pg = max X+ < min X~ = u°.
Let x;, € X, that is there exist (zp,ys) € CT and
ys > 0. It is ¢, — p > 0, then gps = ys(zn — p) > 0.
Let ), € X, that is there exist (zx,y:) € C~ and
ys < 0. It is xp — p > 0, then gir = ye(zr —p) < 0. It
follows inf G|H - sup G|H < 0, that is u is coherent.
By a similar reasoning, if p > p° it follows that p is
coherent.

Conversely, we prove that, if g = max X+ < p <
min X~ = u°, p is not coherent. From X+ < X~ it
sy < po < p < p’ <axpforeachzy, € X, € XT.
Hence, we have that for each (zp,ys) € C~ one has
Ghs = Ys(xzn—p) <0,asys < Oand xp —p > pio—p >
0; moreover, for each (x,y;) € CT one has gi; =
yi(zp —p) < 0,asy, >0and o, —p < pu® — pu < 0.
Hence, for every (zp,yr) € C, it i8 gnr = yr(zn —p) <
0. Then inf G|H - sup G|H > 0, that is g is not
coherent.

Case 2. The proof is formally identical to the case 1.
Case 3. There exist (zp,y:) € C~, (zg,ys) € CT,
(Tu,yr) € C™, (x4,y,) € CT, such that zp, < wy
and x, > x,. Let u be a real number. Suppose
that gnt = ye(xp — p) < 0. Then, (zp, —p) > 0
and (xp — @) > 0, hence grs = ys(xp — p) > 0 and p
is coherent.

Suppose that gnt = ye(xn —p) > 0. Then, () —p) <
0. Thus, suppose that (zx—p) > 0. Itisz, < p < hg.
By absurd, suppose that gy, = yr(2, — p) > 0 and
vz = Y.(xy — p) > 0. Thus, it is z, — pu < 0 and
z, — @ > 0, that is z, < p < z, and z, < z,, which
is absurd, as x, > x,. Then, p is coherent. O

Remark 2. We observe that Theorem [3] is a par-
ticular case of Theorem [6] as X~ N X+ # () implies
X~ = XT.

We say that XT < X~ if max XT = min X, and
Xt > X" ifminXt =max X .

From the previous results, we can summarize the case
min ¥ < 0 < max Y > 0 in the following way

e XT < X~ & pp =max Xt < minX~ = pP.
Then p is coherent if and only if y < pg or g >
0
we.

e XT > X & pp=maxX" < minXt = p.
Then p is coherent if and only if pu < pg or g >
pl.

e X~ x Xt If Xt < X~ or XT > X, then
po = pY, otherwise pg > p® and in all such cases
every real number p is coherent.

We illustrate the previous result by the example be-
low.



Example 8. We determine the set IT of coherent
prevision assessment P(X|Y) = p on X|Y, where
(X,Y)eC=1{(0,1),(0,2),(1,-1),(1,—2)}. We have
X~ ={1}, XT = {0}, so that X~ N X = 0; we
have to consider a unique case: zp = 1,z = 0,
with the associated open interval Ip; = (0,1). Then,
I = I, = (0,1) and, by Theorem [6] IT = R\ (0,1);
that is, p is coherent if and only if u ¢ (0,1). The
same result follows directly, by observing that: (i)
Co =C, so that G|H = G;

(ii) given any u, the values of G are: —p, —2u, —1 +
wy,—2 + 2p; (iii) if p € (0,1), the values of G are all
negative; if ;1 ¢ (0,1), it is: min G < 0, max G > 0.

8 Linear transformations of Y.

In this section we examine the effect produced on the
set II (of coherent conditional prevision assessments
on X|Y) by a linear transformation on the condition-
ing random quantity Y. Given two random quantities
X,Y and two counstants ¢, d, with (¢,d) # (0,0), we
set 5o = minY, y° = maxY, Y’ = ¢Y + d and, if
c#0,Y* =Y+ %,; moreover, we denote by II’
(resp., IT*) the set of coherent prevision assessments
on X|Y' = X|(cY +d) (resp., X|Y* = X|(Y + 2)).
We show below, among other things, that: (a) for
d # 0 both cases IT* = II, or II* # II, are possible;
(b) IT" = 11*.

