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Abstract

A new framework is explored for combining imprecise
Bayesian methods with likelihood inference, and it is
presented in the context of reliability growth mod-
els. The main idea of the framework is to divide a
set of the model parameters of interest into two sub-
sets related to fundamentally different aspects of the
overall model, and to combine Walley’s idea of im-
precise Bayesian models related to one of the sub-
sets of the model parameters with maximum likeli-
hood estimation for the other subset. In accordance
with the first subset and statistical data, the impre-
cise Bayesian model is constructed, which provides
lower and upper predictive probability distributions
depending on the second subset of parameters. These
further parameters are then estimated by a maximum
likelihood method, based on a novel proposition for
maximum likelihood estimation over sets of distribu-
tions following from imprecise Bayesian models for the
other subset of parameters. Use of this hybrid method
is illustrated for reliability growth models and regres-
sion models, and some essential topics that need to be
addressed in order to fully justify and further develop
this framework are discussed.

Keywords. Bayesian inference, imprecise probabil-
ities, linear regression, lower and upper probability
distributions, maximum likelihood estimation, relia-
bility growth models

1 Introduction

One of the main goals of system analysis is to pre-
dict its future behaviour on the basis of past experi-
ence, for which one typically constructs a statistical
model to quantify uncertainties and to enable learn-
ing from data. There is a variety of statistical theo-
ries and methods for such inference, and researchers
often strongly advocate one specific general theory,
e.g. the Bayesian approach, whilst rejecting other ap-
proaches that also have their merits. In this paper we

explore combined use of imprecise Bayesian methods,
where sets of prior distributions are used, with maxi-
mum likelihood estimation, both on different subsets
of all parameters appearing in a statistical model. At
first look, these methods may appear to have little in
common and one may favour either a complete (im-
precise) Bayesian approach or maximum likelihood es-
timation of all parameters. However, if one considers
a Bayesian approach as using a weighted likelihood
function, with weights reflecting prior knowledge, the
two are less contradictory and exploration of the op-
portunity to combine both into a hybrid method can
be of interest. In this paper we set the first steps
in this direction, which include a crucial proposition
on maximum likelihood estimation for a subset of pa-
rameters following imprecise Bayesian inference on a
different subset of parameters. Detailed fundamen-
tal analysis and further exploration of this hybrid ap-
proach will be important for its full justification, in
particular with regard to possible interpretations of
the resulting inferences. We present our ideas in the
context of reliability growth models.

An important feature of many systems is growth or
change of some of their characteristics over time,
which has to be taken into account when construct-
ing a statistical model for the system. For example,
a common approach for measuring software reliabil-
ity [18] is by using a statistical model whose param-
eters are generally estimated from available data on
software failures, and the model may be obtained by
observing the overall trend of reliability growth dur-
ing the debugging process. In other words, a software
reliability growth model describes how observation of
failures, and correcting the underlying faults – such
as occurs in software development when the software
is being tested and debugged – affect the reliability of
software. The word “growth” is rather conventional
to describe reliability models with important charac-
teristics changing over time, it does not restrict use
of such models to systems whose reliability actually
improves. In other words, a growth model can be



regarded to be a mathematical expression which fits
experimental data from systems with some important
changes over time.

Suppose that X1, ..., Xn is a series of random vari-
ables, for instance, numbers of successful software
runs between the (i− 1)-th and i-th software failures.
We suppose that variable Xi is governed by a proba-
bility distribution function pi(x | b,d) depending on
two vectors of parameters b and d. The vector b con-
tains parameters of the probability distribution under
consideration. The vector d of parameters charac-
terizes the growth, i.e., the growth is modelled by a
function f(i,d) which characterizes the change of the
system behavior (‘growth’). For example in software
reliability analysis, the function f mainly shows how
parameters b of the probability distribution pi change
with the number of corrected errors or faults i. Gen-
erally, the vector b depends on d and the number i of
the random variable Xi under consideration.

It should be noted that the growth function in some
models is explicitly stated. For instance, Littlewood
and Verrall [8] suggest software reliability models with
linear and quadratic forms for the function f with
two parameters d = (d0, d1): f(i,d) = d0 + d1i or
f(i,d) = d0 +d1i

2. In these models, the growth func-
tion is included as parameter of a gamma distribution,
which changes with the number of corrected errors in
the software.

A similar feature occurs in regression models [9],
which in their simplest form provide a relation be-
tween predictor variables Xi, i = 1, ..., n, and a re-
sponse variable Y . A typical regression model can be
written as

Y = f(X,d) + ε.

Here X = (1, X1, ..., Xn); d is the vector of parame-
ters; ε are uncorrelated random errors or noise, usu-
ally assumed to have expected value 0 and unknown
variance σ2. In such a model, d can be a set of growth
parameters, for instance, coefficients in a linear re-
gression model, while setting b = (σ2) fits with the
generic notation suggested above.

