
6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

Characterizing Factuality
in Normal Form Sequential Decision Making

Nathan Huntley
Durham University

Department of Mathematical Sciences
Durham, UK

nathan.huntley@durham.ac.uk

Matthias C. M. Troffaes
Durham University

Department of Mathematical Sciences
Durham, UK

matthias.troffaes@gmail.com

Abstract

We prove necessary and sufficient conditions on choice
functions for factuality to hold in normal form se-
quential decision problems. We find that factuality is
sufficient for backward induction to work. However,
choice must be induced by a total preorder for factu-
ality to hold. Hence, many of the optimality criteria
used in imprecise probability theory (such as inter-
val dominance, maximality, and E-admissibility) are
counterfactual under normal form decision making.

1 Introduction

Consider the two-stage decision problem depicted in
Fig. 1. In the first stage, the subject chooses be-
tween either taking scones, or proceeding to the sec-
ond stage. In the second stage, the subject chooses
between either cake or ice cream. A normal form solu-
tion to this problem consists of the subject specifying
all his admissible choices, at all stages, beforehand.
One possible normal form solution is

{scones, no scones and then ice cream}.

Imagine now that the subject already chose not to
have scones. To resolve his choice between cake and
ice cream, the subject can go back to the original
problem that involved scones, and take the ice cream,
but we might also imagine that he simply forgets
about the scones and considers the simpler problem
of choosing between cake and ice cream, as in Fig. 2.

If, faced with the simpler problem, the subject would
now not state ice cream as his only admissible choice,
we say that he is counterfactual : his choice between
cake and ice cream depends on whether or not he
had the choice of scones before. Perhaps, this seems
an awkward property at first, but as we shall see,
counterfactual choices are legion in many theories—a
notable exception is maximizing expected utility.

So, when faced with a sequential decision problem, at

N1

N2

cake

ice cream

scones

Figure 1: Two-stage problem.

N2

cake

ice cream

Figure 2: Second stage.

any particular stage, one has two ways of looking at
its normal form solution. Either, the problem can be
thought of as part of a much larger problem (consider-
ing past choices one did not make and events that did
not happen), or the problem can be thought of in its
simplest form, not considering any past stages. Intu-
itively, a reasonable requirement is that the solution
at any particular stage does not depend on the larger
problem it is embedded in, i.e., that it is factual.

This papers studies necessary and sufficient conditions
on choice functions for factuality in sequential decision
problems when using normal form solutions, extend-
ing some results of Hammond [1] in his consequen-
tialist theory. In doing so, factuality turns out to be
sufficient for a backward induction scheme to work.
We also find that choice must be induced by a total
preorder for factuality to hold: for any choice function
not induced by a total preorder, we can construct a
counterfactual normal form example.

The relevance of this result for imprecise probabil-
ity theory is that any criterion of optimality not
induced by a total preorder (such as maximality,
E-admissibility, and interval dominance) necessarily
leads to counterfactuality. In other words, to satisfy

factuality, one must reject either (i) the normal form
as a means of solving decision problems, or (ii) any
criterion that is not induced by a total preorder.

A total preorder, however, is not sufficient to im-
ply factuality. Indeed, many total preorders that
have been proposed for choice are still counterfac-
tual. When precise probabilities are used, Hammond
showed that expected utility is factual, as is well
known, as are several related criteria [1, Sec. 9]. We
are not aware of any non-trivial factual criteria that
do not rely on probability and expected utility, al-
though they may exist. The representation of all fac-
tual optimality criteria is still an open problem.

The paper is structured as follows: Section 2 explains
decision trees and introduces notation. Section 3 pro-
vides a careful definition of normal and extensive form
solutions, and introduces the concept of gambles to
more easily work with normal form solutions. Sec-
tion 4 introduces choice functions and their relation-
ship with normal form solutions. Section 5 defines
factuality and contains the principal results.

2 Decision Trees

2.1 Definition and Example

A decision tree [6] consists of a rooted tree of decision
nodes, chance nodes, and reward leaves, growing from
left to right. The left hand side corresponds to what
happens first, and the right hand side to what happens
last.

Consider Fig. 3. Decision nodes are depicted by
squares, and chance nodes by circles. From each node,
branches emerge. For decision nodes, each branch
matches a decision; for chance nodes, each branch
matches an event. For each chance node, the events
that emerge form a partition of the possibility space:
exactly one of the events must obtain. Each path in a
decision tree corresponds to a particular sequence of
decisions and events. The payoff resulting from each
such sequence is put at the right end of the tree.

2.2 Notation

Decision trees can be seen as combinations of smaller
decision trees: for instance, in the example, one could
draw the subtree corresponding to dS , and also draw
the subtree corresponding to dS . The full decision
tree then joins these two subtrees at a decision node.

