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Abstract

An axiomatic approach for solving a multi-criteria de-
cision making problem is studied in the paper, which
generally allows reducing a set of Pareto optimal so-
lutions. The information about criteria in the prob-
lem is represented as the decision maker judgments
of a special type. The judgments have a clear behav-
ior interpretation and can be used in various decision
problems. It is shown in the paper how to combine the
judgments and to use them for reducing the Pareto set
when they are provided by several decision makers.
Two global criteria of decision making are introduced
for comparing of decision alternatives. The first crite-
rion based on the lower expectation, the second one is
based on determining the belief and plausibility func-
tions in the framework of Dempster-Shafer theory and
uses the “threshold” probability for the final decision
making. The numerical examples illustrate the pro-
posed approach.

Keywords. Multi-criteria decision making, desirable
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1 Introduction

Most methods of multi-criteria decision making
(MCDM) problems are somehow or other based on
combining or aggregating criteria. According to these
methods, decision alternatives (DA’s) are compared
by using the aggregated criterion. There are different
ways for criteria combining. The widely-spread ways
are linear, multiplicative and maximin combinations
[3, 8]. For instance, the well-known analytic hierarchy
process method proposed by Saaty [8] is based on the
linear combination of criteria. However, in spite of
the popularity of the aggregation methods for solving
MCDM problems, they are ad hoc and have some jus-
tification related to certain applied areas. The main
shortcoming of ad hoc methods is that it is often dif-
ficult to validate or to justify the optimal solutions.

Another shortcoming is the necessity to have criteria
with identical numerical scales.

Another part of methods is axiomatic, i.e., they are
based on some axioms or properties and can be called
strong methods. One of such the methods is reduc-
ing the so-called Pareto set of non-dominated solu-
tions by utilizing some additional information about
importance of criteria provided by experts, decision
makers (DM’s), etc. The amount of the additional
information and its consistency determines the num-
ber of solutions in a reduced Pareto set. Ideally, the
reduced Pareto set should consist of one solution.

Procedures for processing the additional information
and for reducing the Pareto set totally depend on
the type of available data or judgments. Many au-
thors use the “weights” of criteria v = (v1, ..., vr)
and different kinds of their ranking. For instance,
Park and Kim [7], Kim and Ahn [4] distinguish be-
tween the following approaches to the elicitation of
attribute weights: weak ranking (vi ≥ vj); strict rank-
ing (vi− vj ≥ λi); ranking with multiples (vi ≥ λivj);
interval form: (λi ≤ vi ≤ λi + εi); ranking of differ-
ences (vi − vj ≥ vk − vl). Here λi ≥ 0, εi ≥ 0.

Another very interesting type of judgments elicited
from DM’s or experts has been proposed by Noghin
[5, 6] for reducing the Pareto optimal set in the frame-
work of his theory of relative importance of criteria.
Some details of the theory will be considered below.
This type of judgments does not require to have iden-
tical numerical scales for criteria. It has a simple and
clear behavior interpretation. Moreover, it turns out
that many statements of the theory have analogues in
the framework of desirable gambles [13, 14]. There-
fore, MCDM problems in the framework of desirable
gambles by relying on the Noghin’s theory of relative
importance of criteria are studied in the paper.

An interesting approach for eliciting the additional
judgments from DM’s or experts in MCDM problems
(called the DS/AHP method) has been proposed by



Beynon et al [1, 2]. This method uses Dempster-
Shafer theory in a framework of the analytic hierarchy
process and allows to compare not only single DA’s,
but also groups of DA’s. Beynon et al proposed to
compare DA’s, not criteria. However, a similar elici-
tation procedure can be applied to criteria [12]. Nev-
ertheless, this method is also ad hoc and uses in the
long run the linear aggregation (the analytic hierar-
chy process). Therefore, an attempt to modify it for
reducing the Pareto optimal set in the framework of
desirable gambles and Noghin’s theory is made in the
paper.

In the paper, “interval-valued” judgments as the ex-
tension of judgments proposed by Beynon et al are
analyzed. These judgments have the following form:
“I do not know which criterion is the most important,
but this criterion belongs to the subset B of the set
of criteria”. Then these simple judgments are gen-
eralized to a more complex form, for instance, “I’m
willing to pay wi for the i-th criterion in order to get
wj for the j-th criterion. I’m also willing to pay wk

for the k-th criterion in order to get wl for the l-th cri-
terion. However, I do not know what is better.” Their
analysis is the next task for solving in the paper.

At the same time, we have to note that these judg-
ments can be provided by several DM’s. Therefore,
the following problem to be solved is to combine them
by taking into account the quality or weights of DM’s.
This will be done by introducing two global criteria of
decision making, which are based on some statements
of the Dempster-Shafer theory. In fact, these crite-
ria can be regarded in the framework of second-order
models [11]. It will be shown in the paper how to re-
duce the Pareto set of optimal solutions by applying
the given information in the above forms and by using
two proposed criteria.