Clearly, the growth function f may model different
characteristics. In software reliability models, it typi-
cally enables possible changes of the parameters b of
the probability distribution of random variables Xi

to reflect actual changes to software systems, mostly
due to error corrections. In regression models, the pa-
rameter b = (σ2) is assumed to be constant, but the
growth function characterizes the system behaviour.
Nevertheless, both types of models are equivalent
from mathematical point of view1. In both the cases,

1The software reliability growth models in the literature are
often called regression models due to some common features of

we assume a form of f and wish to learn about the
parameters d of f from data.

There are several approaches for inference about
growth models on the basis of statistical data. Nowa-
days, the most popular inferential methods tend to
use the likelihood function as main mechanism to link
model parameters and statistical data. For models
such as reliability growth models, estimation is re-
quired both for parameters of the basic probability
model and parameters explicitly modelling the growth
behaviour. This may involve a substantial number of
parameters, with possibly relatively few data avail-
able. In this paper, we explore a possible way for
dealing with this, by considering imprecise Bayesian
inference for one subset of parameters, and a maxi-
mum likelihood approach to estimate the other sub-
set of parameters. Such imprecise Bayesian inference
has been presented, without a link to maximum like-
lihood for further parameters, by Walter, Augustin
and Peters [17] with application to linear regression
models. Typically, a precise parametric model is as-
sumed, with imprecision following through the use of
sets of conjugated priors [1, 11, 16]. It is theoretically
feasible to use sets of priors for all parameters com-
bined, but this may well lead to very wide posterior
intervals for inferences of interest, and if one can esti-
mate some of the parameters by means of maximum
likelihood methods, it could be also be attractive with
regard to not needing to attempt to assign informa-
tive (sets of) prior distributions, in particular if they
are on a feature about which no clear expert judge-
ment is available or which one strongly wishes to infer
from the data.

The approach we propose in this paper is as follows.
By using imprecise Bayesian inference, we can exclude
all the parameters of the vector b from the model, and
derive a set of predictive cumulative distribution func-
tions (CDFs) such that their lower and upper bounds
are conditional on all the parameters of the vector d.
This is followed by estimation of the parameters of
the vector d, for which we use a modified maximum
likelihood estimation method described and justified
in Section 3. This approach allows us to reduce the
number of parameters in the model and to maximize
the likelihood function only over parameters of the
vector d without considering the parameters of vec-
tor b. Even further, it can be applied if one explicitly
wishes to take expert judgement into account on the
part of the model corresponding to parameters b, and
this expert judgement is best reflected by imprecise
probabilities, while no such prior information is avail-
able for the model aspects related to parameters d,
for which, however, one can use process data.

the models.



To simplify the presentation of the proposed ap-
proach, we study discrete random variables Xi corre-
sponding to the number of successful software runs be-
tween the (i−1)-th and i-th software failures (for the
first software reliability growth model, Section 6) or to
the random number of failures between ti−1 and ti (for
the second software reliability growth model, Section
7), i = 1, ..., n. A general scheme for such combined
inference for regression models will be briefly consid-
ered in Section 8, to demonstrate that the proposed
framework can be applied to various problems.

2 The likelihood principle for
constructing standard models

Let K = (k1, ..., kn) be a realization of X1, ..., Xn,
with ki non-negative integers. If probability distri-
butions pi(ki | b,d) of the random variables Xi,
i = 1, ..., n, are known or assumed, then the stan-
dard way for obtaining the parameters b and d of a
growth model is to maximize the likelihood function

L(K | b,d) =
n∏

i=1

pi(ki | b,d)

over a set of parameters b and d. Values of the pa-
rameters b and d should be chosen in such a way that
makes L(K | b,d) achieve its maximum.

Many well-known software reliability growth models
presented in the literature have been implemented
with such standard maximum likelihood estimation.
Such models differ only by assumptions about the
probability distributions pi and the growth function
f . For example, pi in the Jelinski-Moranda model
[6] is exponential, the Rayleigh distribution is used in
the Schick-Wolverton model [13], and the Littlewood-
Verrall model [8] uses a Beta distribution.

3 Maximization of the likelihood
function over a set of distributions

Suppose that the random variable Xi is governed by
an unknown CDF Fi(k) which is only known to be-
long to the set Mi(d) defined by the lower and upper
CDFs

F i(k | d) = inf
Mi(d)

F (k), (1)

F i(k | d) = sup
Mi(d)

F (k). (2)

It should be noted that the set Mi(d) is the set of
all CDFs bounded by F i(k | d) and F i(k | d), so it
is not the set of parametric distributions having the
same parametric form as the bounding distributions.