Hence, we can represent a decision tree by its subtrees
and the type of its root node. Let T1, . . . , Tn be
decision trees and E1, . . . , En be a partition of the
possibility space. If T is rooted at a decision node,

N1

N1
1

N1
1
1

N1
1
1
1

9E1

14E2

d 1

N1
1
1
2

4E1

19E2

d
2S 1

N1
1
2

N1
1
2
1

9E1

14E2

d 1

N1
1
2
2

4E1

19E2

d
2

S
2

d S

N12

N12
1

10E1

15E2

d 1

N12
2

5E1

20E2

d
2

d
S

Figure 3: A decision tree.

we write T =
⊔n

i=1 Ti, and at a chance node, we write
T =

⊙n
i=1 Ei Ti. For instance, for the tree of Fig. 3,

(S1(T1 t T2)� S2(T1 t T2)) t (U1 t U2) with

T1 = E19� E214 U1 = E110� E215
T2 = E14� E219 U2 = E15� E220

Definition 1. A subtree of a tree T obtained by re-
moval of all non-descendants of a particular node N is
called the subtree of T at N and is denoted by stN (T).

For any (sub)tree T , we summarize the events ob-
served in the past as ev(T), which is the intersection
of all the events on chance arcs that preceded T .

3 Solving Decision Trees

This paper deals with more general solutions of de-
cision trees than are usually considered. Conse-
quently, the standard definitions of extensive and nor-
mal forms, such as in Raiffa and Schlaifer [10], are in-
sufficient for our purpose. Therefore, we first carefully
define normal and extensive form solutions.

3.1 Extensive and Normal Form Solutions

An extensive form solution takes the decision tree
and removes from each decision node some (possibly
none), but not all, of the decision arcs. So, an exten-
sive form solution is a subtree of the original decision
tree, where at each decision node only a non-empty
subset of arcs is retained. For instance, in the exam-
ple, one of the extensive form solutions is: take dS ,

and then either take d1 or d2. An extensive form solu-
tion can be used as follows: the subject, upon reaching
a decision node, chooses one of the arcs in the exten-
sive form solution, and follows it. The subject only
needs to decide which arc to follow at a decision node
when reaching that node.

Following Raiffa and Schlaifer [10], Luce and Raiffa
[7], and many others, another way to describe solu-
tions to decision trees goes as follows. First, an ex-
tensive form solution with just one arc out of each de-
cision node, is called a normal form decision. Hence,
once a normal form decision is specified, a subject’s
decisions are uniquely determined in every eventual-
ity. For instance, in the example, one of the normal
form decisions is: take dS , followed by d1 if S1 ob-
tains, and d2 if S2 obtains. We denote the set of all
normal form decisions for a decision tree T by nfd(T).

The interpretation of a normal form decision is that,
upon reaching a decision node, the subject chooses
the arc specified in the normal form decision. Com-
pare this with a more general extensive form solution,
in which the subject, upon reaching a decision node,
chooses one of a subset of the available arcs. The dif-
ference between the two is that, for a normal form
decision, the subject’s choice at every decision node
is uniquely determined from the beginning. In the ex-
tensive form, the particular arc to follow does not need
to be determined unless the subject actually reaches
the decision node in question.

A normal form solution of a decision tree T is then
simply a subset of nfd(T). The interpretation of this
subset is that the subject simply picks one of the nor-
mal form decisions of the normal form solution, and
then acts accordingly.

Of course, an extensive form solution can always be
transformed into a normal form solution by taking
every possible normal form decision that is compatible
with it. However, there are usually more normal form
solutions than there are extensive form solutions.

3.2 Extensive and Normal Form Operators

An extensive form operator is a function which maps
each decision tree to an extensive form solution of that
decision tree. Note that some definitions in the litera-
ture, such as Raiffa and Schlaifer [10], define extensive
form solutions through backward induction. Our def-
inition does not specify the method by which decision
arcs are removed. There need be no relationship be-
tween extensive forms and recursive methods.

An normal form operator is a function which maps
each decision tree to a normal form solution of that
decision tree. Again, note that the method by which

this subset is determined is not part of our definition.

These operators usually (but do not need to) have the
interpretation of describing optimal solutions.

An example of an extensive form operator is the clas-
sical backward induction method. Moving from right
to left in the tree, decision arcs are deleted unless they
give the maximum expected utility over all available
arcs at that node. The principal feature of the method
is that, once an arc has been deleted, it is ignored in all
future calculations at nodes further to the left in the
tree. The corresponding normal form operator finds
the expected utility of each normal form decision and
then returns the set that maximizes expected utility.

While it is well documented that these two classical
operators always give equivalent solutions, this rela-
tionship can fail for other criteria. Extensive form
operators that recursively apply a criterion may give
a solution that differs from the normal form operator
that applies the same criterion to the set of all normal
form decisions. Examples can be found in Seidenfeld
[11], Machina [8], and Jaffray [4], among others.

3.3 Gambles

In this paper we are primarily investigating normal
form solutions. To express normal form decisions and
solutions efficiently, we first introduce some defini-
tions and notation. Let Ω be the possibility space:
the set of all possible states of the world. We only
consider finite possibility spaces. Elements of Ω are
denoted by ω. Subsets of Ω are called events. The
arcs emerging from chance nodes in a decision tree
correspond to events.

