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Abstract

We explore generalizations of the pari-mutuel model
(PMM), a formalization of an intuitive way of assess-
ing an upper probability from a precise one. We dis-
cuss a naive extension of the PMM considered in in-
surance and generalize the natural extension of the
PMM introduced by P. Walley and other related for-
mulae. The results are subsequently given a risk mea-
surement interpretation: in particular it is shown that
a known risk measure, Tail Value at Risk (TVaR), is
derived from the PMM, and a coherent risk measure
more general than TVaR from its imprecise version.
We analyze further the conditions for coherence of a
related risk measure, Conditional Tail Expectation.
Explicit formulae for conditioning the PMM and con-
ditions for dilation or imprecision increase are also
supplied and discussed.

Keywords. Pari-mutuel model, risk measures, nat-
ural extension, dilation, 2-monotonicity.

1 Introduction

The pari-mutuel model (PMM) formalizes a very intu-
itive and therefore widely used method of assigning an
upper probability starting from a precise probability.
To introduce it, consider, following [2], a probability
P for event A as a fair price for a bet which returns
1 unit to the bettor if A is true, 0 units if A is false,
i.e. returns the indicator IA of A. The bettor’s gain
is G = IA −P (A), while that of his opponent, House,
is −G = GH = P (A)− IA.

In most real-world betting schemes House is unwilling
to accept such a fair game (the expectation E(GH) is
0), but asks for a positive gain expectation. It is so
when House is a bookmaker, an insurance company,
the organizer of a lottery, and so on. A way to achieve
this goal is to raise the bettor’s price, without altering
his reward, and a naive method multiplies P by a con-
stant greater than 1, say 1+δ, where δ > 0 is a loading

constant. The bettor pays P (A) = (1+δ)P (A), while
the gain for House is now GH = (1 + δ)P (A) − IA.
Alternatively, House might ask the same price to
pay a reduced reward (1 − τ)IA, where 0 < τ < 1
is interpreted as a commission, or also a taxation.
This originates a gain G

∗
H = P (A) − (1 − τ)IA =

(1−τ)(P (A)
1−τ −IA) = (1−τ)GH iff 1

1−τ = 1+δ, i.e. iff
τ = δ

1+δ . Thus, up to a scaling factor, the two meth-
ods are equivalent if τ = δ

1+δ ; the latter is formally
more adherent to common betting systems, called in
fact pari-mutuel systems.

In the theory of imprecise probabilities, P is an upper
probability, but a slight adjustment to P is necessary
to achieve coherence. In fact, Walley [11] terms pari-
mutuel model the upper probability

P (A) = min{(1 + δ)P (A), 1}. (1)

Intuitively, the correction should be needed: when
P (A) > 1

1+δ , it is GH > 0 in the naive method, i.e.
a bettor suffers from a sure loss no matter whether A
is true or false.

This paper investigates further the pari-mutuel
model, extending the analysis in [11]. Preliminary
issues are recalled in Section 2, very concisely in
general, more extensively as for 2-monotone and 2-
alternating previsions, since the upper probability P
in (1) is 2-alternating. In Section 3 we discuss exten-
sions of the PMM. First, we consider alternative ex-
pressions for the natural extension E(X) of P , defined
on a field A, to any A-measurable gamble X. These
expressions were stated in [11], but we make a more
detailed analysis of the conditions ensuring that E(X)
is equal to a certain conditional prevision (P (X|X >
xτ )), which has a risk measurement interpretation. In
Section 3.1 we restrict to non-negative gambles and
compare the natural extension E with the naive ex-
tension PN (X) = min{(1 + δ)P (X), supX}, showing
that quite often PN is not coherent, or it sometimes
coincides with E. The motivation for this work is that
PN is a premium in insurance, although with different



premises: the starting point is not the PMM but a set
of non-negative gambles. In Section 3.2 we general-
ize Walley’s approach, obtaining a formula for E(X)
when the PMM is given on a lattice of events and X
is not necessarily measurable.

These results have an interesting and, to the best of
our knowledge, so far not considered interpretation in
the realm of risk measurement. This is the main topic
of Section 4, where the natural extension of the PMM
defined on a field is shown to correspond to a coherent
risk measure, called Tail Value-at-Risk or TVaR (in
[4]; other authors may use a different terminology).
When the PMM is defined on a lattice, we obtain a
generalization of TVaR (not discussed in the risk lit-
erature), which replaces precise with imprecise uncer-
tainty measures; we name it ITVaR. Thus the PMM
supplies a motivation for introducing ‘imprecise’ risk
measures: one of them, ITVaR, is the natural exten-
sion of a PMM assigned on a lattice. Conditioning
the PMM defined on a field is discussed in Section 5.
We specialize general formulae for the natural exten-
sion of 2-alternating and 2-monotone probabilities to
the case of the PMM and discuss the effect on them of
dilation and of a weaker phenomenon, imprecision in-
crease. We obtain a number of conditions for dilation
or imprecision increase, and discuss in detail the op-
erationally most relevant cases (when the commission
τ is not “too high” and event A is either “common”
or “rare”). Section 6 concludes the paper.

2 Preliminaries

Upper (P ) and lower (P ) probabilities are customarily
related by the conjugacy relation P (A) = 1− P (Ac),
which lets one refer to either P or P only. Applying
it to (1), the lower probability in the PMM is [11]

P (A) = max{(1 + δ)P (A)− δ, 0}. (2)

As noted in the Introduction, the parameter τ ∈ ]0; 1[
can, and later will, alternatively describe P , P in the
PMM. The relationship between τ and δ is:

τ =
δ

1 + δ
; δ =

τ

1− τ
. (3)

An upper probability P defined by (1) for any A in
an arbitrary set of events D (or P defined by (2))
is coherent on D, and probably the simplest way to
see it is to apply the later Proposition 2. In gen-
eral, an upper prevision P is a mapping from a set D
of gambles (bounded random variables) into the real
line, and an upper probability is its special case that
the domain D is made of (indicators of) events only.
The upper prevision P is coherent on D iff, ∀n ∈ N,
∀s0, s1, . . . , sn ≥ 0, ∀X0, X1, . . . , Xn ∈ D, defining

G =
∑n

i=1 si(P (Xi)−Xi)− s0(P (X0)−X0), it holds
that supG ≥ 0.

