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Abstract

Several authors have presented methods for consider-
ing the behaviour of Markov chains in the generalised
setting of imprecise probability. Some assume a con-
stant transition matrix which is not known precisely,
instead bounds are given for each element. Others
consider a transition matrix which is neither known
precisely nor assumed to be constant, though each
element is known to exist within intervals that are
constant over time. In both cases results have been
published regarding the long-term behaviour of such
chains. When a finite Markov chain is considered with
a single absorbing state, however, eventual absorption
is generally certain in both cases. Thus it is of inter-
est to consider the long-term behaviour of the chain,
conditioned on non-absorption, within the setting of
imprecise probability. Methods have previously been
presented for the case of a constant transition matrix,
and submitted for the case of a non-constant transi-
tion matrix. In this paper the methods for the two
cases are compared.

Keywords. Absorbing state, imprecise probability,
Markov chains, time-inhomogeneity

1 Introduction

There are several papers in which the theory of in-
terval probability has been applied to the considera-
tion of Markov chains. Kozine and Utkin [10] con-
sider the situation in which the individual elements
of the transition matrix are assumed to be constant
over time, but may not be known precisely (thus that
paper can be thought of as generalising the time-
homogeneous case). Instead, all that is known are
the intervals in which each individual matrix element
is contained. This property can be relaxed, as it was
by Škulj [13, 14], by only requiring that the intervals
to which those elements belong remain constant over
time, and allowing the elements to vary with time
(thus those papers can be thought of as generalising

the time-inhomogeneous case). In those same papers
the concept of the initial distribution is also gener-
alised, so that rather than assume a specific initial
distribution, an entire set of possible initial distri-
butions is defined. The papers then considered the
long-term behaviour of such chains, and proved that,
subject to certain conditions, the possible distribu-
tions as time approaches infinity form a set that is
independent of the set of initial distributions. An al-
ternate method for considering the situation found in
[13, 14] was offered by de Cooman et al. in [3]; we
explain in Section 3 why we have not adopted their
method in this paper.

It can be proved that for a finite Markov chain with
one absorbing state eventual absorption is certain
both in the case given by Kozine and Utkin [10], and
also the case found in [14], assuming the conditions
required in that paper (the respective proofs for these
results can be found in Crossman et al. [4, 5]). In this
situation, then, it is of more interest to consider the
long-term behaviour of the chain when conditioning
on non-absorption at each step.

What follows can be thought of as a generalisation
of the limiting conditional distribution in the pre-
cise case. The limiting conditional distribution, if
used as the initial distribution, is referred to as the
quasi-stationary distribution (QSD). The QSD has
many applications. For example, it is used by Pakes
[11] to better understand population sizes, which are
modelled in that paper as birth-death processes with
catastrophes. In this case the QSD represents the
long-term behaviour of a stable population, before the
point at which it becomes extinct. Further, Parsons
and Pollet [12] apply QSDs to describe the long-term
behaviour of certain catalytic chemical reactions.

Crossman et al. [4] considered the long-term be-
haviour conditioned on non-absorption for the model
given in [10], and the consideration of sets of initial
distributions is introduced as in [13]. Crossman and
Škulj [5] then applied this consideration to the model



given in [13], though the restrictions upon each row
of the transition matrix is given as a closed probabil-
ity set, rather than a group of intervals. In this paper
the method found in [4] is similarly expanded to using
closed probability sets (more on this can be found in
Crossman [6]), and the two different approaches are
compared.

1.1 Markov chains with imprecision

The following model is given in a slightly different
form by Škulj [13]. Let X = {X(n), n = 0, . . .}
be a discrete-time Markov chain on the state space
S = {−1} ∪ C with C = {0, . . . , s} where −1 is an
absorbing state and C is a set of transient states. Im-
precision is introduced by the assumption that the
transition matrix for any given time step is not known
precisely. Instead, limitations are imposed upon the
possible values of each transition probability at each
step.

Define s + 2 closed sets of probability distributions,
P(i), i = −1, 0, . . . , s.

Definition 1.1 All potential transition matrices for
a given time step belong to the set

M(P ) :=


 p(−1)

...
p(s)

 | p(i) ∈ P(i), ∀i ∈ C


where the choice of the element from P(i) has no effect
on the choice of the element P(j) if i 6= j.

