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Abstract

A new method is presented for selecting a single cate-
gory or the smallest subset of categories, based on ob-
servations from a multinomial data set, where the se-
lection criterion is a minimally required lower proba-
bility that (at least) a specific number of future obser-
vations will belong to that category or subset of cat-
egories. The inferences about the future observations
are made using an extension of Coolen and Augustin’s
nonparametric predictive inference (NPI) model to a
situation with multiple future observations.

Keywords. imprecise probability, predictive infer-
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1 Introduction

Selection is a wide-ranging topic in statistics for
choosing the optimal member(s) of some group. This
group may be, for example, a set of data categories or
a range of data sources. With regard to multinomial
data, interest may be in choosing the category that
has the largest probability of occurrence. Existing
methods for this type of selection [2] are all non-
predictive, i.e. the selection of the optimal category
is based solely on hypothesis testing and does not use
any type of predictive inference.

NPI for learning from multinomial data in the
absence of prior knowledge has been developed by
Coolen and Augustin [1, 6, 7]. The model gives
predictive inferences about a single future observa-
tion in the form of probability intervals P = [P , P ].
Throughout this paper, P denotes interval probabil-
ity, which we often just call ‘probability’. When an
explicitly precise probability is used, it is denoted by
p. NPI is based on a probability wheel representation
of the data, where each category is represented by a
segment of the wheel.

Selection methods based on NPI have been developed

by Coolen and van der Laan [3] and Coolen and
Coolen-Schrijner [4, 5]. These methods use predictive
inferences which are based on past observations, and
make use of Hill’s assumption An [9].

Coolen and van der Laan [3] developed an NPI
selection method for real-valued data from k different
sources. Their objective was to select the source
which would provide the largest next observation.
Probabilities were determined for the event that the
next observation from one source would exceed the
next observation from all other sources. They also
considered two ways of selecting a subset of sources:
first, they determined the interval probability that
some subset would contain the source providing the
largest next observation, and second, they found the
interval probability that the next observations from
every source in some subset would all exceed the next
observations from the remaining sources.

Coolen and Coolen-Schrijner [4, 5] developed an
NPI selection method for Bernoulli data from k
different groups. Their objective was to select the
group which would have the highest number of future
successes. Here, inferences were made about m future
observations rather than just the next observation.
Subsets of the groups were also considered [4], and
probabilities were presented for the event that some
subset contains the group which has the most future
successes and for the event that all groups in some
subset will have more future successes than every
other group.

In this paper, we discuss the use of NPI for se-
lection from a multinomial data set. We consider
selection of a single optimal category, and selection of
an optimal subset of categories, where we define the
optimal subset to be the subset which satisfies the
required probability criterion, is of minimal size and
has the largest lower probability amongst all subsets
of the same size.



2 Predictive category selection

We develop NPI for category selection from a multino-
mial data set. We have K possible categories, labelled
c1, ..., cK , and our aim is to select the category with
the largest probability of occurrence. Suppose that
we have a data set consisting of n observations, and
let n1, ..., nK denote the number of observations in
categories c1, ..., cK respectively. We consider m fu-
ture observations, and select a category based on pre-
dictive inferences about these m observations. These
inferences will be made by using and adapting the gen-
eral theory of nonparametric predictive inference for
multinomial data [1, 6, 7], discussed previously. Let
the vector of random quantities (M1, ...,MK) denote
the number of the m future observations that belong
to categories c1, ..., cK , such that

∑K
j=1 Mj = m.

2.1 One future observation

The simplest case is where m = 1, so inference is
about one future observation. We may want to select
a single category with the largest probability of oc-
currence. According to the NPI model [7], the lower
and upper probabilities that the future observation
will belong to category cj are

P (Mj = 1) = (
nj − 1

n
)+,

where (x)+ denotes max{x, 0}, and

P (Mj = 1) = min{nj + 1
n

, 1}.

The above formulae are derived through the use of
the probability wheel model [6], as illustrated in the
example below. We can evaluate these probabilities
for each of the possible categories and then select the
category with the highest probability.

