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Abstract

In the first part of this paper, recalling a general dis-
cussion on iterated conditioning given by de Finetti
in the appendix of his book, vol. 2, we give a repre-
sentation of a conditional random quantity X|HK as
(X|H)|K. In this way, we obtain the classical formula
P(XH|K) = P(X|HK)P (H|K), by simply using lin-
earity of prevision. Then, we consider the notion of
general conditional prevision P(X|Y ), where X and
Y are two random quantities, introduced in 1990 in
a paper by Lad and Dickey. After recalling the case
where Y is an event, we consider the case of discrete
finite random quantities and we make some critical
comments and examples. We give a notion of coher-
ence for such more general conditional prevision as-
sessments; then, we obtain a strong generalized com-
pound prevision theorem. We study the coherence
of a general conditional prevision assessment P(X|Y )
when Y has no negative values and when Y has no
positive values. Finally, we give some results on co-
herence of P(X|Y ) when Y assumes both positive and
negative values. In order to illustrate critical aspects
and remarks we examine several examples.

Keywords. conditional events, general conditional
random quantities, general conditional prevision as-
sessments, generalized compound prevision theorem,
iterated conditioning, strong generalized compound
prevision theorem.

1 Introduction

This paper takes as its starting point the definition of
general conditional prevision introduced by Lad and
Dickey in [16] and also considered by Lad in his book
[17]. In these works, the authors propose a general
theory of conditional prevision specifying its opera-
tional meaning. This theory, which considers condi-
tional prevision of the form P(X|Y ) where bothX and
Y are random quantities, generalizes the de Finetti’s
definition of a conditional prevision assertion P(X|H),

where H is an event. We observe that, denoting the
indicator of H by the same symbol, to assume ”H
true” amounts to assuming (H = 1) true, that is
(H 6= 0) true. Then, in the approach of Lad and
Dickey, X|H can be looked at as X|Y , where Y is
the indicator of H; hence, P(X|H) = P[X|(H = 1)].
Notice that we discard the case where Y is the con-
stant 0, as it reduces to the case X|H where (H 6= 0)
is impossible. We recall that, concerning (precise or
imprecise) conditional probability or prevision assess-
ments like P (E|H) or P(X|H), where E and H are
events and X is a random quantity, theoretical re-
sults and algorithms in the framework of coherence
have been given by many authors (see, for instance,
[2, 3, 4, 5, 6, 8, 9, 10, 19, 20, 21, 22]) The checking
of coherence and the extension of precise conditional
prevision assessments have been studied in [7].
In [16, 17] the general conditional prevision P(X|Y )
is defined as a number that you specify asserting your
willingness to engage any transaction yielding a suit-
able random net gain and it is shown that such a
generalization answers to questions of decision prob-
lems involving “state dependent preferences”. In his
book ([17]), Lad introduces the notion of general con-
ditional random quantity X|Y from the definition of
conditional prevision P(X|Y ). Obviously, as usual in
a subjective setting, engaging a transaction requires
a coherency of your assertion. In [16, 17], the co-
herency of P(X|Y ) requires that a generalized com-
pound prevision theorem is satisfied, that is the quan-
tities P(XY ), P(Y ) and P(X|Y ) must be such that
P(XY ) = P(X|Y )P(Y ). But, the general case is dif-
ferent from the case where Y is the indicator of an
event H. In fact, P(H) = 0 implies P(XH) = 0,
and using coherence ([15, 18]) we can directly assess
P(X|H). On the contrary, P(Y ) = 0 doesn’t imply
that P(XY ) = 0 and it could happen that it doesn’t
exist a finite value of P(X|Y ) which satisfies the gen-
eralized compound prevision theorem. Thus, in this
paper we propose a notion of coherence in order to
handle the case P(Y ) = 0, integrating the Lad’s defi-



nition of P(X|Y ). Then, we give a strong generalized
compound prevision theorem which follows from our
definition of coherence. The random quantities, like
X and Y , considered in this paper are finite discrete.
The paper is organized as follows. In section 2 we
recall some preliminary concepts and results. In sec-
tion 3 we deepen, in the setting of coherence, the
operational meaning of the assessments P(X|H) and
P(X|HK), where H and K are events and X is
a random quantity; then, based on a general dis-
cussion on iterated conditioning given by de Finetti
in ([12], Vol. 2, Appendix, section 13), we look
at B|AH and X|HK, respectively, as (B|A)|H and
(X|H)|K); then, we give a representation for B|AH
and X|HK which allows to obtain the classical re-
sults P(AB|H) = P(B|AH)P (A|H) and P(XH|K) =
P(X|HK)P (H|K), by simply applying the linearity
of prevision. In section 4, we recall the definitions of
conditional prevision P(X|Y ) and conditional random
quantity X|Y ; then, we examine a critical example.
In section 5, after some critical comments, we propose
an explicit definition of coherence for the conditional
prevision P(X|Y ); then, we give a strong generalized
compound prevision theorem; we also examine many
examples to illustrate some further aspects. In section
6, we study the coherence of a conditional prevision
assessment P(X|Y ) = µ, when Y has no negative val-
ues, or Y has no positive values. In section 7, we give
some results concerning the coherence of the assess-
ment P(X|Y ) = µ, where Y assumes both positive
and negative values. In section 8, we show some re-
sults concerning the set of coherent prevision assess-
ments on X|Y ′, where Y ′ is a linear transformation of
Y . Finally, in section 9 we give some conclusions and
an outlook on future research, which should concern
more in general the case of imprecise conditional pre-
vision assessments on families of conditional random
quantities.

2 Some preliminary notions

We assume that each random quantity has a finite set
of possible values. We denote by Ω (resp., ∅) the sure
(resp., impossible) event; moreover, we denote by Ac

the negation of A and by A ∨ B (resp., AB) the dis-
junction (resp., the conjunction) of A and B. We use
the same symbol to denote an event and its indicator.
We recall that in the subjective approach to proba-
bility, your assessment P (E|H) = p means that You
accept a bet on the conditional event E|H in which
You pay an amount ps, with s 6= 0, by receiving the
random quantity sHE + psHc, so that your net ran-
dom gain is

G = sHE + psHc − ps = sH(E − p) .