Thus, each row of the transition matrix for a given
time step is chosen from a set of probability distribu-
tions, and each choice is made independently.

Further conditions are now given. First, as −1 is an
absorbing state P(−1) = {(1, 0, . . . , 0)} is required.
Further, each of the possible transition matrices must
guarantee that C is a single communicating class with
each set in C aperiodic.1

Definition 1.2 The set of all possible initial distri-
butions over S is denoted by

M0 := {v = (v−1, v0, . . . , vs)|vi ≥ 1 ∀i,
s∑

i=−1

vi = 1}.

Furthermore, D0 is used to denote a strict subset of
M0.

Thus, D0 can be thought of as the set of initial
distributions deemed possible for a given process,

1Note that this is a more general formulation than can be
found in [4], the justification for this change can be found in
[6].

where this conclusion is arrived at by some unspec-
ified method. M0 would be used only when nothing
whatsoever is known about the initial distribution.

2 Imprecise Markov chains with
constant transition matrix

In this section it is assumed that there is a single
element of M(P ) that describes the transition prob-
abilities at every time step, i.e. the transition matrix
is unknown, but constant.

As mentioned, D0 represents the set of initial distri-
butions over S that have been judged possible. Thus
for a matrix P ∈ M(P ) the set D̃n(P ) of all possible
distributions over S at time n ≥ 1 can be defined as
follows.

Definition 2.1

D̃n(P ) := {vP | v ∈ D̃n−1(P )} = {vPn | v ∈ D̃0(P )}

where D̃0(P ) := D0. Should every possible initial
distribution be considered possible, the appropriate
definition becomes

M̃n(P ) := {vP |v ∈ M̃n−1(P )} = {vPn|v ∈ M̃0(P )}

where M̃0(P ) :=M0.

However, since it is unknown which element of the set
M(P ) actually describes the behaviour of the chain,
it is of more pratical use to introduce the following
definition.

Definition 2.2

M̃n :=
⋃

P∈M(P )

M̃n(P ). (2.1)

Thus M̃n contains every distribution possible at time
n.

Theorem 2.1 For each P ∈M(P ) and n ≥ 0,

M̃n+1(P ) ⊆ M̃n(P ).

Proof. For each P ∈ M(P ), it follows from the def-
inition of M̃0(P ) and the fact that P is a strictly
stochastic matrix that M̃1(P ) = {vP |v ∈ M̃0(P )} ⊆
M̃0(P ). Now assume that for a certain n > 1,
M̃n(P ) ⊆ M̃n−1(P ). Then

M̃n+1(P ) = {vP | v ∈ M̃n(P )}
⊆ {vP | v ∈ M̃n−1(P )}
= M̃n(P ).

2



It is therefore appropriate to define

Definition 2.3

M̃∞(P ) :=
∞⋂
n=0

M̃n(P )

This set M̃∞(P ) describes the behaviour of the chain
as time approaches infinity. Once again, though, since
the correct matrix fromM(P ) is unknown, the follow-
ing definition is of more practical use.

Definition 2.4

M̃∞ =
⋃

P∈M(P )

M̃∞(P ).

It is proved in [4] that in our current case

M̃∞ =
⋃

P∈M(P )

{(1, 0, . . . , 0)} = {(1, 0, . . . , 0)}.

Thus, since D̃n(P ) ⊆ M̃n(P ) for all n, eventual ab-
sorption is certain irrespective of our choice of D0 or
the actual element of the setM(P ) that correctly de-
scribes the chain. We therefore consider the situation
in which the chain is conditioned on non-absorption
at each step.

We now define the following functions.

Definition 2.5 For

v ∈M0 \ {(1, 0, . . . , 0)} (2.2)

we have

f(v) = f((v−1,v
∗)) =

1
1− v−1

v∗,

and

f̃α(f(v)) = f̃α(
1

1− v−1
(v0, . . . , vs))

:= (α, (1− α)(v0, . . . , vs))

where α ∈ [0, 1).