Theorem 7. Given two finite random quantities
X,Y and two constants ¢,d, with (¢,d) # (0,0), we
have:

1. if ¢ = 0,d # 0, then P(X|Y") = P(X|d) = P(X)
and I = [min X, max X|;

2.ifc#0, 2 ¢ (—y°, —yo), then II* = [z, 2°], where
the values xg, 2" are defined as in with Y replaced
by Y*;

3.ifc#0, ¢ € (—y°, —yo), then II* = R\ I, where
the (possibly empty) interval I is defined as in (9]
with Y replaced by Y*;

4. I’ = I1*.

Proof. In case 1 it is G = d(X — p); then, un-
der coherence of P(X), from P(G) = 0 it follows
w="P(X) € [min X,maz X]. In case 2, it is Y* > 0,
when % > —1o, and Y* < 0, when % < —49; then, by
Theorems and [2| it follows IT* = [z, 2°]. In case 3,
as —y < 4 < —yp, it is min Y* < 0 < mazx Y*; then,
by Theorem @, one has IT* = R\ I, with the interval
I possibly empty.

In case 4 it is Y/ = ¢Y™* and, denoting by G’ (resp.,
G*) the random gain associated with X|Y”’ (resp.,
X|Y*), we have G' = ¢Y*(X — pu) = ¢G*. Then

inf G'|H - sup G'|H = c*inf G*|H - sup G*|H ,

and, being ¢ # 0, the assessment P(X|Y’) =
P(X|cY™) = p is coherent if and only if P(X|Y™*) = i
is coherent; thus IT" = IT*. O

We give below an example where IT* 2 II.

Example 9. As in Example [6] we consider the ran-
dom vector (X,Y) € C = {(0,1),(1,0),(1,1),(2,2)}.
We recall that IT = [0,2]. Given Y/ =2Y —2 = 2Y™*,
where Y* =Y — 1, let us determine the set II' = II*.
It is

(X7 Y*) €Ct = {(070)7 (13 71)7 (1v O)? (27 1)}

X~ ={1}, Xx*"={2}, X* nX*t=9.

Then: X*~ < X**, uo = 1, u° = 2, and we have
I = (1,2); moreover

d
yo=0, ¢° =2, —=—-1€(=2,0)=(=y", =)

Then, by Theorem [7] case 3, we obtain

I = II* = (—o0,1) U (2,400) = R\ (1,2) # II.

9 Conclusions

In this paper, recalling a general discussion on
iterated conditioning given by de Finetti in his
book, vol. 2, Appendix, section 13, we have given
a representation of a conditional random quantity
X|HK as (X|H)|K. In this way, we have obtained
the classical formula P(XH|K) = P(X|H)P(H|K),
by simply using linearity of prevision. Then, we have
considered the notion of general conditional prevision
P(X|Y), where X and Y are two random quantities,
introduced in 1990 in a paper by Lad and Dickey, also
discussed by Lad in his book published in 1996. After
recalling the case where Y is an event, we have con-
sidered the case of discrete finite random quantities
and we made some critical comments and examples.
We have given a notion of coherence for such more
general conditional prevision assessments; then,
we have obtained a strong generalized compound
prevision theorem. We have studied the coherence of
a general conditional prevision assessment P(X|Y)
when Y has no negative values and when Y has no
positive values. We gave some results concerning
the set of coherent conditional prevision assessments
of X|Y’, where Y’ is a linear transformation of Y.
Finally, we have given some results on coherence of
P(X|Y) when Y assumes both positive and negative
values. To better illustrate some critical points and
remarks we have also examined several examples.
Future research more in general should concern: (i)
the coherence of a conditional prevision assessment
A = (p1,...,p,) on a family of n conditional



random quantities F = {Xi1|Y1,...,X,|Y,}; (i)
the generalized coherence of imprecise conditional
prevision assessments, for instance an interval-valued
assessment A = ([l1,u1], ..., [ln,un]), on F.
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