There are several necessary conditions for coherence,
in particular: internality, inf X ≤ P (X) ≤ supX,
and subadditivity, P (X + Y ) ≤ P (X) + P (Y ).

We refer to [11] for a thorough presentation of the
theory of coherent upper/lower previsions. One of its
most important notions is that of natural extension
[11, Section 3].

In our framework, the natural extension E on D′ of
a coherent upper prevision (or probability) P defined
on D ⊂ D′ is the least-committal coherent extension
of P on D′, i.e. E(X) = P (X), ∀X ∈ D, and for any
coherent P

∗
such that P

∗
= P on D, E(X) ≥ P

∗
(X),

∀X ∈ D′, i.e. E dominates P
∗
. It can be shown that

E always exists. Symmetrically, the natural extension
E on D′L of a coherent lower prevision P on DL is such
that E = P (on DL), and every coherent extension P ∗

of P dominates E on D′L.

If condition ‘∀s0, s1, . . . , sn ≥ 0’ is replaced by
‘∀s0, s1, . . . , sn ∈ R’ in the definition of coherent up-
per prevision, we obtain de Finetti’s notion of dF-
coherent (precise) prevision [2]. A dF-coherent previ-
sion P is coherent both as an upper and as a lower
prevision. The precise previsions or probabilities in
the sequel are meant to be dF-coherent.

Although the domain of an upper prevision may be
arbitrary, it will have a special structure in most of the
paper, to exploit results on 2-alternating previsions.

More specifically, a set of events A is a field when
∅ ∈ A and A ∨ B,Ac ∈ A,∀A,B ∈ A. If A is a field,
a gamble X is A-measurable when the events X > x
and X < x are in A, ∀x ∈ R.

A set of gambles S is a lattice if X, Y ∈ S implies
max(X, Y ) ∈ S and min(X, Y ) ∈ S.

An upper prevision P defined on a lattice S is 2-
alternating iff P (max(X, Y )) ≤ P (X) + P (Y ) −
P (min(X, Y )), ∀X, Y ∈ S. A lower prevision P on
S is 2-monotone iff P (max(X, Y )) ≥ P (X) + P (Y )−
P (min(X, Y )), ∀X, Y ∈ S.

Results stated for 2-monotone previsions are easily re-
worded for 2-alternating ones (and vice versa), since
the conjugate P (X) = −P (−X) of a 2-monotone
lower prevision is 2-alternating (and vice versa).

When S is a set of (indicators of) events and P is
therefore an upper probability, S is a lattice iff A, B ∈
S implies A∨B ∈ S, A∧B ∈ S, and P is 2-alternating
iff P (A∨B) ≤ P (A) + P (B)− P (A∧B), ∀A,B ∈ S.
With a mild additional condition, 2-alternating upper
probabilities are coherent [1]:



Proposition 1. Let P be a 2-alternating upper prob-
ability on a lattice S containing ∅ and Ω. Then P is
coherent iff P (∅) = 0 and P (Ω) = 1.

Notation Let S+ be a lattice of events containing ∅
and Ω.

One way to obtain coherent 2-alternating upper prob-
abilities defines P as a special distorted probability, by
the following result, adapted from [3], Example 2.1.

Proposition 2. Let P be a dF-coherent probability
on S+ and φ a (weakly) increasing concave function
defined on [0; 1] with φ(0) = 0, φ(1) = 1. Then the
distorted probability P (·) = φ(P (·)) is a 2-alternating
and coherent upper probability.

Proposition 2 ensures that P in (1) is 2-alternating
and coherent (put φ(x) = min((1 + δ)x, 1)), hence its
conjugate P is 2-monotone and coherent.

To deal with the natural extension of the PMM in Sec-
tion 3, the following Proposition 3 will be exploited.

Notation The natural extension of interest is that of
P from S+ to the set L = L(IPu) of all gambles de-
fined on a “universal” partition IPu (termed Ω in [11]).
That is, IPu is a set of pairwise disjoint events, whose
sum is the sure event Ω, and such that its powerset
2IPu contains all the events of interest. In particular
S+ ⊆ 2IPu . Given P : S+ → R, its outer (set) func-
tion P

∗
is defined on 2IPu by P

∗
(B) = inf{P (A) : A ∈

S+, B ⇒ A}, ∀B ∈ 2IPu .

Proposition 3. [1] Let P : S+ → R be a coherent
2-alternating upper probability. Its natural extension
E on L is given by

E(X) = inf X +
∫ sup X

inf X

P
∗
(X > x)dx (4)

and is 2-alternating too. Further,

(a) The restriction of E on 2IPu coincides with the
outer function P

∗
.

(b) If S+ = 2IPu , E is the only 2-alternating coherent
extension of P on L.

In Section 5 we shall be concerned with natural exten-
sions on conditional events, like E(A|B) or E(A|B),
while precise conditional previsions, like P (X|X >
xτ ), appear in Section 3. Although the paper pre-
sentation does not focus on coherence concepts in a
conditional environment, our approach employs for-
mally Williams coherence or W-coherence, in the ver-
sion presented in [7], Definition 4, which unlike Wal-
ley’s coherence in [11, Section 7.1.4 (b)] imposes no
structure constraints on the domain D of the upper or

lower previsions. However, when finitely many con-
ditioning events are involved in D (as is always the
case in the paper), Williams and Walley’s coherence
are equivalent (after extending the given W-coherent
prevision on a suitable set D′, which can be always
done keeping W-coherence, cf. [7]). Thus the results
in the paper hold also in terms of Walley’s coherence.

Several necessary conditions hold for W-coherence,
whenever they are well-defined. Recall internality :
inf(X|B) ≤ P (X|B) ≤ sup(X|B), where for instance
sup(X|B) = sup{X(ω)|ω ⇒ B}, and the Generalized
Bayes Rule (GBR) P (IA(X − P (X|A))) = 0, which
in the case of precise previsions specialises to

P (XIA) = P (X|A)P (A). (5)

3 Extending the pari-mutuel model

The natural extension E of P (A) = min{(1 +
δ)P (A), 1} from a field A to any A-measurable gam-
ble X was shown in [11] to be

E(X) = xτ + (1 + δ)P ((X − xτ )+), (6)

where (X − xτ )+ = max{X − xτ , 0} and the (upper)
quantile xτ is defined as

xτ = sup{x ∈ R : P (X ≤ x) ≤ τ}. (7)

An alternative expression for E(X) is:1

E(X) = (1− ε)P (X|X > xτ ) + εxτ ,

ε = 1− (1 + δ)P (X > xτ ).
(8)

It is also stated in [11] that E(X) = P (X|X > xτ )
if X has a continuous distribution function FX(x) def=
P (X ≤ x).