Example 2.1. Suppose that our possible categories
are blue (B), red (R), yellow (Y) and green (G). Our
data set consists of 8 observations: 3 B, 2 G, 2 Y
and 1 R. We want to select a single category with
the highest probability that the next observation will
be in that category. First, we find the probability
that the next observation will be blue. Let nB denote
the number of B observations in the data set, and
let MB denote the number of future B observations.
The minimum number of slices of the wheel that we
can assign to B is equal to nB − 1 = 3− 1 = 2. This
leads to the lower probability P (MB = 1) = nj−1

n = 2
8 .

The maximum number of slices of the wheel that we
can assign to B is equal to nB + 1 = 3 + 1 = 4. This
leads to the upper probability P (MB = 1) = nj+1

n = 4
8 .

We then carry out the same process for the other
categories, and we find that P (MY = 1) = P (MG =
1) = [18 , 3

8 ], and P (MR = 1) = [0, 2
8 ]. So we select the

blue category.
Theorem 2.1. When m = 1, and we want to se-
lect a single category with the largest probability of
occurrence, it is always optimal to choose the cate-
gory which has the greatest number of observations in
the data set.

Proof. We select the category with the highest prob-
ability P (Mj = 1), where P (Mj = 1) = [nj−1

n ,
nj+1

n ],
so it is optimal to select the category with the largest
value of nj .

2.2 Multiple future observations

Whereas Coolen and Augustin [6, 7] only considered
one future observation, we now consider inferences
about multiple future observations, so m > 1. Sup-
pose that our data set is represented on a probability
wheel, and the n slices on the wheel are numbered 1
to n. Each of our m future observations must fall into
one of these n slices. Let the vector (S1, ..., Sn) de-
note the number of future observations which fall into
slices 1 to n, respectively. The total number of differ-
ent arrangements of these m observations is

(
n+m−1

m

)
[8], which leads to the precise probability for a par-
ticular arrangement

p(
n⋂

j=1

{Sj = sj}) =
(

n + m− 1
m

)−1

where sj ≥ 0 and
∑n

j=1 sj = m.

More generally, the total number of different
arrangements of f future observations within a
segment made up of S + 1 observations is equal to(

(S − 1) + f

f

)
. (1)

This is because there are S − 1 existing observations
within the interior of such a segment, and so we
are considering the number of arrangements of f
future observations amongst a total of (S − 1) + f
observations.

Consider the general case where m may take
any value. We want to find the probability that a
certain proportion of these m future observations
is in some category cj . We may wish to specify a
particular number of observations, in which case
the event of interest will be Mj = mj for some
mj ≤ m. We may also wish to specify a threshold for
Mj , corresponding to the event Mj ≥ mj for some
mj ≤ m.



2.2.1 Deriving P(Mj = mj)

We can use NPI to find the probabilities that pre-
cisely mj of the m future observations will belong to
category cj . The bounds derived here are the most
conservative bounds achievable within the NPI frame-
work, due to the way in which the slices of the wheel
are assigned to categories. This is explained below.
The diagram illustrates the relevant segments of the
wheel.

cj

...
cj

A

B

21

It is assumed throughout this section that
1 < nj < n − 1. In the case nj ≤ 1, we are
not forced to assign any slices of the wheel to cj ,
leading to P (Mj = mj) = 0.

The shaded segment A represents all slices which
must be assigned to cj . There are nj − 1 such slices.
By (1), the number of different arrangements of mj

future observations within this segment is
(
nj−2+mj

mj

)
.

The shaded segment B represents all slices which
must be assigned to a category other than cj .
There are n − nj − 1 such slices. By (1), the
number of different arrangements of m − mj future
observations within this segment is

(
n−nj−2+(m−mj)

m−mj

)
.