This is an important feature of the proposed approach
for combined imprecise Bayesian and likelihood infer-
ence in this paper. Moreover, the bounds F i(k | d)
and F i(k | d) are assumed not to depend on the pa-
rameters b, which is achieved by taking the predictive
CDFs resulting from the imprecise Bayesian approach
applied with regard to the parameters b.

The likelihood function can be written in the following
form:

L(K | d) = Pr {X1 = k1, ..., Xn = kn} .

Proposition 1 explains how the above likelihood func-
tion is maximized over all distributions belonging to
M1(d), ...,Mn(d).

Proposition 1 Suppose that discrete random vari-
ables X1, ..., Xn are governed by a probability distri-
bution F (k) from sets Mi defined by bounds (1)-(2),
respectively. If X1, ..., Xn are independent, then there
holds

max
M1,...,Mn

Pr {X1 = k1, ..., Xn = kn}

=
n∏

i=1

{
F i(ki)− F i(ki − 1)

}
. (3)

Proof. Denote N = {1, 2, ..., n}, M = (m1, ..., mn).
Let I{1,...,ki}(m) be the indicator function taking the
value 1 if m ≤ ki. The indicator functions are used
in the proof to represent all probabilities as expecta-
tions of indicator functions, and to write the natural
extension in its standard form. The upper bound for
the joint probability Pr {X1 = k1, ..., Xn = kn} can be
found by solving the following optimization problem:

max
∞∑

m1=1

· · ·
∞∑

mn=1

I{k1,...,kn}(M)
n∏

i=1

pi(mi),

subject to
∞∑

m=1

pi(m) = 1,

F i(j) ≤
∞∑

m=1

I{1,...,j}(m)pi(m) ≤ F i(j),

i = 1, ..., n, j = 1, 2...

The objective function can be rewritten as follows:

n∏

i=1

∞∑
mi=1

(
I{1,..,ki}(mi)− I{1,..,ki−1}(mi)pi(mi)

)
.

Introduce new variables

Fi(j) =
∞∑

mi=1

I{1,...,j}(mi)pi(mi).



Then we can rewrite the optimization problem as

max
n∏

i=1

{Fi(j)− Fi(j − 1)} ,

subject to
F i(j) ≤ Fi(j) ≤ F i(j),

F i(j − 1) ≤ Fi(j − 1) ≤ F i(j − 1), i = 1, ..., n.

By using the known rules of interval analysis, we ob-
tain (3), which completes the proof.

Proposition 1 generalizes the standard likelihood es-
timation for precise probability models.

4 Imprecise Bayesian models as a
way for obtaining the set M

We now consider how to derive the set M(d). A
straightforward way is to use ideas similar to Walley’s
imprecise Bayesian approach [16].

4.1 Standard Bayesian analysis

One of the efficient approaches to estimation of the
model parameters is Bayesian analysis [2, 4, 12]. It
treats parameters of concern as random variables
which are assigned a prior probability distribution be-
fore observations become available. If we assume that
the random variable has a probability distribution
with vector of unknown parameters b, then these pa-
rameters would be regarded as random variables with
a prior probability density π(b | c), characterized by
(hyper-)parameters c. In this case, the Bayesian ap-
proach can be applied for computing the CDF for the
random variable of interest, with the parameter b in-
tegrated out:

F (k | c) =
∫

Ω

F (k | b) · π(b | c)db.

Here Ω is the set of values of b.

Central to the Bayesian approach is the derivation
of the posterior distribution of the unknown parame-
ters, given both the data and the assumed prior den-
sity for these parameters, and achieved by application
of Bayes’ theorem. Suppose that the prior distribu-
tion π(b | c) represents our uncertainty with regard
to b prior to collecting information in the form of a
set K = (k1, ..., kn) of observed values of independent
random variables X1, ..., Xn. Let p(k) be the prob-
ability mass function for the observed data k given
b. Then the posterior distribution π(b | K, c) as the
conditional distribution of b given the observed data
K and prior parameters c is computed as

π(b | K, c) ∝ p(k1) · · · p(kn) · π(b | c).

Here π(b | K, c) represents updated beliefs about b,
with information K taken into account.

The prior distribution is often chosen to facilitate
calculation of the prior, especially through the use
of conjugate priors [2]. If the posterior distribution
π(b | K, c) and the prior distribution π(b | c) both
belong to the same family of distributions, the π and
p are called conjugate distributions and π is called a
conjugate prior for p.