We shall now explore more thoroughly the relation-
ship between E(X) and P (X|X > xτ ). The results
will be exploited also in Section 4, where they will be
reinterpreted in a risk measurement perspective.

To begin with, we gather some known or anyway ele-
mentary, but useful facts in the following proposition.

Proposition 4. Let X be A-measurable and for τ ∈
]0; 1[ define: xτ by (7), FX(x+

τ ) = limx→x+
τ

FX(x),
FX(x−τ ) = limx→x−τ

FX(x).

a) τ ∈ [FX(x−τ );FX(x+
τ )]; besides, all values of τ

in [FX(x−τ );FX(x+
τ )[ originate by (7) the same

(upper) quantile xτ .

b) inf X ≤ xτ ≤ supX.
1Equation (8) is stated without proof in [11], Note 3 to Sec-

tion 3.2. A proof may follow from the later Proposition 9.



c) (X > xτ ) = ∅ iff xτ = supX; if (X ≤ xτ ) = ∅
then xτ = inf X.

d) It holds for ε in (8) that ε Q 0 iff τ R FX(xτ ).2

Corollary 1. If (X > xτ ) = ∅, E(X) = supX.

Proof. Substitute (by Proposition 4, c) xτ = supX
in (6), noting that P ((X − xτ )+) = P (0) = 0.

Remark 1. When P is σ-additive, FX(x+
τ ) = FX(xτ ),

i.e. FX is right-continuous. But an often neglected
issue broadens the number of possible alternatives in
comparing E(X) with P (X|X > xτ ) (and with an-
other extension in the next Section 3.1): since FX is
originated by a not necessarily σ-additive probability
P , there may exist non-zero adherent probabilities at
xτ (cf. [2], Section 6.4.11). Precisely,

FX(x+
τ )− FX(x−τ ) = P−

xτ
+ P+

xτ
+ P (X = xτ ),

where P−
xτ

= FX(xτ )−FX(x−τ )−P (X = xτ ) is the left
adherent probability at xτ , P+

xτ
= FX(x+

τ ) − FX(xτ )
is the right adherent probability at xτ . Hence,

FX(xτ ) = FX(x−τ ) + P−
xτ

+ P (X = xτ ). (9)

While P+
xτ

is zero iff FX is right-continuous at xτ (al-
ways if P is σ-additive), from (9), FX may be left-
discontinuous in xτ also when P−

xτ
= 0, if P (X =

xτ ) > 0 (σ-additivity of P implies P−
xτ

= 0).

Proposition 5. a) If P (X|X > xτ ) = xτ , then
E(X) = P (X|X > xτ ).

b) If P (X|X > xτ ) > xτ , then E(X) Q P (X|X >

xτ ) iff τ Q FX(xτ ).

Proof. Using (8), E(X) Q P (X|X > xτ ) iff
ε(xτ − P (X|X > xτ )) Q 0, from which a) follows
immediately, b) using also Proposition 4, d).

Proposition 5, a) considers a really extreme situation.
Assuming from now that P (X|X > xτ ) > xτ , Propo-
sition 5, b) reduces the comparison between E(X)
and P (X|X > xτ ) to comparing τ and FX(xτ ) in
the further subcases that can be identified. The most
notable instances are:

i) FX is continuous at xτ . This implies τ = FX(xτ ),
and E(X) = P (X|X > xτ ).

ii) FX is right-continuous, but not continuous at
xτ , and τ 6= FX(xτ ). This implies FX(xτ ) =
FX(x+

τ ) > τ , and P (X|X > xτ ) > E(X).

2We write Q or R to summarize three conditions, here ε < 0

iff τ > FX(xτ ), ε = 0 iff τ = FX(xτ ), ε > 0 iff τ < FX(xτ ).

Case ii) is the most obvious instance that ensures
P (X|X > xτ ) > E(X), but not the only one.
By Proposition 4, a), it can be τ < FX(xτ ) also
when FX is not right-continuous (while being left-
discontinuous). Similarly, there are other cases when
P (X|X > xτ ) = E(X), because τ = FX(xτ ), apart
from case i), which remains the most important one.
And it is also possible that

iii) P (X|X > xτ ) < E(X).

Obviously, case iii) cannot occur when P is σ-additive,
since it is equivalent to τ > FX(xτ ), hence τ ∈
]FX(xτ );FX(x+

τ )] = I> and I> 6= ∅ iff P+
xτ

> 0.

When P (X|X > xτ ) > E(X), then P (X|X > xτ )
is clearly not a coherent extension to X of P in the
PMM, while it is so when it coincides with E(X).

3.1 Comparison with a naive extension

In actuarial applications the upper probability P (A)
in (1) is the price, determined by increasing P by a
loading δ > 0, of an insurance policy which pays 1
unit if and only if event A occurs. In analogy with
(1), one could set the price of an insurance policy
which refunds x units iff the loss X = x occurs, to (1+
δ)P (X), up to a maximum of supX. Here P (X) is the
expectation of X computed from P . This procedure
defines the naive extension:

PN (X) = min{(1 + δ)P (X), supX}.

This extension, without the upper bound supX
(which is however necessary for PN to be coherent), is
referred to as expected value principle in risk theory
literature [5, p. 67]. To fix the framework, suppose
(throughout this section only) that P is defined on
the field 2IPu , and that we are interested in extending
it to some set D strictly contained in the cone L+(IPu)
of the non-negative gambles in L(IPu). The gambles
in D are non-negative, being refunds to the insured:
hence inf X ≥ 0, ∀X ∈ D.

The inclusion D $ L+(IPu) is strict because PN can-
not in general be coherent on a set D containing X,
X + k, when k ∈ R+ is large enough. For instance, if
PN (X) = (1 + δ)P (X) < supX, then PN (X + k) =
supX + k > PN (X) + k for k ≥ sup X−(1+δ)P (X)

δ , vi-
olating property (c) in [11], Section 2.6.1, which is a
necessary condition for coherence.