Let R be a set of rewards. Often, rewards are mea-
sured in utiles, and hence R = R, but this assumption
is not necessary for our results.

A gamble is a function X : Ω → R; in other words,
gambles are Ω–R functions. Gambles are interpreted
as uncertain rewards: should ω ∈ Ω be the true state
of the world, the gamble X will yield the reward X(ω).
Note that no probabilities over Ω are assumed at all.

3.4 Normal Form Gambles

Recall that a normal form decision prescribes the sub-
ject’s actions, so once one has been chosen, the reward
is determined entirely by the events that obtain. In
other words, a normal form decision has a correspond-
ing gamble, which we call a normal form gamble. The
set of all normal form gambles associated with a de-
cision tree T is denoted by gamb(T), so gamb is an
operator on trees which yields the set of all gambles
induced by normal form decisions of the tree.

ω1 ω2 ω3 ω4

E19⊕ E214 9 9 14 14
S1 (E19⊕ E214)
⊕S2 (E14⊕ E219) 9 4 14 19

Table 1: Example of normal form gambles.

Let us explain how to find the gamble corresponding
to a normal form decision, using Fig. 3 as an example.
Instead of looking at the full tree, for simplicity let us
first consider the subtree with root at N1

1
1. The only

two normal form decisions in this subtree are simply
d1 and d2. The former gives reward 9 utiles if ω ∈ E1

and 14 utiles if ω ∈ E2, which corresponds to a gamble

E19⊕ E214. (1)

In the above expression, the ⊕ operator combines par-
tial maps defined on disjoint domains (i.e. the con-
stant partial map E19 defined on E1, and the constant
partial map E214 defined on E2).

Now consider the subtree with root at N1
1, and in

particular the normal form decision ‘d1 if S1 and d2 if
S2’. This gives reward 9 if ω ∈ S1 ∩ E1, reward 14 if
ω ∈ S1 ∩E2, and so on. The corresponding gamble is

(S1 ∩E1)9⊕ (S1 ∩E2)14⊕ (S2 ∩E1)4⊕ (S2 ∩E2)19,

or briefly, if we omit ‘∩’ and employ distributivity,

S1 (E19⊕ E214)⊕ S2 (E14⊕ E219) ,

where multiplication with an event is now understood
to correspond to restriction, i.e., 9 is a constant map
on Ω, E19 is a constant map restricted to E1, and
S1(E19) is obtained from E19 by further restriction
to E1 ∩ S1. For illustration, we tabulate the values
of some normal form gambles in Table 1, where Ω =
{ω1, ω2, ω3, ω4}, E1 = {ω1, ω2}, and S1 = {ω1, ω3}.

Observe that the above gamble includes the gamble in
Eq. (1) from N1

1
1. Relationships between sets of nor-

mal form gambles for different subtrees allows a very
convenient recursive definition of the gamb operator,
given next. First, we extend ⊕ to sets of gambles:
Definition 2. For any events E1, . . . , En which form
a partition, and any finite family of sets of gambles
X1, . . . , Xn, we define the following set of gambles:

n⊕
i=1

EiXi =

{
n⊕

i=1

EiXi : Xi ∈ Xi

}
Definition 3. With any decision tree T , we associate
a set of gambles gamb(T), recursively defined through:

• If a tree T consists of only a leaf with reward
r ∈ R, then

gamb(T) = {r}. (2a)

• If a tree T has a chance node as root, that is,
T =

⊙n
i=1 EiTi, then

gamb

(
n⊙

i=1

EiTi

)
=

n⊕
i=1

Ei gamb(Ti). (2b)

• If a tree T has a decision node as root, that is, if
T =

⊔n
i=1 Ti, then

gamb

(
n⊔

i=1

Ti

)
=

n⋃
i=1

gamb(Ti). (2c)

Most decision problems can be modelled in more more
than one way: there are usually multiple decision trees
that model the same problem. This suggests the fol-
lowing definition (see for instance [8]):
Definition 4. Two decision trees T1 and T2 are called
strategically equivalent if gamb(T1) = gamb(T2).

4 Normal Form Solutions for
Decision Trees

4.1 Choice Functions and Optimality

A normal form solution of a decision tree T is a sub-
set of the set nfd(T) of all its normal form decisions.
Ideally one would like to identify a single normal form
decision that the subject considers the best, but there
is no reason to suppose that this is always possible.
The subject might, however, still be able to identify
some normal form decisions that he would never con-
sider choosing, and eliminate these. This leaves a sub-
set of normal form decisions that the subject would
be willing to choose from. We say that the subject
considers elements of this subset to be optimal.