The paper is organized as follows. The main defi-
nitions of MCDM are provided in Section 2. Some
statements of Noghin’s theory of relative importance
of criteria are considered in Section 3. Noghin’s the-
ory is formulated in the framework of desirable gam-
bles in Section 4. Different types of “interval-valued”
judgments about criteria and their use for reducing
a Pareto set are studied in Section 5. An illustrative
numerical example is considered in the same section.

2 The MCDM problem statement

A general MCDM problem can be formulated in the
following way. Suppose that there is a set of DA’s
X = {X1, ..., Xn} consisting of n elements. Moreover,
there is a set of criteria C = {C1, ..., Cr} consisting of
r elements, r ≥ 2. For every DA, say the k-th DA, we
can write the value of the i-th criterion Ci(Xk) briefly

denoted xki, k = 1, ..., n, i = 1, ..., r. Below, we will
say that the i-th DA is characterized by the vector
Xi = (xi1, ..., xir). We will assume that the number
of criteria and the number of DA’s are finite.

To solve a MCDM problem is to find a set of all op-
timal solutions denoted by OptX ⊆ X, which can be
regarded as the best solutions under certain condi-
tions.

By making decisions, we usually have to take many
objectives or criteria into account. The main feature
here is that the different objectives are most likely
conflicting and the final decision is commonly called
a trade-off. When dealing with multiple objectives,
solutions can be incomparable since they can domi-
nate each other in different objectives. This lead to
the notion of Pareto optimality, which is based on a
partial order among the solutions. A solution is called
Pareto optimal, if it is not dominated by any other
solution, that is, if there is no other solution that is
better in at least one objective and not worse in any
of the other objectives. Naturally, Pareto optimal so-
lutions are the candidates for a trade-off.

Let us give some standard definitions related to
Pareto optimal solutions under assumption that there
is no information about importance of criteria.

Definition 1 X ∈ X dominates Y ∈ X, denoted X Â
Y iff ∀i = 1, ..., r, xi ≥ yi with at least one strict
inequality.

Definition 2 Y ∈ X is a Pareto optimal alternative,
also called an efficient alternative, iff @X ∈ X such
that X Â Y . The set of all Pareto optimal alternatives
in X or Pareto set is denoted P(X).

It follows from the above definitions that the following
inclusions are valid OptX ⊆P(X) ⊆ X.

For many optimization problems, the number of
Pareto optimal solutions can be rather large. There-
fore, the problem of reducing Pareto optimal sets by
obtaining the additional information is very impor-
tant.

3 Noghin’s relative importance of
criteria

For reducing the Pareto optimal set, Noghin in [5]
proposed the so-called theory of relative importance of
criteria. This theory is based on the standard axioms
and definitions of Pareto optimal solutions and the
following additional axiom.

Axiom 1 The preference relation Â is invariant with



respect to positive linear transformation1.

The main idea of Noghin’s theory is to compare cri-
teria by means of parameters.

Definition 3 Let i, j ∈ N = {1, 2, ..., r}, i 6= j. We
say that the i-th criterion is more important than the
j-th criterion with two positive parameters wi and wj

if for any two vectors X,Y ∈ X such that

xi > yi, xj < yj , xk = yk, ∀k ∈ N\{i, j},

xi − yi = wi, xj − yj = −wj ,

the relationship X Â Y is valid.

A behavior interpretation of the parameters wi and
wj is the following. The DM is willing to pay wj

units for the j-th criterion in order to get wi units for
the i-th criterion. The relative importance coefficient
is defined as

θij =
wj

wi + wj
.

It can be seen that 0 < θij < 1. At that, θij is close to
1 if wj À wi. Moreover, θij is close to 0 if wj ¿ wi.

Introduce the following vector

Wij = (0, ..., 0, wi, 0, ...,−wj , 0, ..., 0),

whose r− 2 elements are zero, the i-th element is wi,
the j-th element is −wj . If the relation X Â Y is
valid with the given parameters wi and wj , then we
can write that the relation Wij Â 0r is valid. Here 0r

is the vector of r zero elements. The relation Wij Â 0r

is equivalent to the relation Θij Â 0r, where

Θij = (0, ..., 0, 1− θij , 0, ...,−θij , 0, ..., 0).

One of the main results of Noghin’s theory of the rel-
ative importance of criteria is the following theorem.

Theorem 1 (Noghin [5]) Let the i-th criterion be
more important than the j-th criterion with the pair
of positive parameters wi and wj. Then for any
nonempty set of optimal vectors OptX, it follows that

OptX ⊆ P∗(X) ⊆ P(X),

where P(X) is a set of Pareto-optimal vectors with
respect to criteria C = {C1, ..., Cr}; P∗(X) is a set of
Pareto-optimal vectors with respect to criteria C∗ =
{C∗1 , ..., C∗r } such that

C∗j = wjCi + wiCj , C∗k = Ck, k 6= j.