But even when D = {X}, PN may be incoherent with
the PMM:
Example 1. Take IPu = {e0, e1, e2, e3}, and let
X(ei) = i, i = 0, . . . , 3, P (X = 0) = 0, P (X = 1) =
0.1, P (X = 2) = 0.5, P (X = 3) = 0.4 and δ = 1/10.



Then P (X) = 2.3 and hence PN (X) = 2.53. Let
us now compute the natural extension in X. We
have that τ = δ

1+δ = 1/11, hence xτ = 1, as
can be checked using FX . Applying (6), E(X) =
1 + 11

10P (max{X − 1, 0}) = 1 + 11
101.3 = 2.43.

In Example 1, PN (X) > E(X). This is interesting
because the natural extension is shown to lead to a
price smaller than would be expected from the intu-
ition at the basis of the PMM and also because PN

is incoherent with the PMM, being larger than E.

The dominance relationship between PN and E is the
object of the following proposition.

Proposition 6. a) If (X > xτ ) = ∅ then PN (X) ≤
E(X).

b) If either (X ≤ xτ ) = ∅ or PN (X) = supX, then
PN (X) ≥ E(X).

Suppose now (X > xτ ) 6= ∅, (X ≤ xτ ) 6= ∅, PN (X) <
supX, and let ε be given by (8).

c) If ε = 0, then PN (X) ≥ E(X) and PN (X) =
E(X) iff P (X|X ≤ xτ ) = 0.

d) If ε 6= 0 and xτ = 0, then PN (X) = E(X).

e) If ε 6= 0 and xτ > 0, condition FX(xτ ) < τ im-
plies PN (X) > E(X), while condition FX(xτ ) >
τ is necessary, but not sufficient, to ensure
PN (X) ≤ E(X).

Proof. a) follows from Corollary 1. To prove the
non-trivial implication in b), put (Proposition 4, c))
xτ = inf X in (6), to get E(X) = inf X + (1 +
δ)P (X − inf X) = (1 + δ)P (X)− δ inf X ≤ min{(1 +
δ)P (X), supX} = PN (X).

To prove c), write (1 + δ)P (X) = P (X|X > xτ )(1 +
δ)P (X > xτ ) + (1 + δ)P (X|X ≤ xτ )P (X ≤ xτ ) =
P (X|X > xτ )(1−ε)+(1+δ)P (X|X ≤ xτ )(1−P (X >
xτ )) = P (X|X > xτ )(1− ε) + (1 + δ)P (X|X ≤ xτ )−
P (X|X ≤ xτ )(1 − ε) = (1 − ε)P (X|X > xτ ) + (δ +
ε)P (X|X ≤ xτ ). From here

PN (X) = min{(1− ε)P (X|X > xτ )
+ (δ + ε)P (X|X ≤ xτ ), supX}.

Comparing this equality and (8),

PN (X) R E(X) iff (δ + ε)P (X|X ≤ xτ ) R εxτ . (10)

When ε = 0, c) follows directly from (10).

To prove the remaining cases, we write the right-hand
side inequality in (10) in a different form. Since δ+ε =
(1+ δ)P (X ≤ xτ ) and εxτ = ((1+ δ)− (1+ δ)P (X >
xτ ) − δ)xτ = ((1 + δ)P (X ≤ xτ ) − δ)xτ , using also

(5) we get PN (X) R E(X) iff P (XIX≤xτ ) R (P (X ≤
xτ )− δ

1+δ )xτ , or equivalently

PN (X) R E(X) iff P (XIX≤xτ
) R (FX(xτ )− τ)xτ .

From here and Proposition 4 d), parts d) and e)
follow at once (for d), recall that xτ = 0 implies
P (XIX≤xτ ) = 0).

It appears from Proposition 6 that PN is only oc-
casionally equal to E, and may easily be incoherent.
Cases a), b), d) treat really extreme situations, while
in the common case that FX is continuous at xτ , c) en-
sures that PN is incoherent, unless the limiting eval-
uation P (X|X ≤ xτ ) = 0 applies. Case e) shows that
PN can possibly be coherent when FX(xτ ) > τ . The
most important practical case concerns discrete gam-
bles (with finitely many possible values). However,
it should be checked even then whether PN ≤ E,
and this makes the use of PN less convenient. For
instance, PN > E in Example 1.

3.2 A generalization

We shall derive here E in the more general framework
of Proposition 3, that P is defined by the PMM on
S+ and E on L(IPu). We first obtain an expression
for E(B), for any event B in 2IPu .
Proposition 7. In the PMM, the natural extension
of P : S+ → R on 2IPu is

E(B) = min{(1 + δ)P̃ ∗(B), 1}, (11)

where the upper probability P̃ ∗(B) = inf{P (A) : A ∈
S+, B ⇒ A} is the outer function of P .

Proof. By Proposition 3 (a), E(B) = P
∗
(B) =

inf{min{(1 + δ)P (A), 1} : A ∈ S+, B ⇒ A}. Defining
LB = {A ∈ S+ : B ⇒ A, (1 + δ)P (A) < 1}, LB = ∅
iff (1 + δ)P̃ ∗(B) ≥ 1.

Two cases may occur: if LB = ∅, that is if (1 +
δ)P̃ ∗(B) ≥ 1, then E(B) = 1; if LB 6= ∅, that is if
(1 + δ)P̃ ∗(B) < 1, E(B) = inf{(1 + δ)P (A) : A ∈
LB} = (1 + δ) inf{P (A) : A ∈ LB} = (1 + δ)P̃ ∗(B).
In summary, equation (11) holds.

We emphasize that P̃ ∗ in (11) is generally not a pre-
cise, but an upper probability. In fact, by Proposi-
tion 3 (a), it coincides with the natural extension EP

on 2IPu of the probability P , when P is interpreted as
a special upper probability.
Proposition 8. In the PMM, the natural extension
of P : S+ → R on L(IPu) is:

E(X) = xu
τ + (1 + δ)EP ((X − xτ )+) (12)

where EP is the natural extension of P (also of P̃ ∗)
on L, and xu

τ is the (upper) quantile relative to P̃ ∗

xu
τ = sup{x ∈ R : P̃ ∗(X ≤ x) ≤ τ}. (13)



Proof. Apply (4) and Proposition 3, (a) substituting
P
∗

= E with its expression in equation (11), getting

E(X) = inf X +
∫ sup X

inf X

min{(1 + δ)P̃ ∗(X > x), 1}dx.