For instance, in classical decision theory, each normal
form decision induces a random real-valued gain, and
assuming that all probabilities are fully specified, a
normal form decision is considered optimal if its ex-
pected gain is maximized. As another example, con-
sider the situation where the probabilities are not pre-
cisely known, but a setM of plausible probability dis-
tributions can be specified. Then the subject might
consider as optimal any of those normal form deci-
sions whose expected gain is maximal under at least
one probability distribution inM. In other situations
one might use a different optimality criterion.

In these two examples, optimal decisions are deter-
mined by comparison of gambles. This is a common
approach, and one we follow here, since we have seen
that normal form decisions have corresponding gam-
bles, and gambles are easier to work with. We there-
fore suppose that the subject has some way of de-
termining an optimal subset of any set of gambles,

conditional upon an event A (which corresponds to
the ev(T) of the decision tree in question):

Definition 5. A choice function opt is an operator
that, for any non-empty event A, maps each non-
empty finite set X of gambles to a non-empty subset
of this set: ∅ 6= opt(X|A) ⊆ X .

Note that common uses of choice functions in social
choice theory, such as by Sen [12, p. 63, ll. 19–21] do
not consider conditioning, and define choice functions
for arbitrary sets of options (not for gambles only).

4.2 Normal Form Operator Induced by a
Choice Function

We have seen that normal form decisions induce gam-
bles, and have introduced choice functions, acting
on sets of gambles, as a means to model optimality.
Whence, we naturally arrive at a normal form opera-
tor normopt, simply by applying opt on the set of all
gambles associated with the tree T and then finding
the corresponding set of normal form decisions.

Definition 6. Given any choice function opt, and
any decision tree T with ev(T) 6= ∅, we define

normopt(T) = {U ∈ nfd(T) :
gamb(U) ⊆ opt(gamb(T)|ev(T))}.

Of course, since U is always a normal form decision,
gamb(U) is always a singleton in this definition. In
particular, the following equality holds,

gamb(normopt(T)) = opt(gamb(T)|ev(T)). (3)

Note that, although normopt is applied to trees, it
really depends only on the set of normal form gambles
associated with the tree. Hence, the operator normopt

will respect strategic equivalence:

Theorem 7. If T1 and T2 are strategically equiva-
lent, then gamb(normopt(T1)) = gamb(normopt(T2))
whenever ev(T1) = ev(T2) 6= ∅.

If there are several strategically equivalent trees that
are plausible representations of the same problem, the
above theorem guarantees that our solution is inde-
pendent of the particular representation we use.

When studying factuality, we consider normopt for ar-
bitrary subtrees of a given decision tree. To ensure
that normopt can be applied on each of such subtrees,
the following condition is necessary:

Definition 8. A decision tree T is called consistent
if for every node N of T , ev(stN (T)) 6= ∅.

Clearly, if a decision tree T is consistent, then for
any node N in T , stN (T) is also consistent. We

study only consistent decision trees because we con-
sider normopt(stN (T)) for any node N in T , which is
impossible when ev(stN (T)) = ∅.

Usually, when constructing decision trees, one does
not consider events which conflict with preceding
events, hence consistency is satisfied. However, due
to an oversight, some branch of a chance node might
be connected to an event that cannot occur: such
tree can always be made consistent by removing those
nodes whose conditioning event is empty.

We sometimes need to know when a set of gambles
can be represented by a consistent decision tree, con-
ditional on some event. The following definition char-
acterizes precisely those gambles:

Definition 9. Let A be any non-empty event, and let
X be a set of gambles. Then the following conditions
are equivalent; if any (hence all) of them are satisfied,
we say that X is A-consistent.

(A) There is a consistent decision tree T with
ev(T) = A and gamb(T) = X .

(B) For every r ∈ R and every X ∈ X such that
X−1(r) 6= ∅, it holds that X−1(r) ∩A 6= ∅.

A gamble X is called A-consistent if {X} is A-
consistent.

5 Counterfactuals

We now give a discussion of issues arising from the use
of operators, either normal form or extensive form,
that use counterfactual reasoning, and find necessary
and sufficient conditions on opt for normopt to avoid
counterfactuality. Counterfactual reasoning involves
the consideration of events that did not occur or de-
cisions that were not chosen. This is of interest be-
cause for many choice functions opt that have been
suggested in the literature, normopt is counterfactual.

5.1 Example and Definition

Counterfactuals are best illustrated by an example.
Suppose we are applying an extensive form operator
to the tree T in Fig. 3. This operator will delete some
(possibly none) of the decision arcs at N = N1

1
1. If the

choice of arcs to delete is influenced only by stN (T)
(that is, the operator would delete the same arcs at
N regardless of the larger tree in which stN (T) is em-
bedded) then the operator is called factual. If the op-
erator does not have this property (for instance, if the
solution were to depend on the possible consequences
of dS or S2), then it is called counterfactual.

T stN (T)

ext(stN (T))
optimize

restrict

ext(T) stN (ext(T))restrict

optimize

if N in ext(T)

Figure 4: For a factual extensive form operator, opti-
mization and restriction commute.

The definition of a counterfactual normal form oper-
ator requires the following extension to Definition 1.