Thus f(·) takes a distribution over S (for which ab-
sorption is not certain) and conditions it on non-
absorption. f̃α(·) takes a distribution over C and
maps it to a distribution in S for which the relative
probabilities for being in any two states in C remain
constant.

Lemma 2.1 f(f̃α(v)P ) = f(f̃β(v)P ) for any P ∈
M(P ), independently of the values of α and β.

Proof.

f(f̃α(v)P ) = f

(
(α, (1− α)v)

(
1 0
p Q

))
=

(1− α)vQ
|(1− α)vQ|

=
vQ

|vQ|
.

2

Using f(·) it becomes possible to define the set of
all possible distributions over C, conditioned on non-
absorption, given D0, in the following way

Definition 2.6

M̃C
n := {f(v)|v ∈ M̃n \ {(1, 0, . . . , 0)}} (2.3)

and

D̃Cn := {f(v)|v ∈ D̃n \ {(1, 0, . . . , 0)}}.

Theorem 2.2 For each P ∈M(P ) and n ≥ 0,

M̃C
n+1 ⊆ M̃C

n .

Proof. For each P ∈M(P ), and forMC
0 (P ) =MC

0 ,
we have from (2.3) and Theorem 2.1 that

M̃C
n+1(P ) = {f(v) | v ∈ M̃n+1(P )\{(1, 0, . . . , 0)}}

⊆ {f(v) | v ∈Mn(P )\{(1, 0, . . . , 0)}}
= M̃C

n (P ).

By taking the union of both sides over all P ∈M(P )
the proof is complete. 2

The following definition is therefore appropriate.

Definition 2.7

M̃C
∞ :=

∞⋂
i=0

M̃C
i .

Equivalently

M̃C
∞ =

⋃
P∈M(P )

M̃C
∞(P ).

Thus M̃C
∞ contains the possible distributions, condi-

tioned on non-absorption as time goes to infinity, for
all possible matrices fromM(P ) assuming nothing is
known about the initial distribution.

Associated with each element P ∈ M(P ) is a unique
limiting conditional distribution αP . In [4] it is
proved that

M̃C
∞ =

⋃
P∈M(P )

M̃C
∞(P ) =

⋃
P∈M(P )

αP (2.4)



That is, although the correct element ofM(P ) is un-
known, we know that the only possible distributions
that can occur as time approaches infinity are the
limiting conditional distributions of the elements of
M(P ). Since we have from Darroch and Seneta [7]
that αP is reached independently of the initial dis-
tribution, we have that the right hand side of (2.4)
represents the long-term behaviour of the chain, con-
ditioned on non-absorption, independent of the choice
of DC0 .

3 Imprecise Markov chains with
non-constant transition matrix

In the case considered in Section 2, the long-term be-
haviour conditioned on non-absorption is easy to de-
fine, since such behaviour in the time-homogeneous
case is well-known. In this section it is no longer as-
sumed that the unknown transition matrix for time
step n equals that for time step m 6= n. This cor-
responds in the precise case to the concept of time-
inhomogeneous chains, the long-term behaviour of
which is far less well understood.

A further condition is required in this case, namely
that if [P ]ij = 0 for any P ∈M(P ) then [Q]ij = 0 for
all Q ∈M(P ). Thus a jump from state i to state j is
either possible at all time steps, or impossible at all
time steps. This is to prevent situations in which two
or more transition matrices, each of which has C as a
single communicating class, can be chosen fromM(P )
which, when multiplied, form a matrix for which C
is not a single communicating class. It is certainly
true that such matrices exist, but it is possible that
they may already be disqualified by the conditions
in Section 1.1 (most critically the assumption of in-
dependence), making this new condition unnecessary.
Work is currently being conducted into ascertaining
whether or not the new condition is redundant.

Definition 3.1 The set of possible n step transition
matrices Mn(P ) is defined as follows:

Mn(P ) := {P1P2 . . . Pn| Pi ∈M(P )}.

Definition 3.2 The setM(P ) is referred to as regu-
lar if for some n every P ∈ Mn(P ) has only strictly
positive elements. Further, the set M(P ) is referred
to as conditionally regular on C if for some r every
P ∈ Mr(P ) has all elements [P ]ij strictly positive,
where i ∈ C, j ∈ S.