Multiplying these two binomial coefficients gives
us the minimum number of arrangements in which
mj future observations are in cj , showing that the
lower probability is equal to

P (Mj = mj) =
(

n + m− 1
m

)−1(
nj − 2 + mj

mj

)
×
(

n− nj − 2 + (m−mj)
m−mj

)
.

(2)

This general formula is applicable to any positive
integers m and mj such that mj ≤ m.

We can also find the equivalent upper probabil-
ity. We now want to maximise the number of
arrangements of the m future observations in which
mj future observations are in cj . There are nj + 1
slices of the wheel which we can allocate to category
cj , including two slices which we may or may not
assign to cj , which we will term ‘optional slices’

(labelled 1 and 2 in the diagram above).

As in the case of lower probability, we count
all arrangements where mj observations fall in
segment A and m − mj observations fall in seg-
ment B. We showed previously that there are(
nj−2+mj

mj

)(
n−nj−2+(m−mj)

m−mj

)
such arrangements.

However, we now also consider the two optional
slices on the wheel. Any observations which fall in
one of the optional slices may be counted either as
belonging to cj or as not belonging to cj . This means
that to find the upper probability we need to count
any arrangement with one or more observations in
the optional slices.

Let T denote the total number of future obser-
vations in the optional slices, where T ranges from
1 to m. For T = 1, there are two possible arrange-
ments, as the observation could fall either in slice 1
or in slice 2. By similar reasoning, for T = 2, there
are three possible arrangements. In general, there
are T + 1 possible arrangements for each value of T .

However, there are a number of different order-
ings that give T observations in the optional slices.
Let X be a non-negative integer such that X ≤ mj

and T − X ≤ m −mj . Then, we may have mj − X
observations in segment A, (m − mj) − (T − X)
observations in segment B, and T observations in the
optional slices, where X ranges from T − (m − mj)
to mj . Therefore, the total number of arrangements
with one or more observations in the optional slices
is equal to

m∑
T=1

min{mj ,T}∑
X={T−(m−mj)}+

(T + 1)
(

nj − 2 + (mj −X)
mj −X

)

×
(

n− nj − 2 + (m−mj)− (T −X)
m−mj − (T −X)

)
.

This enables us to find the maximum number of dif-
ferent arrangements of the m future observations in
which mj observations are in cj , leading to the upper
probability

P (Mj = mj) =
(

n + m− 1
m

)−1

[
(

nj − 2 + mj

mj

)

×
(

n− nj − 2 + (m−mj)
m−mj

)
+

m∑
T=1

min{mj ,T}∑
X={T−(m−mj)}+

× (T + 1)
(

nj − 2 + (mj −X)
mj −X

)
×
(

n− nj − 2 + (m−mj)− (T −X)
m−mj − (T −X)

)
].

(3)



Again, this formula holds for any positive integers m
and mj such that mj ≤ m. As before, it is assumed
here that nj ≥ 2. An unobserved category can be
assigned at most one slice of the wheel, leading to
P (Mj = mj) =

(
n+m−1

m

)−1(n−nj−2+m−mj

m−mj

)
. In the

case nj = 1, the formula reduces to

P (Mj = mj) =
(

n + m− 1
m

)−1

(mj + 1)

×
(

n− nj − 2 + m−mj

m−mj

)
.

In the case nj ≥ n−1, every slice on the wheel may be
assigned to category j and furthermore there is only
one optional slice.
Example 2.2. Suppose that our possible categories
are blue (B), red (R), yellow (Y) and green (G). Our
data set consists of 5 observations as shown on the
probability wheel below.

B
B

R
G

Y

We want to make inferences about 3 future ob-
servations, and we want to find the probability that
precisely two of these are blue. To find the lower
probability, we use (2) with mB = 2. Using the values
n = 5, m = 3 and nj = 2, this gives

P (MB = 2) =
1
35

(
2
2

)(
2
1

)
=

2
35

.

To find the upper probability, we use (3) with mB = 2.
This gives

P (MB = 2) =
1
35

[2 + 2 + 4 + 3 + 6 + 4] =
21
35

.