1A binary relation R defined on Rr is said to be invariant
with respect to positive linear transformation if for any vectors
X, Y, c ∈ Rr and each positive number α the relationship XRY
implies (αX + c)R (αY + c).

In other words, Theorem 1 provides a simple compu-
tation way for reducing the Pareto optimal set P(X).
Its proof is based on properties of convex cones [6]
produced by preferences of the form Wij Â 0. Theo-
rem 1 is very important because it is a tool for dealing
with the information about the relative importance of
criteria. It can be easy written in terms of the relative
importance coefficients θij .

4 Sets of desirable gambles

A goal of this section is to consider Noghin’s theory of
the relative importance of criteria in the framework of
desirable gambles [13, 14] and to show that its results
and statements can be rather simply obtained on the
basis of the framework. Preliminaries of the frame-
work of desirable gambles given below can be found
in [14].

Let Ω denote the set of possible outcomes under con-
sideration. A bounded mapping from Ω to R (the real
numbers) is called a gamble. Let L be a nonempty set
of gambles. A mapping P : L → R is called a lower
prevision or lower expectation. The lower prevision
of a gamble X is interpreted as a supremum buying
price for X, meaning that it is acceptable to pay any
price smaller than P (X) for the uncertain reward X.
A lower prevision is said to be coherent when it is the
lower envelope of some set of linear expectations, i.e.,
when there is a nonempty set of probability measures,
M, such that P (X) = inf {EP (X) : P ∈M} for all
X ∈ L, where EP (X) denotes the expectation of X
with respect to P . The conjugate upper prevision is
determined by P (X) = −P (−X). It is interpreted as
an infimum selling price for X.

For X,Y ∈ L, write X ≥ Y to mean that X(ω) ≥
Y (ω) for all ω ∈ Ω, and write X > Y to mean X ≥ Y
and X(ω) > Y (ω) for some ω ∈ Ω. According to Wal-
ley [13], a gamble X is inadmissible in L when there is
Y ∈ L such that Y ≥ X and Y 6= X. Otherwise X is
admissible in L. The subset P of admissible gambles
in L is an analogue of the Pareto set in MCDM. A
set of desirable gambles, denoted by D, is a subset of
L. A set of desirable gambles is said to be coherent
when it satisfies the four axioms:

D1. 0 /∈ D.

D2. if X ∈ L and X > 0, then X ∈ D.

D3. if X ∈ D and c ∈ R+, then cX ∈ D.

D4. if X ∈ D and Y ∈ D, then X + Y ∈ D.

Thus a coherent set of desirable gambles is a con-
vex cone of gambles that contains all positive gambles
(X > 0) but not the zero gamble. Consequence of the
axioms: If X ∈ D and Y ≥ X, then Y ∈ D.



It can be seen from the axioms of coherence that D3
and D4 coincide with Axiom 1 about positive linear
transformation used by Noghin in his theory. More-
over, it can be seen from Definition 3 that assessments
of the parameters wi and wj can be regarded as some
extension of the probability ratios studied by Walley
[13]. The probability ratios generalize the compara-
tive probability judgments and have the form “A is at
least l times as probable as B”, where l is a positive
number. The gamble A− lB is almost desirable. This
implies that A Â lB.

Walley states that there is a one-to-one correspon-
dence between coherent sets of desirable gambles and
coherent partial preference orderings, defined by X Â
Y if and only if X − Y ∈ D. This is very important
statement which allows to find the same correspon-
dence between the framework of desirable gambles
and Noghin’s theory.

If a closed convex set of probability measures M is
given, then we can define a set of desirable gambles
as follows:

D = {X ∈ L : X > 0 or EP (X) > 0, ∀P ∈M}. (1)

Then D is coherent and M can be recovered from it
by

M = {P : EP (X) ≥ 0, ∀X ∈ D} . (2)

Note that (1) can be rewritten as

D = {X ∈ L : X > 0 or EM(X) > 0} . (3)

Suppose that we have information about the relative
importance of the i-th and the j-th criteria, i.e. the i-
th criterion is more important than the j-th criterion
with two positive parameters wi and wj . Let us return
to the vector Wij produced by the parameters wi, wj

and consider again the relation Wij Â 0r (see Section
3). This relation can be written in the framework of
desirable gambles as the condition Wij−0r ∈ D or just
Wij ∈ D. In other words, the information about the
relative importance of the i-th and the j-th criteria
can be represented as the condition that the vector
Wij belongs to the set of desirable gambles.

Now we reformulate Noghin’s theorem and prove it in
terms of desirable gambles.

Let X and Y be two DA’s. We will denote below the
vector Z = X − Y and its components zk = xk − yk

for short.

Theorem 2 The preference X Â Y is valid if X∗ >
Y ∗ and Wij ∈ D. Here X∗ = (x∗1, ..., x

∗
r) and Y ∗ =

(y∗1 , ..., y∗r ) such that

x∗j = wjxi + wixj , x∗k = xk, k 6= j,

y∗j = wjyi + wiyj , y∗k = yk, k 6= j.