Lemma 3.1 All matrices which belongs to the set
Ms+1(P ) are conditionally regular on C.

Proof. Any matrix Ps+1 contained in Ms+1(P )
represents the behaviour of a time-inhomogeneous

Markov chain over s + 1 time steps. By assumption
each of the time steps are described by transition ma-
trices for which C is a single communicating class, and
each state in C is aperiodic. There must therefore be
a path of n states, denoted {ak}k=1,...,n, strictly be-
tween i and j, where i, j ∈ C, and no element of
{ak}k=1,...,n is equal to either i or j.

Assume i 6= j. By assumption a jump from state
i to state j is either possible or not at a given
time step independent of that time step. Therefore
if there exists k1 6= k2 such that ak1 = ak2 , the
elements ak1 , ak1+1, . . . , ak2−1 can be removed from
{ak}k=1,...,n and the remainder still represents a vi-
able path from i to j. This process can continue
until there remains no duplicated value in the path,
which forces n ≤ s − 1. Thus j can be reached from
i in s jumps, forcing P (X(s) = j|X(0) = i) > 0.
P (X(s + 1) = j|X(0) = i) > 0 follows immediately
from the fact that each possible transition matrix has
C as a single communicating class, and thus cannot
contain a column of zeroes.

Now assume i = j. The same process as above applies,
except that without duplicated values in the path we
have n ≤ s, and hence we can return to i after s + 1
jumps, and P (X(s+ 1) = j|X(0) = i) > 0. 2

M0 and D0 are defined just as they were in Section
2. Since a constant transition matrix can no longer
be assumed, the following definitions are required.

Definition 3.3

Mn := {vP |v ∈Mn−1, P ∈M(P )}

and
Dn := {vP |v ∈ Dn−1, P ∈M(P )}.

Furthermore

MC
n := {f(v)|v ∈Mn \ {(1, 0, . . . , 0)}}

and

DCn := {f(v)|v ∈ Dn \ {(1, 0, . . . , 0)}}.

It should be clear that

M̃C
n ⊆MC

n ,∀n > 0 (3.1)

and moreover that

M̃C
1 =MC

1

where M̃C
n is as defined in (2.3).

Lemma 3.2

MC
n = {f(f̃α(v) · P )|v ∈MC

n−1, P ∈M(P )}

and

DCn = {f(f̃α(v) · P )|v ∈ DCn−1, P ∈M(P )}.



Proof. v ∈ DCn−1 ⇒ f̃α(v) ∈ Dn−1 for some α ∈
[0, 1) by definition. Thus f̃α(v)P ∈ DCn . By Lemma
2.1, however f(f̃α(v)P ) = f(f̃β(v)P ) for any β ∈
[0, 1), and so in fact f(f̃α(v)P ) ∈ DCn independently
of our choice of α. 2

It is proven in [13] that

Mn+1 ⊆Mn

making the following definition appropriate.

Definition 3.4

M∞ :=
∞⋂
n=0

Mn.

It is proven in [5] that

M∞ = {(1, 0, . . . , 0)}

so absorption is certain even when the transition ma-
trix is unknown and can change between time steps.
Once again the long-term behaviour of the chain con-
ditioned on non-absorption is considered.

It is proved in [5] (in an almost identical manner to
Theorem 2.2) that

MC
n+1 ⊆MC

n (3.2)

and hence the following definition is appropriate.

Definition 3.5

MC
∞ :=

∞⋂
n=0

MC
n .

Definition 3.6 A set of distributionsM is denoted a
conditionally invariant set of distributions, henceforth
known as CISD, if

f(f̃α(M) · M(P )) =M

for some α and therefore for every α ∈ [0, 1), where ·
represents an element-wise product.

Thus if at any time-step the set of possible distribu-
tions over C is a CISD every subsequent time-step will
have an identical set of possible distributions over C.
Note that MC

∞ must be a CISD By Lemma 2.1.