4.2 Imprecise prior models

A critical feature of any Bayesian analysis is the
choice of a prior distribution, which is often done
by considering the choice of (hyper-)parameters of
an assumed parametric prior probability distribu-
tion. This is both important if one aims at mod-
elling prior information and if one aims to choose a
prior distribution in order to reflect the absence of
prior information about the parameters. In this pa-
per we focus on the latter case, where a so-called
non-informative prior has to be constructed. Many
criteria for non-informativeness, and methods to de-
termine non-informative priors, have been proposed in
the literature [2, 12], with many methods applying the
Bayes-Laplace postulate or the principle of insufficient
reason. However, this choice meets some difficulties or
problems. In particular, Walley [16] provides exam-
ples illustrating possible problems and shortcomings
of the principle of insufficient reason. Syversveen [14]
presents a detailed review of methods for constructing
non-informative priors.

An alternative way for using the Bayesian approach if
one wishes not to take prior knowledge into account
is through the use of a class P of (non-informative)
prior distributions π [15], which can overcome most
problems that can occur when single non-informative
priors are used. Such a class of priors can be consid-
ered through the lower P and upper P probabilities
of an event A as

P (A) = sup{Pπ(A) : π ∈ P},
P (A) = inf{Pπ(A) : π ∈ P}.

As pointed out by Syversveen [14] and Walley [16],
the class P under some conditions is “not a class of
reasonable priors, but a reasonable class of priors”.
This means that each single member of the class is
not a reasonable model for prior ignorance, because
no single distribution can model ignorance satisfacto-
rily, but the whole class is a reasonable model for prior
ignorance. When we have little prior information,
the upper probability of a non-trivial event should
be close to one and the lower probability should be



close to zero. This means that the prior probability
of the event may be arbitrary from 0 to 1.

Quaeghebeur and de Cooman [11] proposed a class
of imprecise probability models in the framework of
the so-called exponential families of probability dis-
tributions [2]. These models significantly extend a
set of Bayesian imprecise models and give a possi-
bility to develop a framework for imprecise growth
models. In our approach, the set P is used in the im-
precise Bayesian framework to take data into account
with regard to parameters b, and thus to generate the
set M of predictive distributions with lower and up-
per bounds which allow us to apply Proposition 1 for
maximum likelihood estimation of the parameters d.

5 A general scheme of the model
construction

We now present a general scheme for our proposed
method that combines imprecise Bayesian inference
and maximum likelihood estimation. We present it
using the setting of reliability growth models dis-
cussed earlier in this paper, but the general idea is
more widely applicable. The first task is to define the
sets M1(d), ...,Mn(d) or their bounds by using an
appropriate imprecise Bayesian model. It consists of
four steps.

1. We divide the set of parameters into two subsets.
The first subset contains the parameters b of the
assumed probability distribution p of the random
variables X1, ..., Xn. The second subset consists
of the growth parameters d.

2. For the assumed probability distribution p of the
random variables, we choose an appropriate type
of the conjugate prior π(b | c) with parameters
c.

3. We construct the corresponding Bayesian impre-
cise model on the basis of results of Walley [16] or
Quaeghebeur and de Cooman [11]. At that point
we replace the parameters c by new parameters
including the hyperparameter s (see [11, 16] and
examples below). The produced set P depends
on the hyperparameter s.

4. By using n observations k1, ..., kn, we write the
lower F i(k | d, s) and upper F i(k | d, s) pre-
dictive CDFs as functions of the parameters
d and the hyperparameter s for every debug-
ging period. These functions form the sets2

M1(d), ...,Mn(d).
2It should be noted that the set Mi(d) also depends on the

hyperparameter s. However, we omit this parameter for shorter
notation.

After completing the four steps of the first task, the
sets M1(d), ...,Mn(d) have been derived and these
sets do not depend on the parameters b or c. They
depend only on the growth parameters d, the hyper-
parameter s for the imprecise prior class, and the
number of debugging periods i. The second task is
to estimate the parameters d, it consists of two steps.

1. The likelihood function L(K | d, s) is derived by
applying Proposition 1.

2. Values of the parameters d for a fixed s should
be chosen in such a way that makes L(K | d, s)
achieve its maximum.

Note that the parameters b do not appear in the pro-
cess, as they have been integrated out with the use
of a class of priors to derive predictive distributions,
and this process also implicitly replaced the param-
eters c by s. Clearly, the step to get b out of the
model, without explicitly estimating their values, is
imprecise and leads to predictive imprecise probabili-
ties for the random variables of interest. For example,
if we construct a software reliability model, then we
are looking for the predictive behavior of the analyzed
software after n corrections of errors. In other words,
we have to compute the probability measures of time
to the (n + 1)-th failure, in particular, the lower and
upper probability distributions of time to the (n+1)-
th failure. These bounds are totally determined by
the parameters d and s in our approach, with s cho-
sen to specify the class of priors, and d to be estimated
by our proposed maximum likelihood approach in the
second stage of our method.

In the following sections, we illustrate our method
by considering some special cases which apply known
imprecise Bayesian models and consider well-known
software reliability growth models.