By excluding trivial cases, the value of G is, respec-
tively, s(1 − p), or −ps, or 0, according to whether
EH is true, or EcH is true, or Hc is true.
We recall that, considering the restricted random
gain G|H = s(E − p) ∈ {s(1 − p),−ps}, it is
min G|H · max G|H = −s2p(1 − p). Then, the co-
herence of p is defined by the condition ([15, 18]):
min G|H ·max G|H ≤ 0; that is p(1− p) ≥ 0, which
amounts to: 0 ≤ p ≤ 1.
We observe that, to determine the coherent values
of p, we don’t consider all the values of G, but only
those of G|H; in other words the value 0 of G associ-
ated with the case ”H false” is ”discarded”.
We also observe that, denoting by the same sym-
bol the (conditional) events and their indicators, by
choosing s = 1 we obtain

E|H = EH + pHc = EH + (1−H)p ,

where the indicator, or truth-value function, E|H
represents the quantity we receive when we pay the
amount p = P (E|H). Then, by the linearity of previ-
sion, we obtain:

P (E|H) = P (EH) + [1− P (H)]p ,

that is: P (EH) = P (H)P (E|H) (compound proba-
bility theorem). We recall that, starting with a pio-
neering work of de Finetti ([11]), the notion of condi-
tional event as a three-valued (logical and/or numer-
ical) entity has been proposed by many authors (see,
e.g., [1], [13], [14]). Based on the betting scheme, the
notions of conditional prevision and conditional ran-
dom quantity are defined and widely exploited in [17].
Truth-values of conditional events and their extension
to decomposable conditional measures of uncertainty,
with the aim of finding reasonable axioms for a gen-
eral theory, have been discussed in many papers by
Coletti and Scozzafava, see e.g. [9].

3 Representation of conditional
random quantities

We remark that the general formula P (AB|H) =
P (A|H)P (B|AH) can be obtained by using the gen-
eral coherence condition for conditional probability
assessments. The same formula can be obtained,
based on the linearity of prevision, by the following
refined reasoning. Let P = (x, y, z) a probability as-
sessment on F = {A|H,B|AH,AB|H}. We observe
that representing the indicator B|AH as

B|AH = ABH + (1−AH)y ,

we obtain

P (B|AH) = y = P (ABH) + [1− P (AH)]y ,



from which it follows: P (ABH) = P (AH)y, i.e.
zP (H) = xyP (H); hence, to reach the conclusion
we need to assume P (H) > 0. To bypass this ob-
stacle, based on the general discussion on iterated
conditioning given by de Finetti in ([12], Appendix
of Vol. 2, section 13), we can look at B|AH as
(B|A)|H. Moreover, defining p = P (B|A), we have
B|A = AB+ (1−A)p. Of course, when we pass from
B|A to B|AH, we must replace p by y. Then

B|AH = (B|A)|H = AB|H + [(1−A)|H]y =

= AB|H + (Ac|H)y = (AB + yAc)|H .
(1)

The representation above is not surprising, as shown
by the following remarks:
(i) with the family F we can associate the partition
{ABH,ABcH,AcH,Hc};
(ii) under the hypothesis ”H true”, the random quan-
tities B|AH and (AB + yAc)|H coincide, as they al-
ways assume the same value, that is 1, or 0, or y,
according to whether ABH is true, or ABcH is true,
or AcH is true.
Hence, it must be: P(B|AH) = P[(AB + yAc)|H],
with P(B|AH) = P (B|AH) = y and

P(AB + yAc)|H = P(AB|H) + P(yAc|H) =

= P (AB|H) + yP (Ac|H) = z + y(1− x) .

Then, we obtain: y = z + y(1− x), i.e. z = xy.
Notice that, based on this result, we have that B|AH
and (AB + yAc)|H coincide also when Hc is true. In
fact, the value of B|AH (resp., (AB+yAc)|H) associ-
ated with Hc is y (resp., z+y(1−x) = y+z−xy = y).
Now, by generalizing the previous reasoning, given
an event H and a discrete finite random quantity
X ∈ {x1, x2, . . . , xn}, in the subjective approach the
conditional prevision assessment µ = P(X|H) is the
amount to be payed in order to receive the random
quantity X|H = XH + (1 −H)µ. The random gain
is G = X|H − µ = XH − µH and, as before, the co-
herence condition for µ is: min G|H ·max G|H ≤ 0,
which amounts to: min X|H ≤ µ ≤ max X|H.
Of course, we have

P(X|H) = µ = P[XH + (1−H)µ] =

= P(XH) + P(1−H)µ = P(XH) + µ− P (H)µ ,

from which it follows the well known formula:
P(XH) = P (H)µ = P (H)P(X|H).
More in general, given two events H,K and a random
quantity X, let M = (x, y, z) a conditional prevision
assessment on F = {H|K,X|HK,XH|K}.
By the same kind of reasoning, we have

X|HK = (X|H)|K = [XH + (1−H)y]|K =

= XH|K + yHc|K .
(2)

In fact, as for the case of conditional events, we can
show that the conditional random quantities X|HK
and [XH + (1−H)y]|K coincide by the following re-
marks:
(i) we denote by {x1, . . . , xn} the set of possible values
of X and, for the sake of simplicity by {x1, . . . , xr}
(resp., {x1, . . . , xr, . . . , xt}) the set of values of X
compatible with HK (resp., with K), where r ≤ t ≤
n; moreover, we set Ei = (X = xi) and with the fam-
ily F we associate the partition (of the sure event Ω)
{E1HK, . . . , ErHK,H

cK,Kc};
(ii) we have X =

∑n
i=1 xiEi and XH =

∑n
i=1 xiEiH;

then

X|HK =
r∑

i=1

xiEiHK + (1−HK)y ;

XH|K + yHc|K =
r∑

i=1

xiEiHK + (1−K)z +

+ yHcK + (1−K)y(1− x) ;

(iii) assuming ”K true”, if H is true, then X = xi for
some i ≤ r and X|HK = [XH + (1 − H)y]|K = xi;
if H is false, then X = xi for some i, with r < i ≤ t,
and X|HK = XH|K + yHc|K = y; hence, under the
hypothesis ”K true”, X|HK and [XH + (1−H)y]|K
coincide. Then

P(X|HK) = y = P([XH + (1−H)y]|K) =

= P(XH|K) + yP (Hc|K) = z + y(1− x) ,

from which it follows: z = xy, that is:

P(XH|K) = P(X|H)P (H|K) .