MC
∞ describes the behaviour of the chain, conditioned

on non-absorption, as time approaches infinity, as-
suming that there is nothing whatsoever that can be
said regarding the initial distribution over C. An im-
portant property of the limiting conditional distribu-
tion in the precise case, however, is that the behaviour

of the chain, conditioned on non-absorption, tends to-
ward it independently of the choice of initial distribu-
tion over C. In what follows we outline the method
by which the generalisation of this property can be
proved.

Definition 3.7 Two sets of distributions over S, M
andN , are described as conditionally equal if f(M) =
f(N ), where f(M) := {f(v)|v ∈M}.

A non-symmetric distance measure d(·, ·) between two
sets of distributions over S is defined in [5], where
d(M,N ) = 0 if and only if for every v ∈ M there is
a w ∈ N such that f(v) = f(w).

Corollary 3.1 Let M and N be closed sets of dis-
tributions. Then f(M) ⊆ f(N ) if and only if
d(M,N ) = 0.

Proof. f(M) ⊆ f(N ) implies that for every f(v) ∈
M there exists w ∈ N such that f(v) = f(w). Thus
d(M,N ) = 0.

Let d(M,N ) = 0. By the above assertion, for every
v ∈ M there exists w ∈ N such that d(v,w) = 0.
Thus f(M) ⊆ f(N ).

2

It is proven in [5] that, under the conditions given in
this paper

d(M ·M(P ),N ·M(P )) < d(M,N ) (3.3)

and

f(M) = f(M′)⇒ d(M,N ) = d(M′,N ) (3.4)

for any set of distributions N .

Definition 3.8 LetM be a compact set of distribu-
tions and M(P ) a set of transition matrices that are
conditionally regular on C. Then M is a fixed set of
M(P ) conditionally on C if f(M ·M(P )) = f(M),
or equivalently, ifM andM·M(P ) are conditionally
equal on C.

It is important to note that if M is a fixed set of
M(P ) conditionally on C, then f(M) must be a con-
ditionally invariant set of distributions.

Theorem 3.1 Let M and N be conditionally fixed
sets ofM(P ) on C. Then they are conditionally equal
on C.

Proof. It follows from Corollary 3.1 that the sets
M and N are conditionally equal on C if and only if
d(M,N ) = d(N ,M) = 0. Suppose that one of the
distances is greater than 0, say d(M,N ) > 0. By the



assertion that both sets are conditionally fixed sets,
we have that f(M) = f(M · M(P )) and f(N ) =
f(N · N (P )) Then, by Corollary 3.1, (3.3) and (3.4),
d(M,N ) = d(M · M(P ),N ) = d(M · M(P ),N ×
M(P )) < d(M,N ), which is a contradiction. 2

Thus we have that there can be only one condition-
ally invariant set of distributions for a given impre-
cise Markov chain. Finally, [5] goes on to prove that
convergence to this set is certain, conditioned upon
non-absorption, irrespective of the choice of DC0 .

These results confirm the CISD as the imprecise ana-
log to the QSD. Not only does setting DC0 = MC

∞
ensure that DCn =MC

∞, for all n, but the set of possi-
ble distributions tends towards MC

∞ no matter what
initial distributions are allowed.

We now discuss the method offered in [3], and explain
why we do not make use of it here. The results pre-
sented in Section 3 are based on the notion of regular-
ity defined in Definition 3.2. In this sense the results
on convergence directly generalise those found in [7],
where the analogous notion of regularity is used in the
precise case.

Two important further insights for the case of uncon-
ditional convergence of imprecise Markov chains are
found in [3], which suggest that the concept of reg-
ularity that we use might be too strong. First, de
Cooman et al. show that even the concept of regu-
larity itself can be transferred to the imprecise case
in a weaker form, which suggests that there might be
different types of convergence with different proper-
ties. However, their approach is substantially differ-
ent from ours, where the main difference is that they
represent imprecision in terms of lower and upper ex-
pectation operators instead of sets of probabilities and
moreover, the calculations of the distributions at fur-
ther time steps are done by the use of so called back-
wards recursion.