6 A software run reliability growth
model

The detailed description of software run reliability
models is given in [3]. A run is a minimum execu-
tion unit of software. Any software execution process
can be divided into a series of runs. When a run is
executed, the software either passes or fails. Usually
it is assumed that after observing a software failure,
the software is corrected and it is usually assumed
that this action actually removes the software error
that caused the failure, hence the software improves
due to this action and therefore the term reliability
growth tends to be used. There are many variations
to this basic scenario in the software reliability liter-
ature, we do not address these here.



Let X be a run lifetime of software, that is, X is
a discrete random variable taking the value k if the
software fails during the k-th run after k−1 successful
runs. The run lifetime distribution (probability mass
function) is defined as p(k) = Pr{X = k}.

6.1 The imprecise beta-geometric model

If we assume that the random variable X is governed
by the geometric distribution with parameter r and
the probability mass function

p(k | r) = (1− r)k−1r, k = 1, 2, ...,

then the set M can be constructed by using an im-
precise model that is very similar to the beta-binomial
model proposed by Walley [16]. The prior Beta distri-
bution of the random variable r, denoted Beta(α, β)
with parameters α > 0 and β > 0, has probability
density function

π(r) =
1

B(α, β)
rα−1(1− r)β−1, 0 ≤ r ≤ 1.

Here B(α, β) is the standard beta function.

Using the general notation introduced before in this
paper for our new method, we write b = (r), c =
(α, β). If we observe k runs of software between the
(i − 1)-th and i-th software failures, and we assume
that the number of such runs is geometrically dis-
tributed with parameter r, then the posterior distri-
bution π(r | k, c) is again a beta distribution, namely

π(r | k, c) = Beta(α + 1, β + k).

Here Bayesian analysis leads to the probability dis-
tribution of the number of events with parameters
α and β. We can call this a beta-geometric model.
In the beta-binomial model, Walley proposed to re-
place these parameters by introducing s and γ, with
α = sγ and β = s − sγ, and then the parameter γ
is allowed to take on any value in the interval from
0 to 1, hence a set of prior distributions is created
which only depends on the choice of s > 0, and which
trivially leads to a corresponding set of posterior dis-
tributions. The hyperparameter s determines the in-
fluence of the prior distribution on posterior probabili-
ties [16]. The beta-geometric model proposed here can
be given exactly the same imprecise Bayesian treat-
ment, resulting in what we call the imprecise beta-
geometric model. The lower and upper bounds can
be obtained by minimizing and maximizing the prob-
abilities of events over all values γ in [0, 1].

6.2 The imprecise beta-geometric growth
model

Suppose that the probability r = ri is a random vari-
able having a beta distribution with prior parameters
α and β + f(i, ϕ). Here f(i, ϕ) is a function charac-
terizing the software reliability growth, in particular,
assume for simplicity that f(i, ϕ) = (i−1) ·ϕ. In this
case, we get a model with three parameters, includ-
ing two prior parameters α and β of the probability
distribution and one parameter ϕ which characterises
the reliability growth. The notation introduced above
can be used by defining c = (α, β) and d = (ϕ).

The construction of the model is based on the idea
of dividing the set of parameters α, β, ϕ into two
subsets and to consider the imprecise Bayesian model
on the set Mi(ϕ) of CDFs bounded by some lower
F i(k | ϕ, α, β) and upper F i(k | ϕ, α, β) CDFs which
are defined by the set of parameters c = (α, β) for a
fixed parameter ϕ, for i = 1, ..., n. In other words,
we fix ϕ and construct the sets of CDFs Fi(k) with
bounds depending on f(i, ϕ) by using the imprecise
beta-geometric model.

After constructing the set Mi(ϕ) of CDFs Fi(k | ϕ)
having the lower F i(k | ϕ, α, β) and upper F i(k |
ϕ, α, β) CDFs for every i = 1, ..., n, and by assuming
that the random variables X1, ..., Xn are independent,
the likelihood function can be written and maximized
by application of Proposition 1, leading to the value
ϕ0 that maximises this likelihood, so which we con-
sider an appropriate estimate of ϕ.

Denote the parameters of the i-th posterior beta dis-
tribution after n observations

α∗ = α + n− 1, β∗i = β + Di(ϕ),

where

Di(ϕ) = Kn + f(i, ϕ), Kn =
n−1∑

j=1

(kj − 1).

We have to draw attention that the prior parame-
ter β for the i-th posterior beta distribution is β∗i =
β + f(i, ϕ). In addition, we get Kn runs of the soft-
ware during n periods of observations. This implies
that the posterior parameter β∗i for i-th period of de-
bugging is defined by n periods of observations. This
is a very important feature and that is why we use
index i for the posterior parameter β∗.

It can be also seen from the above that the posterior
parameters depend on d. In the considered special
case, β∗ depends on f(i, ϕ).