Notice that, by the previous formula, if K is false we
have X|HK = y and

XH|K + yHc|K = z + y(1− x) = y + z − xy = y .

Therefore, the conditional random quantities X|HK
and XH|K+yHc|K = (XH+yHc)|K coincide in all
cases.

4 General conditional random
quantities

Let be given two random quantities X and Y . In [17]
it is proposed the notion of general conditional ran-
dom quantity X|Y based on the following definition
for the prevision of X|Y , introduced in [16].

Definition 1. The conditional prevision for X given
Y , denoted P(X|Y ), is a number you specify with the
understanding that you accept to engage any transac-
tion yielding a random net gain G = sY [X−P(X|Y )].



The following definition is given for the conditional
random quantity X|Y .
Definition 2. Having asserted your conditional pre-
vision P(X|Y ) = µ, the conditional random quantity
X|Y is defined as

X|Y = XY + (1− Y )µ = µ+ Y (X − µ) . (3)

Notice that, if Y assumes only the value 0, that is
Y ≡ 0, you can pay every real number µ = P(X|Y ),
as you always receive the same amount µ; in fact, the
net gain is always 0. To avoid this trivial case we will
assume that (Y = 0) 6= Ω.
We remark that such a general notion of conditional
random quantity reduces to the classical one X|H =
XH + (1 −H)µ when Y coincides with an event H.
Lad remarks that the direction of the net gain (or
loss) depends on the difference (X − µ), while the
scale depends on the numerical value of Y . Lad also
remarks that for Y = 0 (resp., Y = 1) the net gain is 0
(resp., s(X − µ)), i.e. the possible net gains obtained
when Y is an event. Then, by computing the prevision
on both sides of (3), Lad obtains

µ = µ+ P[Y (X − µ)] = µ+ P(XY )− µP(Y ) ,

so that P(XY ) = P(X|Y )P(Y ), which becomes∑
j pjyjP[X | (Y = yj)] = P(X|Y )

∑
j pjyj , where

pj = P (Y = yj). This condition, which we call
”generalized compound prevision theorem”, general-
izes the classical one P(XH) = P(X|H)P (H), where
H is an event. Then, when P(Y ) 6= 0 it imme-
diately follows P(X|Y ) = P(XY )

P(Y ) (actually, we will
see that the generalized compound prevision theo-
rem holds in a stronger sense). Several properties
are obtained by Lad, under the condition P(Y ) 6= 0.
We also notice that, when X and Y are uncorre-
lated, i.e. Cov(X,Y ) = 0, it is P(XY ) = P(X)P(Y );
then, under the hypothesis P(Y ) 6= 0, it follows
P(X|Y ) = P(X). We can say that, under the con-
dition P(Y ) 6= 0, X and Y are uncorrelated if and
only if the prevision of ’X given Y ’ coincides with the
prevision of X.
We examine below an example, in which Y is not an
event, to illustrate a critical aspect.
Example 1. We recall that by the formula P(XH) =
P (H)P(X|H), when P (H) > 0 it follows P(X|H) =
P(XH)
P (H) . Moreover, if P (H) = 0, then P(XH) = 0; in

this case, based on coherence principle ([15, 18]) and
assuming ∅ 6= H 6= Ω, it can be proved that the as-
sessment (0, 0, µ) on {H,XH,X|H} is coherent if and
only if: min X|H ≤ µ ≤ max X|H. But, replacing
H by a random quantity Y , we are in a very different
situation, as P(Y ) = 0 doesn’t imply P(XY ) = 0. To
illustrate this aspect, let us consider a random vector

(X,Y ) ∈ C = {(0,−1), (0, 1), (1,−1), (1, 1)} ,

with

p(0,−1) =
1
3
, p(0, 1) =

1
6
, p(1,−1) =

1
6
, p(1, 1) =

1
3
,

where p(x, y) = P (X = x, Y = y). We denote the
joint distribution of (X,Y ) by the vector ( 1

3 ,
1
6 ,

1
6 ,

1
3 ).

We have

Y ∈ CY = {−1, 1} , XY ∈ CXY = {−1, 0, 1} ,

with P (Y = −1) = P (Y = 1) = 1
2 , and with P (XY =

−1) = 1
6 , P (XY = 0) = 1

2 , P (XY = 1) = 1
3 , so that

P(Y ) = 0 and P(XY ) = 1
6 . In this case, it doesn’t ex-

ist any finite value P(X|Y ) which satisfies the equality
P(XY ) = P(X|Y )P(Y ). In fact, given any assessment
P(X|Y ) = µ, the values of Y (X − µ) associated with
that of (X,Y ) are, respectively, µ,−µ,−1 + µ, 1− µ;
then, assuming (for the sake of simplicity) s = 1, one
has

P(G) = P[Y (X − µ)] =

=
1
3
µ+

1
6

(−µ)+
1
6

(−1+µ)+
1
3

(1−µ) =
1
6
6= 0 , ∀µ .

Hence, by starting with a joint probability distribution
on (X,Y ), it may happen that the equation P(XY ) =
P(X|Y )P(Y ) has no finite solutions in the unknown
P(X|Y ).
If we assign the joint distribution ( 1

3 − ε,
1
6 + ε, 1

6 ,
1
3 )

on (X,Y ), with ε ∈ [− 1
6 , 0) ∪ (0, 1

3 ], we obtains

P (Y = −1) =
1
2
−ε , P (Y = 1) =

1
2

+ε , P(Y ) = 2ε ,

P (Y = −1) =
1
2
−ε , P (Y = 1) =

1
2

+ε , P(Y ) = 2ε ,

while the distribution of XY doesn’t change; more-
over,

P(G) = (
1
3
−ε)µ+(

1
6

+ε)(−µ)+
1
6

(−1+µ)+
1
3

(1−µ) =

=
1
6
− 2εµ = P(XY )− P(Y )P(X|Y ) ,

and imposing P(G) = 0, it follows

µ = P(X|Y ) =
1

12 ε
, ε ∈ [−1

6
, 0) ∪ (0,

1
3

] .