Definition 10. If T is a set of decision trees and N
a node, then

stN (T) = {stN (T) : T ∈ T and N in T}.

Definition 11. An extensive form operator ext is
called factual if for every consistent decision tree T
and every node N such that N is in ext(T),

stN (ext(T)) = ext(stN (T)),

otherwise, ext is called counterfactual.

An normal form operator norm is called factual if for
every consistent decision tree T and every node N
such that N is in at least one element of norm(T)

stN (norm(T)) = norm(stN (T)),

otherwise, norm is called counterfactual.

In other words, for a factual operator, it does not mat-
ter whether we first restrict our attention to a subtree
at a particular node N and then optimize this subtree,
or first optimize, and only then look at the resulting
subtree at a particular node N : roughly speaking, fac-
tuality means that optimization and restriction com-
mute, as in Fig. 4 for an extensive form operator. For
a counterfactual extensive form operator, stN (ext(T))
can differ from ext(stN (T)) for some decision trees T
and nodes N in ext(T).

For example, the extensive form operator extP corre-
sponding to the usual backward induction using ex-
pected utility is well known to be factual. Also, the
usual normal form operator normP corresponding to
maximizing expected utility over all normal form deci-
sions is factual, because extP is equivalent to normP .

Before we examine factuality in more detail, we give
an example of a counterfactual choice function.

Example 12. Let T be the decision tree in Fig. 5,
where X, Y , and Z are its normal form gambles.
Under point-wise dominance, X and Y are incom-
parable, as are Y and Z. Hence, norm(stN (T))

A A
X −1 −1
Y −2 2
Z 0 0

N

−1
−2A

2A
0

Figure 5: Decision tree for Example 12.

is {X, Y } (where we conveniently identified normal
form decisions with their normal form gambles). But
norm(T) = opt({X,Y, Z}) = {Y,Z} as clearly Z
dominates X. Restricting this solution to stN (T)
gives the normal form solution {Y }. Concluding,

{X, Y } = norm(stN (T)) 6= stN (norm(T)) = {Y }

and therefore the normal form operator induced by
point-wise dominance is counterfactual.

Even though point-wise dominance is counterfactual,
it does satisfy stN (norm(T)) ⊆ norm(stN (T)), al-
though this may not be true in general.

5.2 Necessary and Sufficient Conditions

In this section, we work extensively with normal form
solutions, which are sets of trees. Therefore, it is con-
venient to extend gamb, �, and t, to sets of trees:

Definition 13. For any set of decision trees T ,

gamb(T) =
⋃

T∈T
gamb(T).

Definition 14. For any sets of consistent decision
trees T1, . . . , Tn, and any partition E1, . . . , En,

n⊙
i=1

EiTi =

{
n⊙

i=1

EiTi : Ti ∈ Ti

}
.

Definition 15. For any sets of consistent decision
trees T1, . . . , Tn,

n⊔
i=1

Ti =

{
n⊔

i=1

Ti : Ti ∈ Ti

}
.

For sets of trees, the gamb operator satisfies:

gamb

(
n⊙

i=1

EiTi

)
=

n⊕
i=1

Ei gamb(Ti),

gamb

(
n⊔

i=1

Ti

)
=

n⋃
i=1

gamb(Ti).

gamb(T) = gamb(nfd(T)).

The following three properties turn out to be neces-
sary and sufficient for factuality of normal form oper-
ators induced by a choice function.

Property 1 (Conditioning Property). Let A be a
non-empty event, and let X be a non-empty finite A-
consistent set of gambles, with {X,Y } ⊆ X such that
AX = AY . If X ∈ opt(X|A), then Y ∈ opt(X|A).

Property 2 (Intersection property). For any event
A 6= ∅ and any non-empty finite A-consistent sets of
gambles X and Y such that Y ⊆ X and opt(X|A) ∩
Y 6= ∅, it holds that opt(Y|A) = opt(X|A) ∩ Y.

For the next property, we use the following notation:
if A is a non-trivial event (non-empty and not Ω),
then AX ⊕AZ = {AX ⊕AZ : X ∈ X}.
Property 3 (Mixture property). For any events A
and B such that A ∩ B 6= ∅ and A ∩ B 6= ∅, any
A∩B-consistent gamble Z, and any non-empty finite
A ∩B-consistent set of gambles X ,

opt(AX ⊕AZ|B) = A opt(X|A ∩B)⊕AZ.

Property 2 has a vast number of equivalent formula-
tions, three of which we give next, yielding different
interpretations to Property 2. These will be useful to
discuss the implications of factuality later on.