From here, the derivation of (12) is identical to that
sketched in [11], Section 3.2.5, to obtain (6). In fact,
P̃ ∗ is defined on the field 2IPu , and every X ∈ L is
measurable with respect to such a field.

Clearly, (12) generalizes (6). We might summarize
the difference between the natural extension in (12)
and that in (6) as follows: computing the natural ex-
tension of P on gambles which are not necessarily
measurable with respect to the domain of P intro-
duces imprecision by transforming the precise previ-
sion P ((X − xτ )+) in (6) into the upper prevision
EP ((X − xu

τ )+) in (12). Also the quantile xτ refers
to probability P in (7), while xu

τ employs the upper
probability P̃ ∗ in (13).

But there is another attractive interpretation: E(B)
in (11) can be viewed as a kind of imprecise PMM,
defined via natural extension on 2IPu starting from a
(precise) PMM on a narrower set S+: then (12) de-
scribes the natural extension of this imprecise model.

Some properties of the natural extension of the PMM
generalize to the natural extension of the imprecise
PMM. The following proposition relaxes (8):
Proposition 9. If (X > xu

τ ) 6= ∅, it holds for the
natural extension E on L(IPu) of P : S+ → R that

E(X) ≤ εuxu
τ + (1− εu)EP (X|X > xu

τ ) (14)

where εu def= 1− (1 + δ)EP (X > xu
τ ).

Proof. Noting that (X − xu
τ )+ = (X − xu

τ )IX>xu
τ

and by subadditivity of coherent upper previsions
and, at the second equality, the GBR,3 EP ((X −
xu

τ )+) = EP ((X − xu
τ )IX>xu

τ
) ≤ EP (IX>xu

τ
(X −

EP (X|X > xu
τ ))) + EP (IX>xu

τ
(EP (X|X > xu

τ ) −
xu

τ )) = EP (IX>xu
τ
(EP (X|X > xu

τ )− xu
τ )) def= λ.

Using also the definition of εu and λ, we get further
xu

τ + (1 + δ)λ = xu
τ (1 − (1 + δ)EP (X > xu

τ )) + (1 +
δ)(λ + xu

τ EP (X > xu
τ )) = εuxu

τ + (1 + δ)(EP (X >
xu

τ )(EP (X|X > xu
τ )−xu

τ )+xu
τ EP (X > xu

τ )) = εuxu
τ +

(1− εu)EP (X|X > xu
τ ).

Finally, by (12) and the expressions above, E(X) =
xu

τ +(1+ δ)EP ((X −xu
τ )+) ≤ xu

τ +(1+ δ)λ = εuxu
τ +

(1− εu)EP (X|X > xu
τ ).

Although the inequality in (14) can be strict (we omit
proving this), when P is defined on 2IPu then EP is

3Recall also that the natural extension EP always exists
with W-coherence, cf. [7].

equal to P (or to its extension using (5)), and xu
τ , εu

to xτ , ε respectively. Thus (14) reduces to (8).

The statement corresponding to Proposition 4 d) is
εu R 0 iff EP (X > xu

τ ) Q 1
1+δ , or also εu R

0 iff EP (X ≤ xu
τ ) R τ .

We know that ε = 0 when FX is continuous at
xτ . When FX(x) = EP (X ≤ x) is continuous at
xu

τ , then FX(xu
τ ) = τ . Hence FX(xu

τ ) = EP (X ≤
xu

τ ) ≤ FX(xu
τ ) = τ . In terms of εu, as seen above,

this means that εu ≤ 0, with εu = 0 only when
FX(xu

τ ) = FX(xu
τ ), a condition obviously warranted

when FX = FX = FX . Thus continuity at xu
τ of FX

implies εu ≤ 0, typically εu < 0.

4 Risk measurement interpretations

If Y is a gamble, it is known [6] that P (−Y ) may
be interpreted as a risk measure for Y , i.e. a num-
ber measuring how risky Y is, or also the amount of
money to be reserved to cover potential losses from
Y . Several risk measures were introduced in the liter-
ature, and there is often no unanimity on the termi-
nology. To ensure comparisons with [4], we shall refer
the risk measure to X = −Y ; this corresponds, when
Y ≤ 0, to thinking in terms of losses and is frequently
done in insurance, where X represents the amount to
be paid for insurance claims (however, X is not neces-
sarily non-negative in what follows).4 Thus the upper
previsions E(X) in (6), (8) and (12) may be seen as
risk measures for X, and there is a strong correspon-
dence with measures studied in the literature.

Consider equation (6): xτ is the Value-at-Risk of X
at level τ , V aRτ (X), while P ((X − xτ )+) is the ex-
pected shortfall ESτ (X) (whenever P is replaced by or
thought of as an expectation) [4]. In fact, (X − xτ )+

measures the shortfall, i.e. the residual loss in ab-
solute value of an agent who reserves an amount of
money equal to V aRτ (X) = xτ to cover losses from
X. Also P (X|X > xτ ) corresponds to a well-known
risk measure (when P is an expectation), termed Con-
ditional Tail Expectation (CTEτ ) in [4].

Equation (6) corresponds to (2.7) in [4], which
defines another measure of risk, TailV aRτ (X) or
TV aRτ (X). This equation is identical to (6), af-
ter replacing E, xτ , P ((X − xτ )+) with, respectively,
TV aRτ (X), V aRτ (X), ESτ (X):

TV aRτ (X) = V aRτ (X) + (1 + δ)ESτ (X).

4While ensuring compatibility with the prevailing literature
and the formulae in [11], the convention of referring to losses
modifies the range of the typical values for τ . In this section
τ should be fairly close to 1, representing the probability that
the loss is not too high, while in the rest of the paper should
rather be close to 0, being a taxation or commission.



Analogously, equation (8) corresponds to

TV aRτ (X) = (1− ε)CTEτ (X) + εV aRτ (X). (15)

The novel fact in our approach (apart from using pre-
visions instead of expectations) is that TV aRτ is de-
rived as the natural extension of the PMM, while the
starting point in the literature for defining this or
other measures is usually a set of random variables,
often a linear space equipped with a σ-additive prob-
ability measure, using which the various expectations
are computed. Recalling also Proposition 3, we de-
duce the following properties for TV aRτ :

Proposition 10. TV aRτ (X) is the natural extension
on L(IPu) of the PMM defined on 2IPu . Hence, it is
the least-committal risk measure extending the PMM
which is coherent. Actually, it is its only coherent
extension which is 2-alternating.