In particular, for ε ∈ [− 1
6 , 0) it is µ ∈ (−∞,− 1

2 ], while
for ε ∈ (0, 1

3 ] it is µ ∈ [ 14 ,+∞).
Finally, if we assign a uniform distribution on (X,Y ),
that is

p(0,−1) = p(0, 1) = p(1,−1) = p(1, 1) =
1
4
,

it follows P(Y ) = P(XY ) = 0; then, the equality
P(XY ) = P(Y )P(X|Y ) becomes 0 = 0 · P(X|Y ). In
this case, we need a direct assessment of P(X|Y ) and
the problem of coherence arises. This basic problem
will be addressed in the next section.



5 Coherence of general conditional
prevision assessments

A crucial problem arises when P(Y ) = 0; what can be
said about coherence of a given assessment P(X|Y ) =
µ? We remark that this case has not been examined
in the book of Lad. We also observe that when Y
equals 0 Lad notices that the net gain is 0 without
further comments. But, concerning the classical case
of a conditional random quantity X|H, in order to
check the coherence of the assessment P(X|H) = µ,
as is well known the value 0 of the net gain associated
with the case H = 0 is discarded by the set of values
of the net gain G, i.e. coherence checking is based
on the values of G|H. Hence, in order to integrate
the analysis of Lad by properly managing the case
P(Y ) = 0, we propose:
(i) to give an explicit definition of coherence for a
given assessment P(X|Y ) = µ;
(ii) to discard, in the definition of coherence, the value
0 of the net gain associated with the case Y = 0.
Then, based on [15, 18], we give the following
Definition 3. Given two random quantities X,Y and
a conditional prevision assessment P(X|Y ) = µ, let
G = s(X|Y − µ) = sY (X − µ) be the net random
gain, where s is an arbitrary real quantity, with s 6=
0. Defining the event H = (Y 6= 0), the assessment
P(X|Y ) = µ is coherent if and only if: inf G|H ·
sup G|H ≤ 0, for every s.

In what follows, without loss of generality, we will set
s = 1.

5.1 A strong generalized compound
prevision theorem

Based on Definition 3, we will obtain a stronger ver-
sion of the generalized compound prevision theorem.
We recall that H is the event (Y 6= 0); then, we
make the following reasoning (where we assume that
µ,P(Y |H), and P(XY |H) are finite):
(i) by Definition 3, µ is the quantity to be payed, in
order to receive X|Y , under the hypothesis H true;
hence, operatively µ is the prevision of X|Y , condi-
tional on H; (ii) hence, a more appropriate represen-
tation of X|Y is given by: X|Y = [µ+ Y (X − µ)]|H;
(iii) then, by computing the prevision on both sides
of the previous equality, we have:

µ = P(X|Y ) = P[µ+Y (X−µ)|H] = µ+P[Y (X−µ)|H] ,

so that P[Y (X −µ)|H] = P[(XY −µY )|H] = 0; then,
by the linearity of prevision, it follows

P(XY |H) = P(X|Y )P(Y |H) . (4)

Notice that, if Y is a finite discrete random quantity,
with Y ≥ 0, or Y ≤ 0, surely it is P(Y |H) 6= 0; then,

by (4) it follows P(X|Y ) = P(XY |H)
P(Y |H) .

We recall that Hc is the event (Y = 0); moreover, we
observe that P(Y |Hc) = P(XY |Hc) = 0; hence,

P(Y ) = P(Y |H)P (H) + P(Y |Hc)P (Hc) =

= P(Y |H)P (H) = P(Y H) ,
(5)

P(XY ) = P(XY |H)P (H) + P(XY |Hc)P (Hc) =

= P(XY |H)P (H) = P(XYH) .
(6)

Then, by (4), (5), and (6), one has

P(XY |H)P (H) = P(X|Y )P(Y |H)P (H) ,

that is, the formula P(XY ) = P(X|Y )P(Y ), given
in [16] and [17], which we call weak generalized com-
pound prevision theorem.

5.2 Some examples and remarks

In the finite case, denoting respectively by CX , CY and
C the sets of possible values of X,Y and (X,Y ), with
each (xh, yk) ∈ C it is associated for the net gain G the
value ghk = yk(xh − µ). We set C0 = {(xh, yk) ∈ C :
yk 6= 0}; of course C0 ⊆ C. Then, by Definition 3, the
assessment µ is coherent if and only if: m ≤ 0 ≤ M ,
where

m = min
(xh,yk)∈C0

yk(xh−µ) , M = max
(xh,yk)∈C0

yk(xh−µ) .

We denote by Π the set of coherent assessments µ;
then, we remark that, assuming C0 6= ∅, the assess-
ment µ = xh is coherent, as it trivially satisfies the
condition of coherence (it is ghk = 0, ∀ (xh, yk) ∈ C0).
Hence, CX ⊆ Π.

Example 2. Given a random vector (X,Y ) ∈ C =
{(−1, 0), (1, 1)}, consider the assessment P(Y |X) = µ
on the conditional random quantity X|Y . We have
H = (Y 6= 0); hence C0 = {(1, 1)}. Moreover, one
has G = Y (X − µ) ∈ {0, 1 − µ}, with G|H = 1 − µ.
We observe that Y coincides with the indicator of H,
so that X|Y = X|H. Then, by Definition 3, µ is
coherent if and only if 1−µ = 0, that is µ = 1. Notice
that this result is consistent with the usual approach
to the notion of conditional prevision.