While in the case where sets of probabilities are con-
vex, which certainly is the most important case, the
representation with expectation operators coincides
with the approach with sets of probabilities, our ap-
proach is more general if sets of probabilities are not
assumed to be convex. Our stronger notion of reg-
ularity seems to be necessary in this case to assure
convergence. The second problem with efficiently ap-
plying the approach taken in [3] to studying conver-
gence under conditioning on non-absorption is that it
is not obvious to us how the conditioning that must
take place at every step would be combined with the
backward recursion method. This effectively means
that we do not see how the step performed in Lemma
2.1, which is shown to be easy using the forward calcu-
lations, could be done using the backwards recursion.

Of course, while the chain is still finite, conditioning
can be done at an arbitrary step n, but when conver-
gence is in question as n tends to infinity, it is not
clear how and where conditioning can be done, as it
is clearly too late to condition at infinity where ab-
sorption takes place with certainty. Despite the above
difficulties we believe that combining our results with
those of de Cooman et al. is possible in some way,
which is a possible path of our future research.

The second important insight given in [3] is that, in
the case without conditioning and even in the precise
case, instead of regularity a weaker condition called
“regular absorption” is sufficient to assure unique con-
vergence, which also seems to be possible to apply to
the problem of unique convergence under condition-
ing.

4 Comparison between the models

In this section we consider two examples. In the
first, movement from all three transient states ex-
hibits imprecise behaviour, but the bounds on that
behaviour are comparatively tight. In the second ex-
ample, movement from only one transient state ex-
hibits imprecise behaviour, but the bounds on that
behaviour are comparatively much wider. In each ex-
ample we consider the difference between applying the
model given in Section 2 and that given in Section 3.
Note that throughout this section MC

0 is used as the
set of possible initial distributions over C.

In this section simplex diagrams (see e.g. Walley [16])
are used to graphically represent probability distribu-
tions with three elements. A simplex diagram is an
equilateral triangle with height one unit in which each
vertex represents the probability distribution with all
mass in one state of C. The probabilities assigned to
the three elements of C are identified with perpen-
dicular distances from the three sides of the triangle.
Thus the setMC

0 is represented by the whole simplex
diagram.

Example 1

Consider a time-homogeneous birth-death process X
with state space Ω = {−1} ∪ C where C = {0, 1, 2}.
The set of all possible one-step transition matrices
M(P ) is given as follows. Each P ∈ M(P ) takes the
form

P =


1 0 0 0
a 0 1− a 0
0 b 0 1− b
0 0 c 1− c


where a ∈ [0.1, 0.3], b ∈ [0.5, 0.6], and c ∈ [0.67, 0.73].

Generating either M̃C
n orMC

n in their entirety for this
example (or any other) is a non-trivial task. There are



several alternative methods that can be used to gain
sensible approximations. For instance, the maximum
and minimum values of each element of the vectors
contained in M̃C

n and MC
n can be calculated. The

simplex diagrams in Figure 1 below show such approx-
iations for M̃C

n for n = 2, 3, 4 (left column, from top
to bottom), and MC

n , also for n = 2, 3, 4 (right col-
umn, from top to bottom). Bounds have also been ap-
proximated for the sets M̃C

100 and MC
100. These were

found by randomly generating 1000 100-step transi-
tion matrices for each of the two cases, multiplying
each one by (1, 0, 0), (0, 1, 0) and (0, 0, 1), and finding
the overall maximum and minimum of each element.
The 100th time step is an excellent approximation to
the case as time approaches infinity.

Recall that it is known that the size of the bounded ar-
eas are non-increasing from time step n to n+1, from
(2.3) and (3.2). Figure 1 demonstrates these proper-
ties very well. Note also that, as expected, for each
times step the bounded areas on the right are larger
than those on the left. This again is exactly what was
expected given (3.1), and moreover is consistent with
the idea that more can be said about the long term
behaviour for the case where the transition matrix
is constant than can be said for the case where the
transition matrix is potentially non-constant between
time steps. One could say that the second case allows
for “more imprecision,” in that less can be assumed
about the underlying process.

It is important to note that the variable a does in fact
play a role in the example, despite the fact that by
conditioning on non-absorption we implicitly assume
that every transition from state 0 must have been to
state 1. This can be easily seen by noting that

f((0, x, y, z)


1 0 0 0
a 0 1− a 0
0 b 0 1− b
0 0 c 1− c

)

= (
1

1− ax
)(by, (1− a)x+ cz, (1− b)y + (1− c)z)

and therefore conditioning on non-absorption does not
prevent a from contributing to the distribution over
C.