CTEτ complements V aRτ , in the sense that V aRτ ,
unlike CTEτ , is nearly uninformative about what are
the losses, should the threshold xτ be exceeded. Un-
fortunately, neither V aRτ nor CTEτ is generally co-
herent, even though their linear combination in (15)
originates a coherent risk measure. Conditions for
coherence of CTEτ are discussed in Section 3, and
are commoner in practice than those ensuring coher-
ence of V aRτ .5 In the classical risk measurement ap-
proach using a σ-additive probability, the comparison
between CTEτ and TV aRτ is limited to cases i), ii)
in Section 3 which, as we pointed out there, are not
exhaustive in general.

The generalization in Section 3.2 forms a basis for
further considerations on the risk measurement side.
This time, E(X) in (12) is the natural extension of
the PMM defined on S+(⊂ 2IPu), and may again be
interpreted as a risk measure, let us name it Im-
precise TailV ar or ITV aRτ . Using Proposition 3,
ITV aRτ is coherent and also 2-alternating. However,
ITV aRτ has no analogue in the risk measurement lit-
erature. The reason lies in the standard way of defin-
ing risk measures from an underlying precise probabil-
ity, which rules out potentially interesting risk mea-
sures which are functions of imprecise measures. And
looking at (12), we notice that ITV aRτ is a linear
combination of other two measures which are impre-
cise versions of V aRτ and ESτ : xu

τ is defined in (13)
as a function of the upper probability P̃ ∗, the short-
fall (X − xu

τ )+ is evaluated by the upper prevision
EP . We may conclude that the PMM provides a for-
mal justification for the existence of a new, and still
largely not investigated, kind of risk measures, those
defined in terms of imprecise uncertainty measures.

5For V aRτ , see the discussion in [6].

5 Conditioning the pari-mutuel
model

Reconsider the basic PMM, with P (A), P (A) given
by (1), (2), A ∈ D, and D is now a field of events.
We shall compute the natural extensions E(A|B),
E(A|B) of P and P on A|B, with B ∈ D, B 6= ∅.
Since P and P are, respectively, 2-alternating and 2-
monotone, from a well-known result ([10], Thm. 7.2;
see also [8]), when P (B) > 0:

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
,

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
.

(16)

When P (B) = 0, equations (16) do not apply, but it
can be shown (directly, using Williams coherence, or
alternatively from results in [11]) that

Lemma 1. Given a coherent lower probability P
on a set D of (unconditional) events, let B ∈ D,
P (B) = 0. The natural extension E of P on
D ∪ {A1|B, . . . , An|B} is E(Ai|B) = 1 if B ⇒ Ai,
E(Ai|B) = 0 otherwise, for i = 1, . . . , n.

Applying Lemma 1 for n = 2, A1 = A, A2 = Ac and
using conjugacy, it follows that, when P (B) = 0 in
the PMM, then E(A|B) = 0, ∀A such that B ; A,
and E(A|B) = 1, ∀A such that A ∧B 6= ∅.

We assume in the sequel P (B) > 0; note that by (2)
P (B) > 0 iff P (B) > δ

δ+1 = τ . Further, P (B) > 0
ensures that the denominators in (16) are non-zero.
Take E(A|B): using property 2.7.4 (d) in [11], P (A∧
B) + P (Ac ∧B) ≥ P (B) > 0. Similarly for E(A|B).

To derive E(A|B), from (16), two alternatives occur:

a) P (Ac ∧B) = max {(1 + δ)P (Ac ∧B)− δ, 0} = 0.
Hence E(A|B) = 1.

b) max {(1 + δ)P (Ac ∧B)− δ, 0} > 0. This hap-
pens iff P (Ac ∧ B) > δ

1+δ = τ and implies
min {(1 + δ)P (A ∧B), 1} < 1 (otherwise P (A ∧
B) ≥ 1

1+δ and P (B) > δ
δ+1 + 1

1+δ = 1). Hence

E(A|B) = (1+δ)P (A∧B)
(1+δ)(P (A∧B)+P (Ac∧B))−δ = P (A∧B)

P (B)−τ .

The derivation of E(A|B) is analogous:

a) If P (A∧B) = max {(1 + δ)P (A ∧B)− δ, 0} = 0,
E(A|B) = 0.

b) If max {(1 + δ)P (A ∧B)− δ, 0} > 0, this implies
τ < P (A ∧ B) and min {(1 + δ)P (Ac ∧B), 1} <

1; then E(A|B) = P (A∧B)−τ
P (B)−τ .



P (A) =
{

P (A)
1−τ

1
if τ < P (Ac)
if τ ≥ P (Ac)

P (A) =
{

P (A)−τ
1−τ

0
if τ < P (A)
if τ ≥ P (A)

E(A|B) =

{
P (A∧B)
P (B)−τ

1
if τ < P (Ac ∧B)
if τ ≥ P (Ac ∧B)

E(A|B) =

{
P (A∧B)−τ

P (B)−τ

0
if τ < P (A ∧B)
if τ ≥ P (A ∧B)

Table 1: Values of P (A), P (A), E(A|B), E(A|B).

Table 1 lists the values of P (A), P (A), E(A|B),
E(A|B). They are written as functions of τ , to sim-
plify the inequalities in the ‘if’ clauses (referring to
δ, the clauses involve ratios of probabilities instead of
probabilities). Note that the expressions for E(A|B),
E(A|B) reduce to those for P (A), P (A) when B = Ω.

5.1 Dilation and imprecision increase

How does imprecision in the evaluations vary when
conditioning in the PMM model? To supply some
answers, we first recall two concepts.
Definition 1. Given a partition of non-impossible
events IP , we say that (weak) dilation occurs (with
respect to A and IP ) when

P (A|B) ≤ P (A) ≤ P (A) ≤ P (A|B),∀B ∈ IP, (17)

while there is an imprecision increase when

P (A)− P (A) ≤ P (A|B)− P (A|B),∀B ∈ IP. (18)

Dilation is a so far little investigated phenomenon (see
[9]), which implies that our a posteriori opinions on
A will be vaguer and hence also more imprecise (at
least in a weak sense, if the first or last weak inequal-
ities in (17) are equalities) than the a priori ones, no
matter which B ∈ IP is true. Even though dilation is
IP -dependent (so that we may hope that a well-chosen
partition IP avoids dilation), it is a puzzling phenom-
enon. Clearly, dilation implies the weaker concept of
imprecision increase, which captures one of the two
basic features of dilation, the growth in the degree of
imprecision.