Remark 1. Notice that in Example 2, while the co-
herence condition inf G|H · sup G|H ≤ 0 is satisfied
uniquely with µ = 1, the condition inf G · sup G ≤
0 is satisfied for every µ. Then, if the condition
inf G|H · sup G|H ≤ 0 were replaced by inf G ·
sup G ≤ 0, it would follow that every assessment
P(X|Y ) = µ would be coherent, which is clearly un-
reasonable (however, as we will show by other exam-
ples, still applying the condition inf G|H · sup G|H ≤



0, it may be Π = R). Example 2 confirms that, in or-
der to look at X|Y as X|H in the usual sense, when
checking coherence we must discard the value 0 of the
random gain G associated with the case Y = 0. In
this way, we can look at the family of conditional ran-
dom quantities like X|H, where H is an event, as a
sub-family of the family of general conditional random
quantities like X|Y , where Y is a random quantity.

We recall that, given any event H 6= ∅, if X is a con-
stant, say X = c, then P(X|H) = c. The following
example shows that, ifX = c and Y is a random quan-
tity, with min Y < 0 < max Y , then the assessment
P(X|Y ) = µ is coherent for every µ ∈ R.
Example 3. Given (X,Y ) ∈ C = {(c,−y1), (c, y2)},
with c ∈ R and y1, y2 > 0, consider the coherence of
any assessment P(X|Y ) = µ. We have C0 = C, so
that H = (Y 6= 0) = Ω and G|H = G = Y (c − µ).
The values of G|H are: −y1(c−µ), y2(c−µ), and the
coherence condition inf G|H · sup G|H ≤ 0 is satisfied
for every µ ∈ R. Moreover, given a joint distribution
on (X,Y ), say (p, 1− p), where

p = P (X = c, Y = −y1) , 1−p = P (X = c, Y = y2), ,

with 0 ≤ p ≤ 1, we have P(Y ) = y2 − p(y1 + y2) and

P(XY ) = cP(Y ) = c[y2 − p(y1 + y2)] .

Then, if p 6= y2
y1+y2

, one has P(Y ) 6= 0 and c is the
unique coherent value of µ associated with the dis-
tribution (p, 1 − p). Whereas, if p = y2

y1+y2
, then

P(Y ) = P(XY ) = 0, and the assessment P(X|Y ) = µ,
associated with the distribution ( y2

y1+y2
, y1

y1+y2
), is co-

herent for every µ ∈ R.
Example 4. We continue the study of Example
1, by examining the coherence of a given assess-
ment P(X|Y ) = µ. We recall that (X,Y ) ∈ C =
{(0,−1), (0, 1), (1,−1), (1, 1)}; moreover, we observe
that C0 = C, as H = (Y 6= 0) = Ω and hence
G|H = G = Y (X −µ). With the values of (X,Y ) are
associated respectively the following values of G|H:
µ,−µ,−1 + µ, 1 − µ; hence, the coherence condition
inf G|H · sup G|H ≤ 0 is satisfied for every µ.
Example 5. We assume that (X,Y ) ∈ C =
{(0,−1), (1, 1)}, by examining the coherence of a
given assessment P(X|Y ) = µ. We have C0 = C;
so that H = (Y 6= 0) = Ω and we have G|H =
G = Y (X − µ). The values of G|H are: µ, 1 − µ
and, as it can be verified, the coherence condition
inf G|H · sup G|H ≤ 0 is satisfied if and only if
µ /∈ (0, 1), that is µ is coherent if and only if µ ∈
(−∞, 0]∪[1,+∞). In this example with each coherent
assessment µ it is associated a unique joint distribu-
tion on (X,Y ), say (p, 1− p), where

p = P (X = 0, Y = −1) ,

1− p = P (X = 1, Y = 1) , 0 ≤ p ≤ 1 .

The parameter p is determined by requiring that the
prevision of the random gain be 0, that is

pµ+ (1− p)(1− µ) = 0 . (7)

As it can be verified, one has

p = f(µ) =
1− µ
1− 2µ

;

moreover, when µ ≤ 0 it is 1
2 < p ≤ 1; when µ ≥ 1 it

is 0 ≤ p ≤ 1
2 . Notice that

µ = f−1(p) =
1− p
1− 2p

;

that is: f−1 = f . This result depends on the symme-
try of the equation (7) with respect to p and µ.

As shown by Example 5, the set Π of the coherent as-
sessments µ may be not convex.
To better analyze this aspect, in what follows we ex-
amine separately two cases:
(i) Y ≥ 0 , or Y ≤ 0; (ii) min Y < 0 < max Y .

6 The case Y ≥ 0 , or Y ≤ 0.

We assume X ∈ CX = {x1, . . . , xn} and Y ∈ CY =
{y1, . . . , yr}, with yk ≥ 0 , ∀ k. Moreover, we denote
by X0 the subset of CX such that for each xh ∈ X0

there exists (xh, yk) ∈ C0. Then, we set

x0 = min X0 , x0 = max X0 . (8)

We first consider the case Y ≥ 0; we have

Theorem 1. Given two finite random quantities
X,Y , with Y ≥ 0, the prevision assessment P(X|Y ) =
µ is coherent if and only if x0 ≤ µ ≤ x0.

Proof. Given any µ, with each pair (xh, yk) ∈ C0 we
associate the inequality yk(xh − µ) ≥ 0. Under the
hypothesis Y 6= 0 it is yk > 0; then the inequality is
satisfied if and only if µ ≤ xh. We observe that, for
each xh ∈ X0, there exists (at least) a value yk > 0
such that (xh, yk) ∈ C0. Then, we distinguish three
cases: (i) µ < x0; (ii) µ > x0; (iii) x0 ≤ µ ≤ x0. In the
first case it is yk(xh − µ) > 0 for every (xh, yk) ∈ C0,
so that inf G|H · sup G|H > 0 and hence µ is not
coherent. In the second case it is yk(xh − µ) < 0
for every (xh, yk) ∈ C0, so that inf G|H · sup G|H >
0 and hence µ is not coherent. In the third case,
denoting by yk and ys two positive values of Y such
that (x0, yk) ∈ C0, (x0, ys) ∈ C0, it is yk(x0 − µ) ≤
0 , ys(x0−µ) ≥ 0, so that inf G|H ≤ 0 , sup G|H ≥ 0
and hence inf G|H · sup G|H ≤ 0. Therefore, for
every µ ∈ [x0, x

0], µ is coherent.