Example 2

Consider a time-homogeneous birth-death process X
with state space Ω = {−1} ∪ C where C = {0, 1, 2}.
The set of all possible one-step transition matrices
M(P ) is given as follows. Each P ∈ M(P ) has the
following form.

P =


1 0 0 0

0.6 0 0.4 0
0 d 0 1− d
0 0 0.7 0.3



where d ∈ [0.37, 0.73]. The diagrams were created
using identical methods to those used in the first ex-
ample.

The same comments regarding Figure 1 also apply to
Figure 2. It should also be noted that in the second
example more can be said about the probability of
being in state 1, conditioned on non-absorption. as
time approaches infinity, but less can be said about
the probabilities of being in states 1 or 3. This may
be explained as follows. Note that in the method
used in Section 2, the bounds upon M̃C

∞ are sim-
ply the bounds upon the set

⋃
P∈M(P )αP (see (2.4)).

Thus the bounds approximated in the bottom-left
simplex of Figure 1 relate to the three elements of
a vector function with three unknowns, a, b and c, all
with comparatively small ranges. In comparison, the
bounds approximated in the bottom-left simplex of
Figure 2 relate to the three elements of a vector func-
tion with one unknown, d, which has a comparatively
large range. The elongated, thinner shape in Figure
2 is thus intuitively unsurprising, though the validity
of this intuition can be questioned, as d will eventu-
ally appear in all transition proabilities given enough
jumps.

The final point regarding Figures 1 and 2 is the fact
that in both the situation in which little is known
about one state’s behaviour, and in that where no
state’s behaviour is completely known, there is much
that can be said about the long-term behaviour con-
ditioned on non-absorption. It is not the case, as may
have been feared, that the imprecision grows with
each new iteration until there is nothing to be said
about a given time-step. Moreover, this is true even
when the transition matrix is not assumed to be con-
stant. This is particularly important because it sug-
gests that the model used in Section 3 can be applied
to approximating the long-term behaviour of precise
time-inhomogeneous chains with an absorbing state,
conditioned upon non-absorption, an area in which
comparatively little work has been done.

Note that is would also be possible to compare the
two models by creating a set of r initial distributions
to approximate MC

0 and a set of s transition matri-
ces to approximateM(P ). These can then be used to
create sets of vectors to approximate M̃C

n and MC
n .

The drawback to this method is that it rapidly be-
comes computationally heavy. In the example above,
allowing MC

0 to be approximated by the 231 vectors
{ i20 ,

j
20 ,

k
20}, where i, j, k are the set of non-negative

integers for which i+ j + k = 20, and allowingM(P )
to be approximated by the 264 matrices for which
a ∈ [0.1, 012, . . . , 0.3], b ∈ [0.5, 0.52, . . . , 0.7], and
c ∈ [0.67, 0.69, 0.71, 0.73], then by the time n = 4
there are over a thousand billion vectors to calculate.



5 Concluding remarks

In this paper we have summarised two methods in
which imprecision can be applied to the theory of
Markov chains, and discussed that in each case, given
certain conditions and conditioned on non-absorption,
convergence to a unique conditionally invariant set is
guaranteed, and that using this set as the set of initial
distributions, the possible behaviour of the chain is
unchanging over time. It has also been demonstrated
that, by considering this extension of the QSD, it
is possible to say something regarding the long-term
behaviour, conditioned on non-absorption, of finite
Markov chains with an absorbing state, in situations
in which the transition matrix at each time-step is not
known precisely. Moreover, it has been shown that
much can be said even in situations where the transi-
tion matrix is not assumed to be constant over time,
and in which there is no transient state from which
the transition probabilities are known precisely. This
in turn means that the model presented in Section 3
could be applied when considering the long-term be-
haviour of certain precise time-inhomogeneous chains.
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Figure 1: Bounds for the sets M̃C
n and MC

n , all for
n = 2, 3, 4 and 100.
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Figure 2: Bounds for the sets M̃C
n and MC

n , all for
n = 2, 3, 4 and 100.