So we see that P (MB = 2) = [ 2
35 , 21

35 ].
Theorem 2.2. For general m, when selecting the cat-
egory which has the largest lower or upper probability
of containing all of the future observations, it is opti-
mal to select the category with the greatest number of
observations.

Proof. The general formulae for the lower probability
(2) and upper probability (3) can be simplified in the
case Mj = m, because in this case m −mj = 0 and
also the only possible value of X in the summation is
T , leading to T −X = 0. We find that

P (Mj = m) =
(

n + m− 1
m

)−1(
nj − 2 + m

m

)

and

P (Mj = m) =
(

n + m− 1
m

)−1

[
(

nj − 2 + m

m

)
+

m∑
T=1

(
nj − 2 + (m− T )

m− T

)
].

The values of n, m and T do not depend on the cate-
gory selected, and since these lower and upper proba-
bility formulae are both increasing in nj , it is always
optimal to select the category with the largest value of
nj , ie. the greatest number of data observations.

It is also of interest to investigate which value of nj

will maximise the lower probability P (Mj = mj). We
will henceforth call this value n∗j . Plotting P (Mj =
mj) against values of nj ranging from 1 to n shows
the graph to be monomodal with a smooth line of
best fit. Intuitively, we expect that the peak will oc-
cur near to nj = nmj

m , because it seems natural that
the proportion of the future observations which are in
cj should be similar to the proportion of the data ob-
servations that are in cj . We will now formally assess
which value of nj gives the maximal lower probability.

Theorem 2.3. For general m, the value of nj which
will maximise P (Mj = mj) is the integer which lies
in the interval [1 + mj

m (n− 3), 2 + mj

m (n− 3)].

Proof. The proof follows from considering the two ra-
tios

P (Mj = mj |nj)
P (Mj = mj |nj + 1)

and
P (Mj = mj |nj)

P (Mj = mj |nj − 1)
.

To see whether this result corresponds to our initial
prediction, we check whether nmj

m lies in this interval,
as shown below.

1 +
mj

m
(n− 3) ≤ nmj

m
⇐⇒ mj ≥

1
3
m

nmj

m
≤ 1 +

mj

m
(n− 3) ⇐⇒ mj ≤

2
3
m

We see that if 1
3m ≤ mj ≤ 2

3m, then nmj

m will indeed
be within the interval. We can also show that if mj <
1
3m, then nmj

m +1 is within the interval, meaning that
nmj

m is just to the left of the interval. Similarly, if
mj > 2

3m, then nmj

m −1 is within the interval, meaning
that nmj

m is just to the right of the interval. So in
all cases, the optimal value n∗j is close to nmj

m , as
intuitively expected.



Corollary 2.1. For general m, when selecting a cat-
egory which maximises P (Mj = mj), the optimal cat-
egory is selected as follows:

1. If there exists cj such that nj ∈ [1+ mj

m (n−3), 2+
mj

m (n− 3)], then this category is optimal.

2. If there is no cj such that nj ∈ [1+ mj

m (n−3), 2+
mj

m (n − 3)], then find the value of nj which is
closest to the interval on each side. Compare the
values of P (Mj = mj) for the two corresponding
categories. The category which gives the largest
lower probability is optimal.

We also notice that if we have a lot of observations
and if both mj and m are very large, then mj

m will tend
to some limit l and therefore the interval [1 + mj

m (n−
3), 2 + mj

m (n − 3)] will shrink to the point value nl.
This means that the optimal value of the ratio will
tend to the same limit l, as is to be expected.

Example 2.3. Suppose we have a categorical data
set consisting of 100 observations. There are 4
possible categories: blue (B), red (R), yellow (Y) and
green (G). We have observed 20 B, 25 R, 28 Y and
27 G. We are making inferences about the next 50
observations, and we wish to select the category that
maximises the lower probability P (Mj = 11).

The plot of P (Mj = 11) against all possible
values of nj is shown below. From this graph, we
expect that n∗j will be between 20 and 25, as this is
where the peak occurs.