Property 4 (Strong path independence). For any
non-empty event A and any non-empty finite A-
consistent sets of gambles X1, . . . ,Xn, there is a non-
empty I ⊆ {1, . . . , n} such that

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

=
⋃
i∈I

opt(Xi|A)

Property 5 (Very strong path independence). For
any non-empty event A and any non-empty finite A-
consistent sets of gambles X1, . . . ,Xn,

opt

(
n⋃

i=1

Xi

∣∣∣∣∣A
)

=
n⋃

i=1
Xi∩opt(∪n

i=1Xi|A)6=∅

opt(Xi|A)

Property 6 (Total preorder). For every event A 6= ∅,
there is a total preorder �A on A-consistent gam-
bles such that for every non-empty finite set of A-
consistent gambles X ,

opt(X|A) = {X ∈ X : (∀Y ∈ X)(X �A Y)}

Lemma 16. Properties 2, 4, 5 and 6 are equivalent.

To show that Properties 1, 2 and 3 are necessary and
sufficient for factuality of normopt, we require several
lemmas (proofs are omitted due to space constraints).

We use this notation: for a decision tree T , ch(T) is
the set of all child nodes of the root node of T .

Lemma 17. Let norm be any normal form operator.
Let T be a consistent decision tree. If,

(i) for all nodes K ∈ ch(T) such that K is in at least
one element of norm(T),

stK(norm(T)) = norm(stK(T)),

(ii) and, for all nodes K ∈ ch(T), and all nodes L ∈
stK(T) such that L is in at least one element of
norm(stK(T)),

stL(norm(stK(T))) = norm(stL(stK(T))),

then, for all nodes N in T such that N is in at least
one element of norm(T),

stN (norm(T)) = norm(stN (T)).

Lemma 18. Let A1, . . . , An be a finite partition of
Ω, and let B be an event such that Ai ∩ B 6= ∅ for
all i. Let X1, . . . , Xn be a finite family of non-empty
finite sets of gambles, where Xi is Ai ∩ B-consistent.
If a choice function opt satisfies Properties 2 and 3,
then

opt

(
n⊕

i=1

AiXi

∣∣∣∣∣B
)

=
n⊕

i=1

Ai opt(Xi|Ai ∩B).

Lemma 19. Consider a consistent decision tree T
whose root is a decision node, so T =

⊔n
i=1 Ti, and

any choice function opt. For each tree Ti, let Ni

be its root. Then, Ni is in at least one element of
normopt(T) if and only if

gamb(Ti) ∩ opt(gamb(T)|ev(T)) 6= ∅.

Lemma 20. For any consistent decision tree T =⊙n
i=1 EiTi, and any opt satisfying Property 1,

gamb(normopt(T)) =
n⊕

i=1

Ei gamb(normopt(Ti))

implies

normopt(T) =
n⊙

i=1

Ei normopt(Ti).

Lemma 21. For any consistent decision tree T =⊔n
i=1 Ti and any opt satisfying Property 2,

gamb(normopt(T)) =
⋃
i∈I

gamb(normopt(Ti)) (4)

implies

normopt(T) =
⊔
i∈I

normopt(Ti),

where I = {i : gamb(Ti) ∩ opt(gamb(T)|ev(T)) 6= ∅}.

X1

...
Xn

A

ZA

X1

...
Xm

X1

...
Xn

Figure 6: Decision trees for Theorem 22.

We are now ready to identify necessary and sufficient
conditions for factuality.

Theorem 22. A normal form operator normopt is
factual if and only if opt has Properties 1, 2 and 3.

Proof. “only if”. Omitting details, consider Fig. 6.

“if”. We proceed by structural induction on all pos-
sible arguments of normopt, that is, on all consistent
decision trees. In the base step, we prove the implica-
tion for trees consisting of only a single node. In the
induction step, we prove that if the implication holds
for the subtrees at every child of the root node, then
the implication also holds for the whole tree.

First, if the decision tree T has only a single node, and
hence, a reward at the root and no further children,
then the condition for factuality is trivially satisfied.

Next, suppose that the consistent decision tree T has
multiple nodes. Let {N1, . . . , Nn} = ch(T), and let
Ti = stNi

(T). The induction hypothesis says that
factuality is satisfied for all subtrees at every child of
the root node, that is, for all Ti. More precisely, for
all i ∈ {1, . . . , n}, and all nodes L ∈ Ti such that L is
in at least one element of normopt(Ti)

stL(normopt(Ti)) = normopt(stL(Ti)).

We must show that

stN (normopt(T)) = normopt(stN (T))

for all nodes N in T such that N is in at least one ele-
ment of normopt(T). By Lemma 17, and the induction
hypothesis, it suffices to prove the above equality only
for N ∈ ch(T), that is, it suffices to show that

stNi(normopt(T)) = normopt(Ti) (5)

for each i ∈ {1, . . . , n} such that Ni is in at least one
element of normopt(T).