To discuss the occurrence of dilation or of imprecision
increase in the PMM, we assume that IP = {B,Bc}
and the conditional probabilities are the natural ex-
tensions. The formulas for E(A|Bc), E(A|Bc) are
obtained from those for E(A|B), E(A|B) in Table 1
(when τ < P (Bc)) replacing B with Bc.

We present now a number of results, whose opera-
tional relevance is discussed in Section 5.2.

Notation We write A′ to denote, indifferently, either
A or Ac. For instance, min{P (A′∧B′)} is a short form
for min{P (A∧B), P (Ac∧B), P (A∧Bc), P (Ac∧Bc)}.
Proposition 11. Each of the following conditions
is necessary for dilation (of A, relative to {B,Bc}),
whenever the denominator is positive:

τ <P (A ∧B) ⇒ τ ≥ P (A∧B)−P (A)P (B)
P (Ac∧Bc) (19)

τ <P (Ac ∧B) ⇒ τ ≥ P (A)P (B)−P (A∧B)
P (A∧Bc) (20)

τ <P (A ∧Bc) ⇒ τ ≥ P (A∧Bc)−P (A)P (Bc)
P (Ac∧B) (21)

τ <P (Ac ∧Bc) ⇒ τ ≥ P (A)P (Bc)−P (A∧Bc)
P (A∧B) (22)

Proof. Impose either E(A|B′) ≤ P (A) or E(A|B′) ≥
P (A) in (17), and use Table 1 to choose the appropri-
ate values of E, E, P , P .

To exemplify, Equation (19) implements the condition
E(A|B) ≤ P (A), which is written as P (A∧B)−τ

P (B)−τ ≤
P (A)−τ

1−τ . Multiply by (P (B)− τ)(1− τ) > 0 and solve
the ensuing linear inequality in τ to get (19).

Proposition 12. Define m = min{P (A′ ∧ B′)},
M = max{P (A′ ∧ B′)}, Mτ = max{(P (A ∧
B) − P (A)P (B))/P (Ac ∧ Bc), (P (A)P (B) − P (A ∧
B))/P (A ∧ Bc), (P (A ∧ Bc) − P (A)P (Bc))/P (Ac ∧
B), (P (A)P (Bc)− P (A ∧Bc))/P (A ∧B)}

(a) If τ < m, dilation occurs if and only if τ ≥ Mτ .

(b) The condition τ ≥ M is sufficient for dilation.

Proof. (a): when τ < m = min{P (A′ ∧ B′)}, (17)
holds iff τ satisfies the weak inequalities in (19÷22)
i.e. iff τ ≥ Mτ .

(b): when τ ≥ M , E(A|B′) = 0 and E(A|B′) = 1,6

so dilation occurs no matter what are P (A), P (A).

Remark 2. At most two of the four weak inequal-
ities in (19÷22) need to be checked. In fact, let
A and B be positively correlated under P , hence A
and Bc are negatively correlated and P (A)P (B) −
P (A ∧ B) < 0, P (A ∧ Bc) − P (A)P (Bc) < 0. Thus,
(20) and (21) trivially hold (τ > 0) and Mτ =
max

{
P (A∧B)−P (A)P (B)

P (Ac∧Bc) , P (A)P (Bc)−P (A∧Bc)
P (A∧B)

}
. Simi-

larly, (19) and (22) trivially hold when A and B are
negatively correlated under P .

Let us point out some special instances of dilation.
6This ensues from Table 1 when τ ≤ min P (B′), if not use

also Lemma 1.



Corollary 2. Dilation occurs if:

(a) P (A′ ∧B′) = P (A′)P (B′) and τ < m.

(b) P is uniform on IPA,B = {A ∧ B,A ∧ Bc, Ac ∧
B,Ac ∧Bc}, ∀τ ∈ ]0, 1[.

Proof. Condition (a) ensures dilation, as it implies
Mτ = 0 and hence (a) of Proposition 12. As for (b), it
implies P (A′∧B′) = P (A′)P (B′) and m = M = 0.25:
hence dilation occurs by (a) when τ < M = m, by
Proposition 12, (b) when τ ≥ M .

Concerning imprecision increase, it holds that
Proposition 13. Imprecision increases, i.e., Equa-
tion (18) holds, if the following system holds for τ :{

(τ − P (A ∧B))(τ − P (Ac ∧B)) > 0
(τ − P (A ∧Bc))(τ − P (Ac ∧Bc)) > 0 (23)

Proof. Check that (18) holds, using Table 1.

Remark 3. Note that (23) holds in particular when
τ < m = min{P (A′ ∧ B′)}. Therefore imprecision
always increases in this case.

5.2 Imprecision variation in practice

As a general remark, the existence and relevance of
dilation and imprecision increase in the PMM should
be investigated distinguishing more cases, according
to the relative ordering of P (A′ ∧ B′), P (A′), and τ
in [0, 1]. However, the importance of each case varies
greatly in the applications. We present in detail the
most significant ones, while the remaining may be
analyzed using Table 1 and the preceding results to
check (17) and (18), as demonstrated in Example 3.

Case i) τ < m = min{P (A′ ∧B′)};

Case ii) P (A) ≤ τ < min{P (Ac ∧B′)}.

Case i) is probably the most important: τ will often
be rather low, recalling that it has the meaning of
a commission or taxation (this happens for instance
with Internet betting). In such circumstances case i)
applies if none among P (A′ ∧B′) is too low.

Case i) is completely solved by the results in Section
5.1: dilation occurs iff τ ≥ Mτ (Proposition 12, (a)),
imprecision always increases (Remark 3).

We do not necessarily meet case i) when A is a rare
event, or P (A) is anyway smaller than the commission
τ in favour of House or of an insurer (these cases are
relatively frequent in non-life insurance). If τ is also
smaller than min{P (Ac ∧ B′)}, case ii) occurs. We
discuss it in the next example.