Now we can write the predictive CDF for the i-th
step of the software debugging after n observations as



follows:

Fi(k | ϕ, α, β) =
∫ 1

0

(1− (1− p)k) · Beta(α∗, β∗i )dp

= 1− B(α∗ + β∗i , k)
B(β∗i , k)

.

By using the introduced notation α = sγ, β = s− sγ,
we write

Fi(k | ϕ, γ, s) = 1− B(s + n− 1 + Di(ϕ), k)
B(s− sγ + Di(ϕ), k)

.

The function Fi(k | ϕ, γ, s) increases as γ increases in
the interval [0, 1], because the beta function B(x, y) is
decreasing in x for x > 0. This implies that the lower
bound for Mi(ϕ) is determined as

F i(k | ϕ, s) = sup
γ∈(0,1)

Fi(k | ϕ, γ, s)

= 1− B(s + n− 1 + Di(ϕ), k)
B(s + Di(ϕ), k)

.

The upper bound is determined as

F i(k | ϕ, s) = inf
γ∈(0,1)

Fi(k | ϕ, γ, s)

= 1− B(s + n− 1 + Di(ϕ), k)
B(Di(ϕ), k)

.

By having the lower and upper CDFs, it follows from
Proposition 1 that the likelihood function maximized
over Mi(ϕ) by given s and ϕ is of the form:

max
M(ϕ)

L(K | ϕ, s)

=
n∏

i=1

(
F i(ki | ϕ, s)− F i(ki − 1 | ϕ, s)

)

=
n∏

i=1

(
B(Ci, ki − 1)

B(s + Di(ϕ), ki − 1)
− B(Ci, ki)

B(Di(ϕ), ki)

)
.

Here Ci = s + n− 1 + Di(ϕ).

The parameter ϕ should be chosen in such a way that
makes ln L(K | ϕ, s) achieve its maximum. The opti-
mal value ϕ0 of ϕ can be found by numerically solving
the equation ∂ ln L(K | ϕ, s)/∂ϕ = 0. Once we have
calculated the estimate of the parameter ϕ, we can de-
rive the lower and upper software run failure functions
after the n-th software failure, i.e., we can compute
the lower and upper CDFs of the (n + 1)-th failure

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)
B(s + Dn+1(ϕ0), k)

,

Fn+1(k, s) = 1− B(s + n + Dn+1(ϕ0), k)
B(Dn+1(ϕ0), k)

.

7 NHPP software reliability models

One of the important frameworks for developing soft-
ware reliability models dealing with numbers N(t) of
software failures occurring up to a certain time period
t is the non-homogeneous Poisson process (NHPP).
Let Xi = N(ti) − N(ti−1) be the random number
of failures between ti−1 and ti. For any time points
0 < t1 < t2 < ... (for ease of notation, let t0 = 0), the
probability that the number of failures between ti−1

and ti is k, k = 0, 1, 2, ..., can be written as

Pr {N(ti)−N(ti−1) = k}

=
{m(ti)−m(ti−1)}k

k!
e{−(m(ti)−m(ti−1))}. (4)

Here m(t) is the mean number of failures occurring
up to time t. The NHPP models differ through the
function m(t), popular examples of which for soft-
ware reliability models are m(t) = a(1 − exp(−bt))
(Goel-Okumoto model [5]) and m(t) = a ln(1 + bt)
(Musa-Okumoto model [10]). Our goal is to estimate
the parameters a and b for such a model, based on
statistical data consisting of numbers of failures ki

per subintervals (ti−1, ti], i = 1, ..., n. As before, we
denote these data by the vector K = (k1, ..., kn).

7.1 The imprecise negative binomial model

When the number of failures has a Poisson distribu-
tion with the parameter λ, gamma distributions are
conjugate priors, denoted by Gamma(α, β). If we ob-
served K failures during a period of time T , then
the posterior distribution is Gamma(α∗, β∗), where
α∗ = α + K and β∗ = β + T . Hence, the predictive
probability of k failures during time t under condition
that K failures were observed during time T is [2]

P (k) =
∫ ∞

0

(λt)ke−λt

k!
Gamma(α∗, β∗)dλ

=
Γ(α∗ + k)
Γ(α∗)k!

(
β∗

β∗ + t

)α∗ (
t

β∗ + t

)k

. (5)

Here Γ(α) is the standard gamma function.