Proof. Note that X Â Y if X − Y = Z ∈ D or
EP (Z) > 0 for all P ∈ M. The condition Wij ∈ D
restricts the set M of possible probability measures
by the constraint EP (Wij) ≥ 0. If we denote P =
(π1, ..., πr), then the above constraint can be rewritten
as wiπi − wjπj ≥ 0. This implies that the set of
all probability measures M is reduced to the subset
M(ij) ⊆ M. The subset M(ij) is defined by the
constraints

r∑

k=1

πk = 1, πk ≥ 0, ∀k ∈ N,

wiπi − wjπj ≥ 0.

Here N = {1, 2, ..., r}.
Let us find extreme points of M(ij). They are

(0, ..., 0, 1k, 0, ..., 0), ∀k ∈ N\{j},

and
πi =

wj

wi + wj
, πj =

wi

wi + wj
,

πk = 0, ∀k ∈ N\{j}.
The last extreme point is produced by the equality
wiπi − wjπj = 0.

The extreme points define the set of probability dis-
tributions M(ij). Therefore, if we prove that the in-
equality EP (Z) > 0 is valid for extreme points, then
this inequality will be valid for all P ∈ M(ij). The
first k − 2 extreme points give

EP (Z) = zk, ∀k ∈ N\{i, j}.

The last extreme point gives

EP (Z) = πizi + πjzj =
wjzi

wi + wj
+

wizj

wi + wj
.

At the same time, the condition X∗ > Y ∗ implies that
zk > 0 or zk = 0 for all k 6= j, and wjzi + wizj > 0.
Hence EP (Z) > 0 for all P ∈ M(ij) and X Â Y , as
was to be proved.

Example 1 Consider the simplified and modified ex-
ample of the optimal choice of a place for the airport
construction given by Keeney and Raiffa in their book
[3] and solve it by using Noghin’s theory. The problem
is to decide where a new airport should be constructed
in accordance with the following criteria2: minimize
investment of capital in million dollars (C1), maxi-
mize carrying capacity in the daily number of air trav-
ellers (C2), maximize safety expressed in the 9-point

2The example is given with some changes.



scale from 1 till 9 (C3), minimize remoteness in kilo-
meters (C4). There are four places for the construc-
tion (DA’s) denoted X1, X2, X3, X4. The MCDM
problem can also be represented by means of the ma-
trix

C1 C2 C3 C4

X1 −20 15000 6 −3
X2 −30 25000 4 −1
X3 −40 18000 7 −5
X4 −25 20000 5 −2

.

Here negative values are taken in order to replace the
“minimization” goals by the “maximization” ones.

It can be seen from the matrix that all the DA’s belong
to the Pareto set.

The DM is willing to pay w3 = 3 units for the third
criteria in order to get w1 = 2 units for the first cri-
terion. The provided information can be represented
by the gamble W13 = (2, 0,−3, 0) ∈ D or equivalently
by the gamble Θ13 = (2/5, 0,−3/5, 0) ∈ D.

Then we write the modified matrix by using Noghin’s
theorem

C1 C2 3 · C1 + 2 · C3 C4

X1 −20 15000 −48 −3
X2 −30 25000 −82 −1
X3 −40 18000 −106 −5
X4 −25 20000 −65 −2

.

Hence, we reduce the Pareto set which now consists of
three DA’s X1, X2 and X4. It can be seen that it is
not enough to have the supplied judgment for getting
one optimal solution.

5 Groups of the most important or
preferable criteria

Let us quickly return to the analytic hierarchy pro-
cess method. In addition to the fact that it must per-
form very complicated and numerous pairwise com-
parisons amongst alternatives the method uses precise
estimates of experts or DM’s. This condition can not
be satisfied in many applications because judgments
elicited from experts are usually imprecise and unre-
liable due to the limited precision of human assess-
ments. In order to overcome these difficulties and to
extend the analytic hierarchy process on a more real
elicitation procedures, Beynon et al [1, 2] proposed
a method using Dempster-Shafer theory and called
the DS/AHP method. The method was developed for
decision making problems with a single DM, and it
applies the analytic hierarchy process method for col-
lecting the preferences from the DM and for modelling
the problem as a hierarchical decision tree. It should

be noted that the main idea underlying the DS/AHP
method is not applying Dempster-Shafer theory to the
analytic hierarchy process method. It is comparison of
groups of alternatives with a whole set of alternatives.
Such the type of comparison is equivalent to the pref-
erences stated by the DM. In other words, Beynon et
al [1, 2] proposed to consider preferences of the form
B Â X with some degree v of it, where B is a subset
or a group of DA’s, X is the set of all alternatives, v is
a positive number in accordance with some scale [8].
The same can be carried out for the criteria, i.e., we
can consider preferences of the form D Â C, where
D is a subset of criteria. It is obvious that this pref-
erence can be rewritten in the form D Â C\D. The
authors of the papers [1, 2] assign to every subset B
some basic probability assignment (BPA) [9] denoted
m(B). The same can be done for criteria.