Example 2. When P (A) ≤ τ < min{P (Ac∧B′)}, then
(see Table 1) P (A) = P (A)/(1−τ), E(A|B) = P (A∧
B)/(P (B)− τ), E(A|Bc) = P (A ∧ Bc)/(P (Bc)− τ),
E(A|B′) = P (A) = 0. Imposing either (17) or (18)
originates the same system of inequalities, i.e. in this
case there is dilation iff there is imprecision increase.
The system is {

P (A∧B)
P (B)−τ ≥

P (A)
1−τ

P (A∧Bc)
P (Bc)−τ ≥

P (A)
1−τ

(24)

and its inequalities are easily seen to be equivalent to
(20) and (22). Thus dilation arises iff both (20) and
(22) hold (and the lower bound they supply for τ is not
greater than min{P (Ac ∧B′)}). In practice, only one
of them (at most) has to be checked, depending on the
correlation of A and B, by Remark 2. For instance, if
P (A) = 0.02, P (A ∧ B) = 0.005, P (A ∧ Bc) = 0.015,
P (B) = 0.4, then P (A|B) = 0.0125 < P (A) and (20)
gives the bound τ ≥ 0.2. Since min{P (Ac ∧ B′)} =
0.395 > 0.2, the bound is effective: there is dilation
(and imprecision increase) for τ ∈ [0.2; 0.395], none of
them for τ ∈ [0.02; 0.2[.

Discussion We point out that dilation occurs in both
case i) and ii) when A′ and B′ are judged stochastically
independent or at least not correlated by P (as follows
from Corollary 2 (a) and Example 2).

Further, dilation occurs when τ is too “large”: Propo-
sition 12 (b) ensures it when τ ≥ M = max{P (A′ ∧
B′)}. This happens merely because E, E are then
vague, but dilation may occur also when τ < M , as
in the next example.
Example 3. Assign P on IPA,B as follows: P (A∧B) =
1
10 , P (A ∧ Bc) = P (Ac ∧ Bc) = 2

10 ,P (Ac ∧ B) = 1
2 .

Consequently P (A) = 3
10 , P (B) = 6

10 , P (A|B) = 1
6 ,

P (A|Bc) = 1
2 .

Dilation occurs when τ ≥ 1
2 , by Proposition 12, (b).

When τ < 1
2 = P (Ac∧B), use the necessary condition

in (20), which requires that τ ≥ 4
10 , to rule out dila-

tion for τ ∈ ]0; 4
10 [. If τ ∈ [ 4

10 ; 1
2 [, (20) ensures that

E(A|B) ≥ P (A), and the other inequalities in (17)
hold too, because E(A|Bc) = 1 and E(A|B′) = 0.
Thus there is dilation for τ ∈ [ 4

10 , 1
2 [ too.

As for imprecision increase, it is ensured by Proposi-
tion 13 (Remark 3) when τ < 1

10 . For τ ∈ [ 1
10 ; 4

10 [, we
have to check whether the inequalities (18) hold, dis-
tinguishing more subcases according to the different
expressions for P , P , E(A|B′), E(A|B′). Condition-
ing on Bc, we should check whether

E(A|Bc)− E(A|Bc) ≥ P (A)− P (A). (25)

Now, E(A|Bc)−E(A|Bc) = 1 and (25) therefore holds
if τ ∈ [ 2

10 ; 4
10 [, while (25) specialises into τ

P (Bc)−τ ≥



τ
1−τ when τ ∈ [ 1

10 ; 2
10 [, and this inequality is true.

Therefore (25) is verified for τ ∈ [ 1
10 ; 4

10 [, and impreci-
sion increase in this interval depends only on whether
the inequality E(A|B) − E(A|B) ≥ P (A) − P (A)
holds. Noting that E(A|B) − E(A|B) = P (A∧B)

P (B)−τ =
1

6−10τ , ∀τ ∈ [ 1
10 ; 4

10 [, we have to check whether:

1
6−10τ ≥ P (A)

1−τ = 3
10(1−τ) if τ ∈ [ 3

10 ; 4
10 [

1
6−10τ ≥ τ

1−τ if τ ∈ [ 1
10 ; 3

10 [.

The former inequality has no solution in [ 3
10 ; 4

10 [, the
latter is true for τ ∈ [ 1

10 ; 2
10 ]. Conclusions: dilation

occurs iff τ ∈ [ 4
10 ; 1[, imprecision increase (without

dilation) iff τ ∈ ]0; 2
10 ], neither of them iff τ ∈ ] 2

10 ; 4
10 [.

Limiting dilation or imprecision increase in the PMM
is not straightforward. This may be achieved by an
appropriate choice of τ in some, but not all cases (for
instance, τ ∈ [ 2

10 ; 4
10 [ might be too high a percent-

age in Example 3). More generally, choosing a coher-
ent extension other than the natural extension often
shrinks imprecision, by the dominance properties of
the natural extension, but finding a computationally
simple such extension may be not so easy in practice.

6 Conclusions

The pari-mutuel model represents a simple and nat-
ural way of eliciting upper/lower probabilities, and
can be extended in more directions, thanks to the
availability of standard procedures for 2-monotone
and 2-alternating previsions. We computed explicitly
its natural extension E starting from a PMM assign-
ment on a lattice of events, generalizing the approach
in [11], which is anyway discussed, focusing on com-
paring the different formulae available for E. While
a naive extension, considered in insurance premium
pricing, does not seem to be a valuable alternative to
the natural extension, being generally not coherent,
the various formulae for the natural extension have a
notable meaning in risk measurement. In fact, they
correspond to known measures of risk or generalize
them. We discussed also how to use the natural ex-
tension when conditioning, delimiting the influence of
dilation and imprecision increase for the PMM.

A tempting new direction would, in a sense, merge our
analysis in the conditional and unconditional frame-
work, studying the natural extension to conditional
gambles. Here a difficulty arises: available generalisa-
tions of equations (16), studied in [8], are lower/upper
bounds for the natural extension and might not be
reached, even when P is 2-alternating. In other words,
the available procedures seem to give weaker results.

This and the considerations at the end of Section
5.2 on how to limit dilation or imprecision increase
might motivate investigating coherent extensions of
the PMM alternative to the natural extension.
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