7.2 The imprecise negative binomial growth
model

A wide range of suitable mean value functions can be
represented in the form m(t; a, b) = a ·τ(t, b). The pa-
rameter λ of the Poisson distribution in (5) and the
argument t can be replaced by the parameter a and
the discrete time τ(ti, b) − τ(ti−1, b), respectively. In
fact, by replacing λ by a, we get the Poisson process
with a scaled time of the software testing, i.e., ev-
ery time interval [ti−1, ti] is replaced by the interval



[τ(ti−1, b), τ(ti, b)]. Then we can write the predictive
CDF of the number of failures in the time interval be-
tween ti and t (t ∈ [ti, ti+1]) after n observation peri-
ods through the regularized incomplete Beta-function
[7] as follows:

Fi(k, t|c, b) = 1− Bq(i,t)(k + 1, α + Kn)
B(k + 1, α + Kn)

= 1− I (q(i, t), k + 1, α + Kn) .

Here t0 = 0, k0 = 0,

q(i, t) =
Ti(t, b)

β + τ(tn, b) + Ti(t, b)
,

Ti(t, b) = τ(t, b)− τ(ti, b), Kn =
n∑

j=1

kj ,

Bq(k + 1, r) is the incomplete Beta-function with
I (q, k, r) the regularized incomplete Beta-function.

We must select a bounded set for the vector (α, β),
in order to avoid ending up with vacuous posterior
predictive distributions. In analogy with imprecise
prior classes described above, we want this set to
be described by a single hyper-parameter s, and we
choose all vectors (α, β) within the triangle (0, 0),
(s, 0), (0, s). This implies that all possible prior ‘rates
of occurrence of failures’ are represented, as the prior
allows interpretation of α/β = γ as this rate, hence
this would include all such rates in (0,∞). This prior
set, and related inferences, is of course similar in na-
ture to the work by Quaeghebeur and de Cooman [11],
yet it is slightly different. This prior set leads to the
lower and upper bounds for Mi(b) by t ∈ [ti, ti+1]

F i(k, t | s, b) = 1

− I

(
Ti(t, b)

τ(tn, b) + Ti(t, b)
, k + 1, s + Kn

)
,

F i(k, t | s, b) = 1

− I

(
Ti(t, b)

s + τ(tn, b) + Ti(t, b)
, k + 1, Kn

)
.

The next step is to use Proposition 1 and to maximize
the likelihood function over the set of b

L(K|b, s) =
n∏

i=1

(
F i(ki, ti | s, b)− F i(ki − 1, ti | s, b)

)
.

Once we have the maximum likelihood estimator, fol-
lowing Proposition 1, of the parameter b, we can con-
struct the lower and upper bounds for the CDF of
the number of failures in time interval [tn, t] after n
periods of debugging.

8 Regression model (general scheme)

We briefly explain how the combined imprecise Bayes
and likelihood approach, proposed in this paper, can
be applied to basic regression problems. Suppose that
we have n+1 variables Y and Xj , j = 1, ..., n, with Y
being a dependent variable and {X1, ..., Xn} being n
independent predictor variables, related to Y accord-
ing to the relation Y = f(X1, ..., Xn). The standard
linear regression model3 is a special case and can be
written as

Y = Xd + ε.

Here X = (1, X1, ..., Xn); d = (d0, ..., dn)T is the vec-
tor of parameters; ε are random errors or noise having
zero mean and the unknown variance σ2.

To fit with the presentation in this paper, we assume
that ε is a discrete variable4. Let us construct the im-
precise Bayesian model for ε. If ε is governed by some
probability distribution p(z | σ) and there is the cor-
responding conjugate distribution π(σ | c), then we
can find the predictive CDF Fn(z | s, γ) after having
n observations (y1,x1), ..., (yn,xn) depending on new
parameters s, γ [11] and its bounds F (z | s), F (z | s).
Denote zi = yi − xid and Z = (z1, ..., zn). Having
derived the lower and upper CDFs, it follows from
Proposition 1 that the likelihood function that is to
be maximized over M, with given s, is of the form:

max
M

L(Z | s) =
n∏

i=1

(
F (zi | s)− F (zi − 1 | s)) .

Denote zi = yi − xid. Hence

max
M

L(Z | s)

=
n∏

i=1

(
F (yi − xid | s)− F (yi − xid− 1 | s)) .

Now we can find parameters d by maximizing the
obtained likelihood function.

In the regression model, we again separate the pa-
rameters of the probability distribution of ε and the
parameters d. However, in contrast to the software
reliability models, the parameters c directly do not
change with the growth parameters d (see the pa-
rameter β∗ and the function f(i) in Subsection 6.2
for comparison). Moreover, the set M and its bounds
do not depend on the parameters d. This allows us
to avoid the index i and to consider identical sets M.
Nevertheless, the general approach for modelling and
inference is the same as described in this paper.

3The more general model Y = f(X,d) + ε which can be
analyzed in the same way.