Such the elicitation procedure has some virtues. First,
a DM does not need to choose the most important
criterion from the set of criteria. The DM chooses a
subset of criteria by assuming that one of these cri-
teria is the most important or important with some
degree of importance. However, these judgments are
used in the aforementioned aggregating criteria meth-
ods which are ad hoc. As a result, it is difficult to
validate the approach in specific applied problems.

Now we will formalize the above elicitation procedure
in the framework of Noghin’s theory and desirable
gambles. Then we will study how this procedure can
be applied to reducing the set of Pareto optimal solu-
tions.

Suppose that there is a set of t judgments of the
form Dl Â C with the corresponding BPA’s m(Dl),
l = 1, ..., t. The first question is to construct a crite-
rion (criteria) for the validity of the preference X Â Y .
These criteria will be called global in order to distin-
guish them from the criteria C1, ..., Cr of the consid-
ered MCDM problem.

The second question is the computation rules for the
validity of X Â Y .

5.1 Simple comparison judgments

First we consider simple comparison judgments of the
form: “I do not know which criterion is the most
important, but this criterion belongs to the subset
B ⊆ C”. Here the degree v is assumed to be un-
known. Suppose that the unknown important crite-
rion has the number k and the subset B contains t el-
ements with numbers from the index set3 B0. Denote
B1 = N\B0, N = {1, ..., r}. Then we can provide

3The set of indices of elements of B will be denoted B0. The
set of indices of elements of C\B will be denoted B1.



r − t judgments:

“The k-th criterion is more important than the j-th
criterion from C\B with the pair of positive

parameters wk = 1 and wj = 1”.

Here k ∈ B0 and j ∈ B1. So, every judgment pro-
duces the gamble4

Wkj = (0, ..., 0, 1k, 0, ...,−1j , 0, ..., 0), (4)

such that Wkj Â 0r, k ∈ B0, j ∈ B1.

It should be noted that the simple comparison judg-
ment with the above desirable gamble Wkj can be ap-
plied to decision problems with uniform criteria, i.e.,
criteria have identical numerical scales.

Now we can find the subset M(k, B1) ⊆ M of prob-
ability distributions P = (π1, ..., πr) restricted by the
desirable gambles Wkj , j ∈ B1, or equivalently its ex-
treme points. The subset M(k, B1) is produced by
the judgment about comparison of the k-th criterion
and the j-th criterion.

Proposition 1 Given the additional information in
the form (4), the preference X Â Y is valid if the
condition

zk +
∑

j∈L

zj ≥ 0

is valid for all L ⊆ B1 and zi ≥ 0 for all i ∈ B0.

Proof. Let us find the subset M(k, B1). It follows
from (2) and from (4) that this set is produced by the
constraints5

πk − πj ≥ 0, j ∈ B1, πi ≥ 0, i ∈ N,

π1 + π2 + ... + πr = 1.

Consider r equalities instead of inequalities in the
above constraints. Hence, we get extreme points of
the form:

πk = 1, πi = 0, ∀i 6= k,

πk = 1/2, πj1 = 1/2, j1 ∈ B0,

πk = 1/3, πj1 = πj2 = 1/3, j1, j2 ∈ B0,

· ··
πk = 1/(r − t + 1), πji = 1/(r − t + 1),

ji, ∈ B0, i = 1, ..., r − t.

4The reason why the parameters wk = 1 and wj = 1
are taken for formalizing the simple comparison judgments is
clearly seen from the proof of Proposition 1.

5One can see from the first r − t constraints that they cor-
respond to the comparison of probabilities πk and πj , i.e., they
formalize the judgment “the k-criterion is as probable as j-th
criterion”. This implies that the parameters wk = 1 and wj = 1
form the simple comparison.

Only non-zero elements of extreme points are written
here. The proof directly follows from the condition of
desirability of gambles X − Y , which is of the form:
EP (X − Y ) ≥ 0, ∀P ∈ extr(M(k, B1)).

Several conditions in Proposition 1 can be replaced
by one equivalent condition

zk + min
L⊆B1

∑

j∈L

zj ≥ 0. (5)

So, the Pareto set can be reduced by using condition
(5) for every pair of DA’s.

It also follows from the proof of Proposition 1 and
from (5) that the lower expectation of the gamble Z =
X − Y under conditions Wkj Â 0r, j ∈ D1

l , denoted
EM(k,D1

l )(Z) is of the form

EM(k,D1
l )(Z) = min

L⊆D1
l

EP (Z)

= min
L⊆D1

l

1
qL + 1


zk +

∑

j∈L

zj


 . (6)

Here L is a subset of D1
l ; qL is the number of elements

in L (qL = card (L)).