By Theorem 2.3, the optimal value n∗j lies in the
interval [1 + 11

50 (97), 2 + 11
50 (97)] = [22.34, 23.34], so

the ideal choice of nj would be nj = 23. However,
there is no cj in the data set with this value of nj,
and so by Corollary 2.1 we must look at either side

of the interval.

To the left of the interval, we have nj = 20
corresponding to the blue category. By (2), the rele-
vant lower probability here is P (MB = 11) = 0.0443.
To the right of the interval, we have nj = 25 corre-
sponding to the red category. The lower probability
here is P (MR = 11) = 0.0462. As the second
probability is largest, we see that nj = 25 is the
optimal choice, and so we select red as our optimal
category.

2.2.2 Deriving P(Mj ≥mj)

The other event of interest here is that at least
mj of the m future observations will belong to
category cj . For the lower probability, we again
count the minimum number of relevant arrangements
of the future observations. However, we are now
interested in all arrangements which have R future
observations which fall in the shaded segment A,
where mj ≤ R ≤ m. We consider each possible
value of R separately in order to avoid counting any
arrangements more than once. For a given value
of R, there are

(
nj−2+R

R

)
different arrangements

within this segment. We must also consider the
remaining m − R observations. Contrary to our
lower probability formula above (2), arrangements
with one or more observations in an optional slice
will now be counted. We did not count these when
finding the lower probability P (Mj = mj), because
for example an arrangement with mj observations
in segment A and 1 in an optional slice could be
allocated to the event Mj = mj + 1 when deriving
P (Mj = mj). However, such arrangements are now
relevant because we are simultaneously considering
all events Mj ∈ {mj , mj + 1, ...,m}.

By (1), the number of different arrangements of
m − R future observations within the shaded seg-
ment B plus the two optional slices is equal to(
n−nj+(m−R)

m−R

)
.

Multiplying the two binomial coefficients above
leads to the minimum number of arrangements in
which R future observations are in cj . We now
sum over R from mj to m, which gives the lower
probability

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑
R=mj

(
nj − 2 + R

R

)

×
(

n− nj + (m−R)
m−R

)
.

(4)



It is assumed here that nj ≥ 2, because otherwise
the lower probability will be zero. We also assume
mj > 0.

To find the corresponding upper probability, we
have to maximise the number of arrangements which
have at least mj of the m future observations in cat-
egory cj . We still need to count all the arrangements
described above, so all of the

(
nj−2+R

R

)(
n−nj+(m−R)

m−R

)
arrangements will be included in our total, where
mj ≤ R ≤ m. However, we also want to include
any arrangements where there are fewer than mj

observations in segment A but where observations in
the optional slices can be counted as belonging to cj .

Suppose we have Y observations in segment A,
where 0 ≤ Y ≤ mj − 1. We need to count any
arrangement which has mj − Y or more observations
in an optional slice. Let T denote the total number
of future observations in the optional slices. T may
range from mj − Y to m − Y for a given value of
Y . As explained above, there are T + 1 possible
arrangements of these observations for each value
of T . Therefore, by (1), the number of different
arrangements is equal to

mj−1∑
Y =0

m−Y∑
T=mj−Y

(T + 1)
(

nj − 2 + Y

Y

)

×
(

n− nj − 2 + (m− Y − T )
m− Y − T

)
.

Summing together both of the above numbers gives
the total number of relevant arrangements, leading to
the upper probability

P (Mj ≥ mj) =
(

n + m− 1
m

)−1

[
m∑

R=mj

(
nj − 2 + R

R

)

×
(

n− nj + (m−R)
m−R

)

+
mj−1∑
Y =0

m−Y∑
T=mj−Y

(T + 1)
(

nj − 2 + Y

Y

)

×
(

n− nj − 2 + (m− Y − T )
m− Y − T

)
].