We illustrate the previous result by the following
Example 6. Given a random vector (X,Y ) ∈ C =
{(0, 1), (1, 0), (1, 1), (2, 2)}, let us determine the set
Π of coherent prevision assessment P(X|Y ) = µ on
X|Y . We observe that X0 = X, so that x0 =
min CX = 0 , x0 = max CX = 2; moreover, it is
C0 = {(0, 1), (1, 1), (2, 2)} and the values of Y (X−µ),
under the restriction (X,Y ) ∈ C0 are, respectively,
−µ, 1−µ, 2(2−µ); such values are all positive (resp.,
all negative) when µ < 0 (resp., µ > 2); hence
each µ /∈ [0, 2] is not coherent. Finally, when µ ∈
[0, 2] one has −µ(2 − µ) ≤ 0, so that the condition
inf G|H · sup G|H ≤ 0 is satisfied. Hence, we have
Π = [x0, x

0] = [0, 2].

We now consider the case Y ≤ 0; we have
Theorem 2. Given two finite random quantities
X,Y , with Y ≤ 0, the conditional prevision assess-
ment P(X|Y ) = µ is coherent if and only if x0 ≤ µ ≤
x0.

Proof. We observe that, as −Y ≥ 0, by Theorem 1
the assessment P(X| − Y ) = µ is coherent if and only
if x0 ≤ µ ≤ x0. On the other hand, defining G′|H =
−Y (X − µ)|H, we have G|H = Y (X − µ) = −G′|H.
Then

inf G|H = − sup G′|H , sup G|H = − inf G′|H ,

and hence: inf G|H · sup G|H = inf G′|H · sup G′|H;
thus, the assessment P(X|H) = µ is coherent if and
only if x0 ≤ µ ≤ x0.

7 The case min Y < 0 < max Y .

We now examine the general case in which there exist
positive and negative values of Y . We set

X− = {xh ∈ CX : ∃(xh, yk) ∈ C0, yk < 0} ,

X+ = {xh ∈ CX : ∃(xh, yk) ∈ C0, yk > 0} ;

C− = {(xh, yk) ∈ C0 : yk < 0} ,
C+ = {(xh, yk) ∈ C0 : yk > 0} .

Of course, C− ∩ C+ = ∅ and C− ∪ C+ = C0. We have
Theorem 3. Let be given two random quantities
X,Y , with min Y < 0 < max Y . If X− ∩ X+ 6= ∅,
then the conditional prevision assessment P(X|Y ) =
µ is coherent, for every real number µ.

Proof. Let be given xh ∈ X− ∩X+, yk ∈ CY , yt ∈ CY
such that (xh, yk) ∈ C− and (xh, yt) ∈ C+; more-
over, let µ be any real number. It is ghkght =
yk(xh − µ) · yt(xh − µ) = ykyt(xh − µ)2 ≤ 0, so that
inf G|H · sup G|H ≤ 0. Therefore, for every µ ∈ <,
µ is coherent.

We illustrate the previous result by the following

Example 7. We determine the set Π of coherent
prevision assessment P(X|Y ) = µ on X|Y , where
(X,Y ) ∈ C = {(0, 1), (0,−1), (1,−1), (1, 1)}, as in
Example 1. We have X− = X+ = {0, 1}, so that
X− ∩X+ 6= ∅; hence, by Theorem 3, Π = <.

In what follows, we examine the cases

min X− = max X+ , max X− = min X+ ;

then, we study in depth the case X−∩X+ = ∅. Given
any (xh, ys) ∈ C− , (xk, yt) ∈ C+, we set

mhk = min {xh, xk} , Mhk = max {xh, xk} ;

moreover, we denote by Ihk the open interval
(mhk,Mhk). Then, we set

I =
⋂

xh∈X−, xk∈X+

Ihk . (9)

Notice that, defining

µ0 = maxxh∈X−, xk∈X+ mhk ,

µ0 = minxh∈X−, xk∈X+ Mhk ,
(10)

one has I 6= ∅ if and only if µ0 < µ0 and, in this case,
I = (µ0, µ

0). We have

Theorem 4. Let the quantities µ0, µ0 be defined
as in (10); then µ0 = min (max X−,max X+) and
µ0 = max (min X−,min X+).

Proof. We first prove that µ0 coincides with
min (max X−,max X+). Let be xk = max X+,
xh = max X−. Then xr ≤ xk,∀xr ∈ X+ and xt ≤
xh,∀xt ∈ X−. Let be min (max X−,max X+) = xh.
Then, there exists xr ∈ X+ such that xr ≥ xh,
i.e. there exist (xh, ys) ∈ C− and (xr, yt) ∈ C+,
such that mhr = xh. Suppose that µ0 6= xh,
i.e. µ0 6= min (maxX−,maxX+); then µ0 > xh

and, as xh = max X−, it must be µ0 = xt for
some xt ∈ X+. Then, there exist (xv, yr) ∈ C−,
(xt, ys) ∈ C+ such that xt ≤ xv. From xv ≤ xh, it is
xt ≤ xv ≤ xh, i.e. µ0 ≤ xh, which is absurd; hence
µ0 = min (max X−,max X+). The proof is similar if
min (max X−,max X+) = xk, where xk = max X+.
We now prove that µ0 = max (min X−,min X+).
Let be xk = min X+, xh = min X−. Then xr ≥
xk,∀xr ∈ X+ and xt ≥ xh,∀xt ∈ X−. Let be
max (min X−,min X+) = xh. Then, there exists
xr ∈ X+ such that xr ≤ xh, i.e. there exist (xh, ys) ∈
C− and (xr, yt) ∈ C+, such that Mhr = xh. Suppose
that µ0 6= xh, i.e. µ0 6= max (min X−,min X+); then
µ0 < xh and, as xh = min X−, it must be µ0 = xt

for some xt ∈ X+. Then, there exist (xv, yr) ∈ C−,



(xt, ys) ∈ C+ such that xt ≥ xv. From xv ≥ xh, it is
xt ≥ xv ≥ xh, i.e. µ0 ≥ xh, which is absurd; hence
µ0 = max(min X−,min X+).
The proof is similar if max (min X−,min X+) = xk,
where xk = min X+.