We have considered how to formalize “one-side inter-
val” preference6. However, the additional information
about BPA’s of the corresponding “intervals” has not
been applied to the studied MCDM problem. In order
to take this additional information into account, we
have to introduce the so-called global criteria which
establish how to compare two DA’s from the Pareto
set in accordance with all the available information.
It should be noted that the global criteria differ from
the criteria (goals) C1, ..., Cr.

Below two global criteria for comparison DA’s X and
Y are proposed.

5.1.1 The first global criterion

The first global criterion is based on the definition of
the desirability (3) and can be written as follows. The
preference X Â Y is valid if EPEP (X −Y ) > 0. Here
P is a set of probability distributions defined on the
partition of M produced by the given information in
the form of preferences Dl Â C with BPA’s m(Dl),
l = 1, ..., t. For computing the lower expectation, we
can use the approach introduced by Strat [10], which
directly relies on belief functions based on some basic
probability assignment m(·). According to this ap-
proach, the lower expectation of Eh of a function h is

6We have still studied judgments with a fixed k and “inter-
val” C\D without analyzing the interval D.



determined as follows:

Eh =
t∑

l=1

m(Dl) min
x∈Dl

h(x).

Let M(k, D1
l ) be a subset of probability distributions

produced by conditions Wkj Â 0r, j ∈ D1
l . Then

m(Dl) corresponds to the union of subsets

M(Dl) = ∪k∈D0
l
M(k, D1

l ).

Then the function h(x) in the considered case is the
expectation

∑r
i=1 πizi. Hence, we get

EPEP (Z) =
t∑

l=1

m(Dl)

(
min
k∈D0

l

inf
P∈M(Dl)

r∑

i=1

πizi

)
.

However, there holds

inf
P∈M(Dl)

r∑

i=1

πizi = EM(k,D1
l )(X − Y ).

Hence, Proposition 2 can be stated from the above
reasoning.

Proposition 2 Suppose that there is a set of t judg-
ments of the form Dl Â C with the corresponding
BPA’s m(Dl), l = 1, ..., t. The preference X Â Y
is valid in accordance with the first global criterion if
the condition

EPEP (X − Y )

=
t∑

l=1

m(Dl) min
k∈D0

l

EM(k,D1
l )(X − Y ) ≥ 0

is valid. Here EM(k,D1
l )(X − Y ) is defined from (6).

5.1.2 The second global criterion

The second criterion is based on the definition of be-
lief and plausibility functions. According to this cri-
terion, we can say about the preference X Â Y with
some “threshold” or confident probability which lies
between the belief and plausibility functions. Note
that the set M of all probability distributions can be
divided into two subsets M1 and M2. The subset
M1 satisfies the condition X − Y ∈ D. The subset
M2 satisfies the condition X − Y /∈ D. Then all sub-
sets M(Dl) belonging to M1 form the belief function
Bel (X − Y ∈ D). Note that the subset M(Dl) inter-
sects M1 if at least for one of the values k from D0

l

the subset M(k,D1
l ) belongs to M1. The proposition

follows from the above.

Proposition 3 Suppose that there is a set of t judg-
ments of the form Dl Â C with the corresponding
BPA’s m(Dl), l = 1, ..., t. The preference X Â Y
is valid in accordance with the second global criterion
with a probability belonging to the interval with the
following bounds

Bel (X − Y ∈ D) =
∑

l∈R

m(Dl),

Pl (X − Y ∈ D) =
∑

l∈G

m(Dl),

where R is a set of indices such that for every l ∈ R,
there holds

min
k∈D0

l

EM(k,D1
l )(X − Y ) > 0,

G is a set of indices such that for every l ∈ G, there
holds

max
k∈D0

l

EM(k,D1
l )(X − Y ) > 0.

Here EM(k,D1
l )(X − Y ) is defined from (6).

The belief function is the lower (pessimistic or con-
servative) bound for the probability of the preference
X Â Y .

Note that Propositions 2 and 3 are rather general and
their main results do not depend on the way of ob-
taining the lower expectation EM(k,D1

l )(X−Y ). This
implies that the propositions can be generalized by
studying a more practical case when we have parame-
ters of the criteria importance wk and wj (see Section
3).

5.2 General case

In this section, we generalize the simple comparison
judgments by introducing parameters for every pair
of criteria, i.e. for every k, DM’s supply different pa-
rameters w

(k)
j for all j ∈ B1. This is a possible for-

malization of judgments: “The k-th criterion from B
is more important than the j-th criterion from C\B
with the pair of positive parameters wk and wj”. A
special case of the above judgment is the preferences
provided by DM’s with some degree v under condition
that the criteria have identical scales. In this case, we
have v = wj/wk or v = θkj/ (1− θkj). However, we
consider the general case.

Assume for example that C = {C1, C2, C3}, B =
{C1, C2}, and C\B = {C3}. Then the correspond-
ing judgment of a DM might also have the form: “I’m
willing to pay w3 for C3 in order to get w1 for C1. I’m
also willing to pay w3 for C3 in order to get w2 for
C2. However, I do not know what is better. ”



Suppose that we have a set of judgments such that
every judgment produces the gamble

Wkj = (0, ..., 0, wk, 0, ...,−wj , 0, ..., 0), (7)

such that Wkj Â 0r, k ∈ B0, j ∈ B1.