(5)

As before, we assume nj ≥ 2 and mj > 0. In the
cases nj = 1 and nj = 0, the formula reduces to

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑
T=mj

(T + 1)

×
(

n− nj − 2 + (m− T )
m− T

)

and

P (Mj ≥ mj) =
(

n + m− 1
m

)−1 m∑
T=mj

×
(

n− nj − 2 + (m− T )
m− T

)
respectively.

These formulae can be used in a number of dif-
ferent ways. For example, suppose we wanted to
select a category for which there was at least a 75%
lower probability that two or more of the future
observations would be in that category. We would
use the above formulae to find all cj such that
P (mj ≥ 2) ≥ 0.75. Alternatively, suppose we wanted
to select the category which was most likely to
contain 10% or more of the future observations. We
would evaluate P (mj ≥ m

10 ) for each of the possible
categories, and then select the category according to
these values.

This method of selection is illustrated in the
example below.

Example 2.4. Consider Example 2.2, where our
possible categories are blue (B), red (R), yellow
(Y) and green (G) and our data set consists of 5
observations as shown on the probability wheel in
Example 2.2.

We are making inferences about 3 future obser-
vations, and we want to select the category with the
highest probability of containing at least one third of
the future observations. To find the lower probability
of the event Mj ≥ m

3 , we use (4) with mj = 1. We
first consider the blue category. Using the values
n = 5, m = 3 and nj = 2, we find that

P (MB ≥ 1) =
1
35

[
(

5
2

)
+
(

4
1

)
+
(

3
0

)
] =

15
35

.

To find the upper probability, we use (5) with mj = 1.
For blue, this gives

P (MB ≥ 1) =
1
35

[15 +
3∑

T=1

(T + 1)
(

0
0

)(
4− T

3− T

)
]

=
1
35

[15 + 2
(

3
2

)
+ 3
(

2
1

)
+ 4
(

1
0

)
] =

31
35

.

So we see that P (MB ≥ 1) = [ 1535 , 31
35 ]. We investi-

gate the three remaining categories in the same way,
and we find that P (Mj ≥ 1) = [0, 25

35 ] for all three
categories. So the category we select here is blue.



3 Predictive subset selection

We now consider the use of predictive methods to se-
lect a subset of categories, rather than a single cate-
gory, from a multinomial data set. As before, we have
K possible categories, and we have a data set con-
sisting of n observations where n1, ..., nK denote the
number of times we have observed categories c1, ..., cK

respectively. Recall that k represents the total num-
ber of categories that have been observed. We will
select our subset based on inferences about m future
observations. Our inferences use the general theory
of nonparametric predictive inference [7].

3.1 One future observation

In this case, our aim will be to select a subset in
order to maximise the NPI lower probability that the
next observation, Yn+1, belongs to a category within
that subset.

Let S denote our selected subset of categories.
Let OS denote the index set for already-observed
categories in S, and let US denote the index set for
unobserved categories in S. The sizes of these sets
are denoted r and l respectively. Then, according
to the NPI model [7], the formula for the lower
probability P (Yn+1 ∈ S) is

P (Yn+1 ∈ S) =
∑

j∈OS

nj − 1
n

+
(2r + l −K)+

n
(6)

and the formula for the upper probability P (Yn+1 ∈
S) is

P (Yn+1 ∈ S) =
∑

j∈OS

nj − 1
n

+
min{2r + l, k}

n
. (7)

Our objective is to find some S such that

P (Yn+1 ∈ S) ≥ p∗

for some specified threshold probability p∗. We also
want S to be of minimal size. If several such subsets
exist, we select the one with maximum lower proba-
bility.

Example 3.1. Consider Example 2.1, where our
possible categories are blue (B), red (R), yellow (Y)
and green (G), and our data set consists of 8 observa-
tions including 3 B, 2 G, 2 Y and 1 R. Now, we want
to find a subset of categories S of minimal size which
satisfies the criterion P (Yn+1 ∈ S) ≥ 3

8 . As shown
in Example 2.1, B is the optimal choice when we are
selecting a single category, and P (mB = 1) = 2

8 . So
a subset of size 1 will not satisfy our requirements.