If T has a chance node as its root, that is, T =⊙n
i=1 EiTi, then all Ni are actually in every element

of normopt(T), so we must simply establish Eq. (5) for

all i ∈ {1, . . . , n}. Equivalently, we must show that

normopt(T) =
n⊙

i=1

Ei normopt(Ti) (6)

Indeed, by Eq. (3),

gamb(normopt(T)) = opt(gamb(T)|ev(T))

and by the definition of the gamb operator, Eq. (2b)
in particular,

= opt

(
n⊕

i=1

Ei gamb(Ti)

∣∣∣∣∣ev(T)

)

and so by Lemma 18,

=
n⊕

i=1

Ei opt(gamb(Ti)|ev(T) ∩ Ei)

so, since ev(T) ∩ Ei = ev(Ti), and again by Eq. (3),

=
n⊕

i=1

Ei gamb(normopt(Ti))

Whence, Eq. (6) follows by Lemma 20.

Finally, assume that T has a decision node as its root,
that is, T =

⊔n
i=1 Ti. Let I be the subset of {1, . . . , n}

such that i ∈ I if and only if Ni is in at least one
element of normopt(T). We must establish Eq. (5) for
all i ∈ I. Equivalently, we must show that

normopt(T) =
⊔
i∈I

normopt(Ti). (7)

Indeed, by Eq. (3),

gamb(normopt(T)) = opt(gamb(T)|ev(T))

and by the definition of the gamb operator, Eq. (2c),

= opt

(
n⋃

i=1

gamb(Ti)

∣∣∣∣∣ev(T)

)

and so by Property 5,

=
⋃

i∈I∗
opt(gamb(Ti)|ev(T)),

where I∗ = {i : gamb(Ti)∩opt(gamb(T)|ev(T)) 6= ∅},
and so because ev(T) = ev(Ti), and again by Eq. (3),

=
⋃

i∈I∗
gamb(normopt(Ti)).

Hence, the conditions of Lemma 21 are satisfied, and
I∗ = I by Lemma 19, so Eq. (7) is established.

5.3 Backward Induction

A practical problem when solving decision trees using
normopt, is that the set of normal form decisions of a
tree T grows very fast with its size, and so gamb(T)
may have many elements. For this reason, elsewhere
[3, 2], we have suggested the following backward in-
duction method, which generalizes classical backward
induction to arbitrary choice functions. To express
this most conveniently, we first extend the normopt

operator to act upon sets of decision trees.

Definition 23. Given any set T of consistent deci-
sion trees, where ev(T) = A for all T ∈ T ,

normopt(T) = {U ∈ nfd(T) :
gamb(U) ⊆ opt(gamb(T)|A)}.

Definition 24. The normal form operator backopt is
defined for any consistent decision tree T through:

• If a tree T consists of only a leaf with reward
r ∈ R, then backopt(T) = {T}.

• If a tree T has a chance node as root, that is,
T =

⊙n
i=1 EiTi, then

backopt (T) = normopt

(
n⊙

i=1

Ei backopt (Ti)

)

• If a tree T has a decision node as root, that is, if
T =

⊔n
i=1 Ti, then

backopt (T) = normopt

(
n⊔

i=1

backopt(Ti)

)
.

If backopt always yields the same normal form solu-
tion as normopt, we can use the former as an efficient
way of calculating the latter. In [2] we show that the
following four properties are necessary and sufficient
for backopt to coincide with normopt.

Property 7 (Backward conditioning property). Let
A and B be events such that A∩B 6= ∅ and A∩B 6= ∅,
and let X be a non-empty finite A ∩ B-consistent set
of gambles, with {X, Y } ⊆ X such that AX = AY .
Then X ∈ opt(X|A ∩ B) implies Y ∈ opt(X|A ∩ B)
whenever there is a non-empty finite A∩B-consistent
set of gambles Z such that, for at least one Z ∈ Z,

AX ⊕AZ ∈ opt(AX ⊕AZ|B).

Property 8 (Insensitivity of optimality to the omis-
sion of non-optimal elements). For any event A 6= ∅,
and any non-empty finite A-consistent sets of gambles
X and Y,

opt(X|A) ⊆ Y ⊆ X ⇒ opt(Y|A) = opt(X|A).

Property 9 (Preservation of non-optimality under
the addition of elements). For any event A 6= ∅, and
any non-empty finite A-consistent sets of gambles X
and Y,

Y ⊆ X ⇒ opt(Y|A) ⊇ opt(X|A) ∩ Y.

Property 10 (Backward mixture property). For any
events A and B such that B ∩A 6= ∅ and B ∩A 6= ∅,
any B ∩ A-consistent gamble Z, and any non-empty
finite B ∩A-consistent set of gambles X ,

opt
(
AX ⊕AZ|B

)
⊆ A opt(X|A ∩B)⊕AZ.

Theorem 25 (Backward induction theorem [2]). The
following conditions are equivalent.

(A) For any consistent decision tree T , it holds that
backopt(T) = normopt(T).

(B) opt satisfies Properties 7, 8, 9, and 10.

Obviously, Property 1 implies Property 7, and Prop-
erty 3 implies Property 10. Also,

Lemma 26. Property 2 implies Properties 8 and 9.

Hence, from Theorems 22 and 25, we conclude:

Corollary 27. If normopt is factual, then normopt =
backopt.