Now we can find the setM restricted by the desirabil-
ity of gambles Wkj or equivalently its extreme points.

Proposition 4 Given the additional information in
the form (7), the preference X Â Y is valid if the
condition

zk +
∑

j∈L

wk

wj
zj ≥ 0

is valid for all L ⊆ B1 and zi ≥ 0 for all i ∈ B0.

Proof. Denote vkj = wk/wj . It follows from (2) and
from (7) that the setM is produced by the constraints

vkjπk − πj ≥ 0, j ∈ B1,

πi ≥ 0, i ∈ N,

π1 + π2 + ... + πr = 1.

Case 1. vkjπk = πj , πi = 0, ∀i ∈ N\{k, j}. Then for
every j ∈ B1, we get the extreme points

πk =
1

1 + vkj
, πj =

vkj

1 + vkj
,

πi = 0, ∀i = N\{k, j}.

Case 2. vkj1πk = πj1 , vkj2πk = πj2 , πi = 0, ∀i ∈
N\{k, j1, j1}. Then for every pair j1, j2 ∈ B1, we get
the extreme points

πk =
1

1 + vkj1 + vkj2

, πj1 =
vkj1

1 + vkj1 + vkj2

,

πj2 =
vkj2

1 + vkj1 + vkj2

, πi = 0, ∀i = N\{k, j1, j2}.

By continuing the analysis of the cases, we write the
following last case.

Case r − t + 1. vkjiπk = πji , i = 1, ..., r − t, πl = 0,
∀l ∈ B0\{k}. Then we get the extreme points

πk =
1

1 +
∑r−t

i=1 vkji

,

πji =
vkji

1 +
∑r−t

i=1 vkji

, i = 1, ..., r − t,

πl = 0, ∀l ∈ B0\{k}.

The proof directly follows from the condition of desir-
ability of the gamble Z = X−Y , which is of the form:

EP (Z) ≥ 0, ∀P ∈ extr(M). Hence, for every subset
L ⊆ B1, we can write the expectations as follows:

EP (Z) =
zk

1 +
∑

i∈L vki
+

∑

j∈L

vkjzj

1 +
∑

i∈L vki
.

Since vkji
≥ 0 for all k, j, i, then EP (Z) ≥ 0 for every

extreme point if

zk +
∑

j∈L

vkjzj ≥ 0, L ⊆ B1,

as was to be proved.

We get the rather simple expressions for reducing the
Pareto set.

Generally speaking, the values wk in Proposition 4
may be different for different values of j ∈ L and
the index kj should be used. However, we assume
for simplicity that the parameters wk are identical for
every Wkj . Moreover, it can be seen from the proof
of Proposition 4 that the condition of the preference
X Â Y depends only on the ratio wk/wj and we can
always change wk and wj without changing the above
ratio.

Let us considers a special case when each of the sub-
sets B1 and B0 consists of one element.

Corollary 1 Suppose that B1 = {k} and B0 = {j}.
Then the preference X Â Y is valid if the conditions

wjzk + wkzj ≥ 0, zi ≥ 0, ∀i 6= j,

are valid.

One can see that the conditions in Corollary 1 coincide
with the conditions in Theorems 1 and 2.

Several conditions in Proposition 4 can be replaced
by one equivalent condition

zk + wk min
L⊆B1

∑

j∈L

zjw
−1
j ≥ 0. (8)

By using (8) and Propositions 2, 3 we can write the
following corollary.

Corollary 2 If there are judgments of one DM (l =
1, D1 = D) with the BPA m(Dl) = 1, then the prefer-
ence X Â Y is valid in accordance with the first global
criterion if the conditions

min
k∈D0

{zk + Twk} ≥ 0

are valid. Here

T = min
L⊆D1

∑

j∈L

zjw
−1
j .



Moreover, the belief function Bel (X − Y ∈ D) is 1 in
accordance with the second global criterion if the above
conditions are valid.

It also follows from the proof of Proposition 4 and
from (8) that the lower expectation of the gamble Z =
X − Y under conditions Wkj Â 0r, j ∈ D1

l , denoted
EM(k,D1

l )(Z) is of the form

EM(k,D1
l )(Z) = min

L⊆D1
l

EP (Z)

= min
L⊆D1

l

zk + wk

∑
j∈L zjw

−1
j

1 + wk

∑
i∈L w−1

i

. (9)

Then Propositions 2 and 3 can be used in the consid-
ered case of the elicited information if we replace (6)
by (9).