We instead look for a subset of size 2. Con-
sider the subset S = {B, G}. Here, r = 2 and l = 0.
The formula (6) gives

P (Yn+1 ∈ {B, G}) =
3− 1

8
+

2− 1
8

+ (4− 4) =
3
8
.

This satisfies the selection criterion. Applying the
same formula to other possible subsets of size 2 shows
that 3

8 is the highest lower probability that we can
achieve with a subset of size 2. So the subset we select
is S = {B, G}.
Theorem 3.1. When m = 1, and we want to select a
subset of categories according to our aforementioned
definition of the optimal subset, it is always optimal
to add categories to the subset in decreasing order of
number of observations in the data set.

Proof. We select a subset according to which gives the
highest lower probability P (Yn+1 ∈ S). The addition
of an already-observed category to S will add nj−1

n
to the first term in the lower probability formula and
will add 2 to the second term. The addition of an un-
observed category to S will add 0 to the first term and
1 to the second term. So we should always add ob-
served categories before unobserved categories. Fur-
thermore, the observed categories which will give the
largest increase to the lower probability when added
to S are those with the largest values of nj . So it is
always optimal to include categories in S in decreas-
ing order of nj , ie. in decreasing order of the number
of observations.

3.2 m future observations

We now consider inferences about multiple future ob-
servations. This requires some new notation: let MS

represent the number of future observations that are
in S. In terms of the probability wheel, the event
MS = ms means that precisely ms future observa-
tions fall in a slice allocated to S. Based on the NPI
model [7], there are

L =
∑

j∈OS

(nj − 1) + (2r + l −K)+ (8)

slices of the wheel which must be assigned to a
category in S.

In this section, we will consider the general case
where m may take any value. We will focus on the
event that MS reaches a certain threshold value, ie.
the event MS ≥ mS , because for selection purposes,
this is a more natural and useful event to consider
than the event that MS takes one specific value.
As before, we derive the most conservative bounds
possible within the NPI framework.



First we consider the lower probability. We need to
find the minimum number of arrangements of the m
future observations such that at least mS are in the
subset S. This involves counting all arrangements
such that R observations fall in a slice which must be
assigned to S, where mS ≤ R ≤ m. It is important
that we do not count any arrangement multiple
times, and so we consider each value of R separately
and then sum over R to avoid this.

There are L slices which must be assigned to
S, so for a certain value of R, there are

(
L−1+R

R

)
arrangements of the R observations within the slices
which must be assigned to S.

We must also account for the other m − R ob-
servations. The remainder of the wheel consists of
n − L slices, and by (1) there are

(
n−L−1+(m−R)

m−R

)
different arrangements of the m − R observations
within these slices.

Multiplying the above binomial coefficients tells
us the minimum number of arrangements for which
MS = R. We can now sum over all relevant values of
R, leading to the lower probability

P (MS ≥ ms) =
(

n + m− 1
m

)−1 m∑
R=mS

(
L− 1 + R

R

)
×
(

n− L− 1 + (m−R)
m−R

)
.

(9)

We assume 0 < L < n, because L = 0 leads to lower
probability zero. We also assume ms > 0.

Now we consider the upper probability, which
means we need to maximise the number of ar-
rangements which have at least mS of the m future
observations in the subset S. We must still count
all of the arrangements described above, i.e. those
where at least mS of the future observations are in
a slice which must be assigned to S. As explained
above, there are a total of

(
L−1+R

R

)(
n−L−1+(m−R)

m−R

)
arrangements such as this.

However, there are other arrangements which
must now be included. We can now make use of
the optional slices, ie. those slices which we can
choose to assign either to S or to its complement.
By considering the difference between the lower and
upper probabilities given by the NPI model [7], we
see that there are

Q = min{2r + l, k} − (2r + l −K)+

optional slices. If we have fewer than mS observations
in slices which must be assigned to S, but we have
observations which fall in the Q optional slices, then
we can count these observations as belonging to S.