Thus, if µ0 < µ0, it is I = (µ0, µ
0) =

(min (max X−,max X+) , max (min X−,min X+)).
We set X− < X+ (resp., X− > X+) if and only
if max X− < min X+ (resp., min X− > max X+),
otherwise we set X− � X+. We have

Theorem 5. I 6= ∅ if and only if X− < X+, or
X− > X+.

Proof. Obviously, I 6= ∅ if and only if µ0 < µ0. We
prove that µ0 ≥ µ0 if and only if X− � X+. Such a
situation happens if and only if µ0 ∈ X− and µ0 ∈ X−
or µ0 ∈ X+ and µ0 ∈ X+. Suppose that µ0 = xh ∈
X+ and µ0 = xk ∈ X+. It is µ0 = maxX+ and
µ0 = minX+. From µ0 = min(maxX−,maxX+),
there exists xs ∈ X− such that xs ≥ xh and, from
µ0 = max(minX−,minX+)], there exists xt ∈ X−

such that xt ≤ xk, that is X− � X+. Moreover, from
µ0 = maxX+, µ0 = minX+, it is µ0 ≥ µ0 and I = ∅.
If we suppose that µ0 = xh ∈ X− and µ0 = xk ∈ X−,
by a similar reasoning, we have that X− � X+ and
µ0 > µ0 so that I = ∅.
Suppose that I 6= ∅ that is µ0 < µ0. Thus, µ0 =
xk ∈ X+ and µ0 = xh ∈ X− or µ0 = xh ∈ X− and
µ0 = xk ∈ X+. In the first case it is X+ < X−, in
the other case it is X+ < X−. Conversely, if X+ <
X−, it is maxX+ < maxX− and µ0 = maxX+.
Moreover, it is minX+ < minX− and µ0 = minX−,
with µ0 < µ0. If, X+ > X− it is maxX+ > maxX−

and µ0 = maxX−. Moreover, it is minX+ > minX−

and µ0 = minX+, with µ0 < µ0.

Based on the previous result, we have the following
three cases

1. X+ < X− ⇔ I 6= ∅ and I = (µ0, µ
0), with µ0 =

max X+ , µ0 = min X−.

2. X+ > X− ⇔ I 6= ∅ and I = (µ0, µ
0), with µ0 =

max X− , µ0 = min X+.

3. X− � X+ ⇔ I = ∅.

We have

Theorem 6. Let be given two random quantities
X,Y , with min Y < 0 < max Y . If case 1, or case 2,
holds, then X− ∩X+ = ∅ and the conditional previ-
sion assessment P(X|Y ) = µ is coherent if and only if
µ /∈ I. In the case 3, the assessment P(X|Y ) = µ is
coherent for every real number µ.

Proof. Case 1. Suppose µ ≤ µ0. We prove that µ is
coherent. It is µ ≤ µ0 = max X+ < min X− = µ0.
Let xh ∈ X+, that is there exist (xh, ys) ∈ C+ and
ys > 0. It is xh − µ ≥ 0, then ghs = ys(xh − µ) ≥ 0.
Let xk ∈ X−, that is there exist (xk, yt) ∈ C− and
ys < 0. It is xk−µ > 0, then gkt = yt(xk−µ) < 0. It
follows inf G|H · sup G|H ≤ 0, that is µ is coherent.
By a similar reasoning, if µ ≥ µ0 it follows that µ is
coherent.
Conversely, we prove that, if µ0 = maxX+ < µ <
minX− = µ0, µ is not coherent. From X+ < X−, it
is xk ≤ µ0 < µ < µ0 ≤ xh for each xh ∈ X−,xk ∈ X+.
Hence, we have that for each (xh, ys) ∈ C− one has
ghs = ys(xh−µ) < 0, as ys < 0 and xh−µ ≥ µ0−µ >
0; moreover, for each (xk, yt) ∈ C+ one has gkt =
yt(xk − µ) < 0, as yt > 0 and xk − µ ≤ µ0 − µ < 0.
Hence, for every (xh, yk) ∈ C, it is ghk = yk(xh−µ) <
0. Then inf G|H · sup G|H > 0, that is µ is not
coherent.
Case 2. The proof is formally identical to the case 1.
Case 3. There exist (xh, yt) ∈ C−, (xk, ys) ∈ C+,
(xu, yr) ∈ C−, (xv, yz) ∈ C+, such that xh < xk

and xu > xv. Let µ be a real number. Suppose
that ght = yt(xh − µ) < 0. Then, (xh − µ) > 0
and (xk − µ) > 0, hence gks = ys(xh − µ) > 0 and µ
is coherent.
Suppose that ght = yt(xh−µ) > 0. Then, (xh−µ) <
0. Thus, suppose that (xk−µ) > 0. It is xh < µ < hk.
By absurd, suppose that gur = yr(xu − µ) > 0 and
gvz = yz(xv − µ) > 0. Thus, it is xu − µ < 0 and
xv − µ > 0, that is xu < µ < xv and xu < xv, which
is absurd, as xu > xv. Then, µ is coherent.

Remark 2. We observe that Theorem 3 is a par-
ticular case of Theorem 6, as X− ∩ X+ 6= ∅ implies
X− � X+.

We say that X+ ≤ X− if maxX+ = minX−, and
X+ ≥ X− if minX+ = maxX−.
From the previous results, we can summarize the case
min Y < 0 < max Y > 0 in the following way

• X+ < X− ⇔ µ0 = maxX+ < minX− = µ0.
Then µ is coherent if and only if µ ≤ µ0 or µ ≥
µ0.

• X+ > X− ⇔ µ0 = maxX− < minX+ = µ0.
Then µ is coherent if and only if µ ≤ µ0 or µ ≥
µ0.

• X− � X+. If X+ ≤ X− or X+ ≥ X−, then
µ0 = µ0, otherwise µ0 > µ0 and in all such cases
every real number µ is coherent.