Example 2 Let us return to Example 1. The judg-
ment of the first DM is the following:

“I’m willing to pay w2 = 15000 for C2 in order to get
w1 = 15 for C1 and I’m willing to pay w4 = 7 for
C4 in order to get w1 = 15 for C1. I’m also willing
to pay w2 = 24000 for C2 in order to get w3 = 1 for
C3 and I’m willing to pay w4 = 10 for C4 in order to
get w3 = 1 for C3. However, I do not know what is
better. ”

The above judgment can be formalized as D1 =
{C1, C3} Â {C2, C4}. The judgment of the second
DM is the following:

“I’m willing to pay w3 = 6 for C3 in order to get
w1 = 30 for C1. I’m also willing to pay w3 = 8 for C3

in order to get w2 = 10000 for C4. I’m also willing
to pay w3 = 20 for C3 in order to get w4 = 1 for C4.
However, I do not know what is better. ”

This judgment can be formalized as D2 =
{C1, C2, C4} Â {C3}.
The BPA of the first DM is m(D1) = 0.6. The BPA
of the second DM is m(D2) = 0.4.

Let us find EM(k,D1
l )(X − Y ). If D1

1 = {2, 4} and
k = 1, 3, then it follows from (9) that

EM(1,D1
1) = min

(
z1,

z1 + 15z2/15000
1 + 15/15000

,

z1 + 15z4/7
1 + 15/7

,

z1 + 15z2/15000 + 15z4/7
1 + 15/15000 + 15/7

)
,

Table 1: Comparison of DA’s by using two criteria
X Â Y EPEP (X − Y ) Bel Pl
X1 Â X2 −1199 0.6 1
X1 Â X3 0.14 0.4 1
X1 Â X4 0.09 0.6 1
X2 Â X1 −10 0 0.4
X3 Â X1 −1614 0 0.6
X4 Â X1 −1614 0 0.6
X2 Â X3 −2.13 0 1
X2 Â X4 −5 0 0.4
X3 Â X2 −2810 0 0.6
X3 Â X4 −810.2 0 0.6

EM(3,D1
1) = min

(
z3,

z3 + 1z2/24000
1 + 1/24000

,

z3 + 1z4/10
1 + 1/10

,

z3 + 1z2/24000 + 1z4/10
1 + 1/24000 + 1/10

)
.

If D1
2 = {3} and k = 1, 2, 4, then it follows from (9)

that

EM(1,D1
2) = min

(
z1,

z1 + 30z3/6
1 + 30/6

)
,

EM(2,D1
2) = min

(
z2,

z2 + 10000z3/8
1 + 10000/8

)
,

EM(4,D1
2) = min

(
z4,

z4 + 1z3/20
1 + 1/20

)
.

The computation results with using Propositions 2
and 3 are shown in Table 1. It can be seen from
Table 1 that the reduced Pareto set in accordance
with the first criterion EPEP (X −Y ) > 0 of deci-
sion making consists of two DA’s X1 and X2 because
EPEP (X1 −X3) = 0.14 > 0 and EPEP (X1 −X4) =
0.09 > 0. However, by using the second criterion
of decision making with the “threshold” probabil-
ity 0.6 for the belief function, we can construct the
reduced Pareto set consisting of two DA’s X1 and X3.

6 Conclusion

A method for solving a MCDM problem with the
elicited information about criteria of a special form
has been proposed in the paper. The main feature
of the method is that it is based on reducing a set of
Pareto optimal solutions and does not use aggregation
of criteria for solving the problem. The additional in-
formation applied in the proposed method is rather
natural because DM’s or experts are usually able to
provide parameters wi and wj whose simple behavior



interpretation is considered in Section 3 and in Ex-
ample 2.

It has been shown in the paper that Noghin’s theory
of relative importance of criteria can be easy repre-
sented in terms of sets of desirable gambles and many
statements of the theory can be proved by means of
desirable gambles and the imprecise probability the-
ory.

Two global criteria of decision making are introduced.
The first criterion based on the lower expectation uses
the second-order models as a main tool for determin-
ing whether a preference X Â Y is valid or not. The
second criterion is based on determining the belief and
plausibility function in the framework of Dempster-
Shafer theory. It uses the so-called “threshold” prob-
ability for the final decision making.

One can see from the proposed expressions (6), (9)
and Propositions 2 and 3 that all the mathemati-
cal expressions are rather simple from the compu-
tation point of view and they do not require spe-
cial procedures for computing the lower expectation
EPEP (X − Y ) and the belief and plausibility func-
tions.

Some specialists in Dempster-Shafer theory might ob-
ject that the condition of independence of DM’s in
combining their judgments is not taken into account.
Of course, we could assume that the DM’s are in-
dependent and use, for instance, Dempster rule of
combination. However, the main aim of the paper
is to propose an approach for reducing the Pareto set
on the basis of the special information, in particular,
on judgments producing sets of gambles (7). Vari-
ous modifications and features of the approach can
be studied in further research.

It should be noted that the simple case has been stud-
ied in the paper when only judgments of the special
type are provided by DM’s. However, the proposed
approach can be extended on a more complicated
case. Therefore, a direction for further work is to
investigate the general cases.
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