4See Section 9 for comments relevant to the more usual case
with continuous ε



9 Concluding remarks

In this paper we have proposed a way towards devel-
opment of statistical methods that combine imprecise
Bayesian inference for one subset of all parameters
with maximum likelihood estimation for the other pa-
rameters. The key to this approach is Proposition
1, which provides a generalization of maximum likeli-
hood estimation for discrete variables with sets of dis-
tributions. There are many important research ques-
tions that need answering, in particular with regard to
the interpretations of these inferences and their appli-
cation to large scale problems. We particularly see a
benefit in models with differing features related to dif-
ferent parameters, for example the reliability growth
models discussed in some detail and used to present
and illustrate the novel approach in this paper, where
some parameters are specifically used to model the
growth aspect. It should also be studied in which sit-
uations this approach is most valuable. For example,
it may well be most suitable in situations where one
has significant prior knowledge on some parameters,
yet does not feel confident enough to assign precise
prior distributions to them, whereas on another as-
pect of the model one has no prior knowledge and
explicitly wishes only to estimate those parameters
using the data. Some statisticians might object if the
same data set is used for related inference in two dif-
ferent stages, feeling that the same data might be used
twice. This would be wrong, as the parameters esti-
mated at the different stages play different roles, and
hence estimates are based on different aspects of the
information within the total data set available.

We presented the main idea of the new framework
in this paper as an extension of the known impre-
cise Bayesian models [11, 16] to situations where the
process considered has some changeable behaviour,
which we also wish to estimate using the data. In line
with most reported developments in such imprecise
Bayesian models, we presented it from the perspective
of a non-informative prior set of distributions, but it
may indeed well be more useful to apply this combined
method with an informative prior set of distributions.
When such sets are also defined using conjugate pri-
ors in the same way as for these non-informative prior
sets, that is done in a straightforward manner which
we will discuss and explore further elsewhere. We
chose to focus our presentation on software reliabil-
ity growth models, as these typically have clear di-
visions of the parameters according to the different
roles, which we consider very suitable for the method
proposed. As indicated, the general approach might
also provide a promising method for imprecise regres-
sion models.

We have stated in Section 3 that the set Mi(d) is the
set of all CDFs bounded by F i and F i. One could
also consider the use of only a set of parametric dis-
tributions, all with the same parametric form as the
bounding distributions. However, following this ap-
proach, maximization of the likelihood function over
a set of distributions with parameters c derived in
Section 3 is reduced to its maximization over a set of
parameters c. In this case, we get the standard statis-
tical model completely based on the maximum like-
lihood estimation, which does not differ from many
well-known models of software reliability and regres-
sion models.

Due to limited size of this paper, we did not illustrate
the proposed models by data examples, such exam-
ples will be included in specific topic oriented presen-
tations elsewhere, where we also compare these infer-
ences to other inferences including full Bayesian and
full likelihood approaches. Nevertheless, we wish to
point out that initial indications from computational
examples suggest that this new combined method per-
forms well, also so if there are relatively few data, but
further study is required in order to draw general con-
clusions.

We did not consider continuous random variables, but
of course this case is very important. However, Propo-
sition 1 can be extended on the continuous case, so it
looks like the method can also be applied for contin-
uous random variables X1, ..., Xn. In this case, the
likelihood function can be written as

L(X) = lim
41→0,...,4n→0

Pr {x1 ≤ X1 ≤ x1 +41, .., xn ≤ Xn ≤ xn +4n}
41 · · · 4n

,

and this suggests that maximum likelihood estimates
for the parameters can be derived by maximizing

max
M1,...,Mn

L(X) =
n∏

i=1

(
F i(xi)− F i(xi)

)
δ(xi). (6)

Here δ(xi) is Dirac function which has unit area con-
centrated in the immediate vicinity of points xi. The
likelihood function achieves its maximum by taking
the probability density functions such that ρi(xi) =(
F i(xi)− F i(xi)

)
δ(xi). However, whether or not

condition (6) is fully correct is yet to be established,
which is an important topic for further research.

The continuous case would enable many application
models. For example, it would enable our combined
method to be applied to regression models with the
common assumption that the random variable ε is
normally distributed, N (0, σ2), where a gamma distri-
bution Gamma(α, β) can be used as conjugate prior



for 1/σ2. Hence, the predictive probability density
function after having n observations is of the form:

p(z|s, γ) =
1√
π

Γ
(

s+k+3
2

)

Γ
(

s+k+2
2

) (sγ + τk)
s+k+2

2

(sγ + τk + z2)
s+k+3

2

,

where

τk =
k∑

j=1

z2
j =

k∑

j=1

(yi − f(Xi,d))2 .

By using the imprecise Bayesian normal model [11],
we can then construct the imprecise regression model
combining imprecise Bayesian inference with maxi-
mum likelihood estimation as briefly discussed in Sec-
tion 8 where only discrete random variables were used
in line with the general presentation in this paper. So,
establishing the detailed and fully justified generaliza-
tion of the approach in this paper to continuous ran-
dom variables is very important, and we are hopeful
to report on this in the near future.
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