Factuality is, however, not necessary for backward in-
duction. For example, it is easy to see that point-wise
dominance satisfies Properties 1, 8, 9, and 10, but as
we saw in Example 12, it is counterfactual.

Backward induction does imply a weaker version of
factuality: stN (norm(T)) ⊆ norm(stN (T)).

5.4 Total Preordering

From Theorem 22 and Lemma 16, we have:

Corollary 28. If normopt is factual then, for all A 6=
∅, opt(·|A) is induced by a total preorder.

This constitutes a strong restriction on opt. Indeed,
without consideration of factuality, a choice function
that is not a total preorder may be desirable in some
circumstances. When one has limited information
about the relative likelihood of the events or the rel-
ative values of the rewards, one may wish to use
a choice function that allows no preference between
gambles, but does not consider them equivalent.

For example, if one is working with coherent lower
previsions, one may consider the choice functions E-
admissibility, maximality, and interval dominance,
but none of these corresponds to a total preorder.

Property
1 2 3 7 8 9 10

E-admissibility X X X X X X
Maximality X X X X X X
Γ-maximin X X X X X

Interval Dominance X X X X

Table 2: Properties of various choice functions.

Anyone wishing to use these choice functions to solve
sequential decision problems must either abandon fac-
tuality or seek an alternative operator to normopt.

Those who prefer their choice functions to give a total
preorder, on the other hand, can use factuality to jus-
tify this preference. Indeed, without consideration of
factuality and sequential decisions, it is much harder
to justify a total preorder than it is to justify simpler
conditions such as Properties 8 and 9: see for instance
Luce and Raiffa [7, pp. 288-289], where Axioms 6, 7,
and 7′′ correspond to Properties 8, 9, and 2.

6 Conclusion

We defined factuality for extensive and normal forms.
We found necessary and sufficient conditions for a
choice function to induce a factual normal form oper-
ator. These turned out to be similar to, but stronger
than, those for backward induction to work.

While many choice functions satisfy Property 1, Prop-
erties 2 and 3 are perhaps more restrictive than one
would like. Is counterfactuality acceptable? We be-
lieve that factuality is a desirable property and one
should think carefully before using a counterfactual
operator. On the other hand, if one is attracted to
the three properties for other reasons, then factuality
gives them a strong justification.

Choice functions based on imprecise probability will
typically violate at least one of Properties 2 and 3:
Table 2 summarizes the properties satisfied by com-
mon choice functions. If one wishes to be factual in
such cases, normopt cannot be used. Choice functions
that induce factual extensive form operators are easier
to find, particularly in the case of violations of Prop-
erty 2 only: an example is secO in [11, p. 286]; also see
Kikuti et al. [5]. Further investigation of factuality of
extensive form operators, and in particular their rela-
tionships with backward induction and normal form
operators, has been omitted due to lack of space.

Finally we mention that using counterfactuals is com-
mon in the field of causal inference [9]. This paper is
quite different in character: we have not been con-
cerned at all with causality and the use counterfac-

tuals in causal inference. Instead, we have simply
determined for what choice functions counterfactuals
occur when solving decision trees.

Acknowledgements We thank the referees for use-
ful feedback. EPSRC supports the first author.

References

[1] P. Hammond. Consequentialist foundations for
expected utility. Theory and Decision, 25(1):25–
78, Jul 1988.

[2] N. Huntley and M. C. M. Troffaes. Normal form
backward induction for decision trees under ar-
bitrary choice functions. Submitted.

[3] N. Huntley and M. C. M. Troffaes. An efficient
normal form solution to decision trees with lower
previsions. In Soft Methods for Handling Vari-
ability and Imprecision, Advances in Soft Com-
puting, pages 419–426. Springer, Sep 2008.

[4] J. Jaffray. Rational decision making with impre-
cise probabilities. In 1st International Sympo-
sium on Imprecise Probabilities and Their Appli-
cations, 1999.

[5] D. Kikuti, F. Cozman, and C. P. de Campos.
Partially ordered preferences in decision trees:
Computing strategies with imprecision in proba-
bilities. In IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handling, pages 118–
123, 2005.

[6] D. V. Lindley. Making Decisions. Wiley, London,
2nd edition, 1985.

[7] R. D. Luce and H. Raiffa. Games and Decisions:
introduction and critical survery. Wiley, 1957.

[8] M. J. Machina. Dynamic consistency and non-
expected utility models of choice under uncer-
tainty. Journal of Economic Literature, 27(1622-
1688), 1989.

[9] S. L. Morgan and C. Winship. Counterfactu-
als and causal inference. Cambridge University
Press, Cambridge, 2007.

[10] H. Raiffa and R. Schlaifer. Applied Statistical De-
cision Theory. Harvard University Press, 1961.

[11] T. Seidenfeld. Decision theory without ‘indepen-
dence’ or without ‘ordering’: What is the dif-
ference? Economics and Philosophy, 4:267–290,
1988.

[12] A. K. Sen. Social choice theory: A re-
examination. Econometrica, 45(1):53–89, 1977.