We illustrate the previous result by the example be-
low.



Example 8. We determine the set Π of coherent
prevision assessment P(X|Y ) = µ on X|Y , where
(X,Y ) ∈ C = {(0, 1), (0, 2), (1,−1), (1,−2)}. We have
X− = {1} , X+ = {0}, so that X− ∩ X+ = ∅; we
have to consider a unique case: xh = 1, xk = 0,
with the associated open interval Ihk = (0, 1). Then,
I = Ihk = (0, 1) and, by Theorem 6, Π = < \ (0, 1);
that is, µ is coherent if and only if µ /∈ (0, 1). The
same result follows directly, by observing that: (i)
C0 = C, so that G|H = G;
(ii) given any µ, the values of G are: −µ,−2µ,−1 +
µ,−2 + 2µ; (iii) if µ ∈ (0, 1), the values of G are all
negative; if µ /∈ (0, 1), it is: min G < 0 , max G > 0.

8 Linear transformations of Y .

In this section we examine the effect produced on the
set Π (of coherent conditional prevision assessments
on X|Y ) by a linear transformation on the condition-
ing random quantity Y . Given two random quantities
X,Y and two constants c, d, with (c, d) 6= (0, 0), we
set y0 = minY, y0 = maxY, Y ′ = cY + d and, if
c 6= 0, Y ∗ = Y + d

c , ; moreover, we denote by Π′

(resp., Π∗) the set of coherent prevision assessments
on X|Y ′ = X|(cY + d) (resp., X|Y ∗ = X|(Y + d

c )).
We show below, among other things, that: (a) for
d 6= 0 both cases Π∗ = Π, or Π∗ 6= Π, are possible;
(b) Π′ = Π∗.

Theorem 7. Given two finite random quantities
X,Y and two constants c, d, with (c, d) 6= (0, 0), we
have:
1. if c = 0, d 6= 0, then P(X|Y ′) = P(X|d) = P(X)
and Π′ = [minX,maxX];
2. if c 6= 0, d

c /∈ (−y0,−y0), then Π∗ = [x0, x
0], where

the values x0, x
0 are defined as in (8) with Y replaced

by Y ∗;
3. if c 6= 0, d

c ∈ (−y0,−y0), then Π∗ = R \ I, where
the (possibly empty) interval I is defined as in (9)
with Y replaced by Y ∗;
4. Π′ = Π∗.

Proof. In case 1 it is G = d(X − µ); then, un-
der coherence of P(X), from P(G) = 0 it follows
µ = P(X) ∈ [minX,maxX]. In case 2, it is Y ∗ ≥ 0,
when d

c ≥ −y0, and Y ∗ ≤ 0, when d
c ≤ −y

0; then, by
Theorems 1 and 2, it follows Π∗ = [x0, x

0]. In case 3,
as −y0 ≤ d

c ≤ −y0, it is minY ∗ < 0 < maxY ∗; then,
by Theorem 6, one has Π∗ = R \ I, with the interval
I possibly empty.
In case 4 it is Y ′ = cY ∗ and, denoting by G′ (resp.,
G∗) the random gain associated with X|Y ′ (resp.,
X|Y ∗), we have G′ = cY ∗(X − µ) = cG∗. Then

inf G′|H · sup G′|H = c2 inf G∗|H · sup G∗|H ,

and, being c2 6= 0, the assessment P(X|Y ′) =
P(X|cY ∗) = µ is coherent if and only if P(X|Y ∗) = µ
is coherent; thus Π′ = Π∗.

We give below an example where Π∗ 6= Π.

Example 9. As in Example 6, we consider the ran-
dom vector (X,Y ) ∈ C = {(0, 1), (1, 0), (1, 1), (2, 2)}.
We recall that Π = [0, 2]. Given Y ′ = 2Y − 2 = 2Y ∗,
where Y ∗ = Y − 1, let us determine the set Π′ = Π∗.
It is

(X,Y ∗) ∈ C∗ = {(0, 0), (1,−1), (1, 0), (2, 1)}

X∗− = {1} , X∗+ = {2} , X∗− ∩X∗+ = ∅ .

Then: X∗− < X∗+, µ0 = 1, µ0 = 2, and we have
I = (1, 2); moreover

y0 = 0 , y0 = 2 ,
d

c
= −1 ∈ (−2, 0) = (−y0,−y0) .

Then, by Theorem 7, case 3, we obtain

Π′ = Π∗ = (−∞, 1) ∪ (2,+∞) = R \ (1, 2) 6= Π .

9 Conclusions

In this paper, recalling a general discussion on
iterated conditioning given by de Finetti in his
book, vol. 2, Appendix, section 13, we have given
a representation of a conditional random quantity
X|HK as (X|H)|K. In this way, we have obtained
the classical formula P(XH|K) = P(X|H)P (H|K),
by simply using linearity of prevision. Then, we have
considered the notion of general conditional prevision
P(X|Y ), where X and Y are two random quantities,
introduced in 1990 in a paper by Lad and Dickey, also
discussed by Lad in his book published in 1996. After
recalling the case where Y is an event, we have con-
sidered the case of discrete finite random quantities
and we made some critical comments and examples.
We have given a notion of coherence for such more
general conditional prevision assessments; then,
we have obtained a strong generalized compound
prevision theorem. We have studied the coherence of
a general conditional prevision assessment P(X|Y )
when Y has no negative values and when Y has no
positive values. We gave some results concerning
the set of coherent conditional prevision assessments
of X|Y ′, where Y ′ is a linear transformation of Y .
Finally, we have given some results on coherence of
P(X|Y ) when Y assumes both positive and negative
values. To better illustrate some critical points and
remarks we have also examined several examples.
Future research more in general should concern: (i)
the coherence of a conditional prevision assessment
A = (µ1, . . . , µn) on a family of n conditional



random quantities F = {X1|Y1, . . . , Xn|Yn}; (ii)
the generalized coherence of imprecise conditional
prevision assessments, for instance an interval-valued
assessment A = ([l1, u1], . . . , [ln, un]), on F .
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