Suppose we have Y observations which fall in a
slice that must be assigned to the subset S, where
0 ≤ Y ≤ mS−1. Any arrangement which has mS−Y
or more observations in one of the optional slices must
be counted when calculating the upper probability.
Let T denote the total number of future observations
in the optional slices. T can take values from mS −Y
to m−Y for a particular value of Y . For a certain Y ,
there are

(
L−1+Y

Y

)
different arrangements of the Y

observations within the slices which must be assigned
to S. Also, there are

(
Q−1+T

T

)
different arrangements

of the T observations within the optional slices.
Finally, there are

(
n−L−Q−1+(m−Y−T )

m−Y−T

)
different

arrangements of the other observations within the
remaining slices of the wheel.

Combining these three binomial coefficents gives
us the following upper probability:

P (MS ≥ mS) =
(

n + m− 1
m

)−1

[
m∑

R=mS

(
L− 1 + R

R

)
×
(

n− L− 1 + (m−R)
m−R

)
+

mS−1∑
Y =0

m−Y∑
T=mS−Y(

L− 1 + Y

Y

)(
Q− 1 + T

T

)
×
(

n− L−Q− 1 + (m− Y − T )
m− Y − T

)
].

(10)

As before, we assume L > 0 and ms > 0. It is also
assumed here that L + Q < n. This is because in
the situation L + Q = n, every slice on the wheel
may be assigned to the subset S, leading to the upper
probability P (MS ≥ mS) = 1. In the case L = 0, the
formula reduces to

P (MS ≥ mS) =
(

n + m− 1
m

)−1

[
mS−1∑
Y =0

m−Y∑
T=mS−Y(

Q− 1 + T

T

)(
n−Q− 1 + (m− Y − T )

m− Y − T

)
].

Example 3.2. Consider the data set in Example
2.2, where our possible categories are blue (B), red
(R), yellow (Y) and green (G) and we have seen 5
observations including 2 B, 1 G, 1 Y and 1 R.



We use inferences about three future observa-
tions, and we want to find the probability that at least
one of these is in the subset S = {B, G}. To find
the lower probability of this event, we use (9) with
mS = 1. We find that

L =
∑

j∈OS

(
nj − 1

n
) + (2r + l −K)+ = 1

and

Q = min{2r + l, k} − (2r + l −K)+ = 4

for this example, and we also know that n = 5 and
m = 3. Using these values we find that

P (MS ≥ 1) =
1
35

[
(

1
1

)(
5
2

)
+
(

2
2

)(
4
1

)
+
(

3
3

)
] =

15
35

.

When finding the upper probability, we observe that
L + Q = n, and this leads to P (MS ≥ 1) = 1 because
we may assign every slice on the wheel to S.

Now suppose that we want to find the probabil-
ity that at least two of the three future observations
are in S. We now apply (9) with mS = 2, and we
find that

P (MS ≥ 2) =
1
35

[
(

2
2

)(
4
1

)
+
(

3
3

)(
3
0

)
] =

5
35

.

As before, every slice on the wheel can be assigned to
S, and so P (MS ≥ 2) = 1.

So we see that P (MS ≥ 1) = [ 1535 , 1] and
P (MS ≥ 2) = [ 5

35 , 1].
Theorem 3.2. For general m, when selecting an op-
timal subset of categories (see Introduction for our op-
timality criteria), categories should always be added to
the subset in decreasing order of number of observa-
tions in the data set.

Proof. Our aim is to select the subset which has the
highest lower probability P (MS ≥ ms) for some given
value ms. L is the only variable in this formula which
changes according to which categories are included
in S. We therefore wish to determine the behaviour
of P (MS ≥ ms) as L increases. To do this, we will
consider two consecutive values of L. Consider the
ratio

P (MS ≥ ms|L)
P (MS ≥ ms|L + 1)

. (11)

If P (MS ≥ ms) were increasing in L, we would expect
this ratio to be always less than 1. Now consider the
term within the summation in the formula for this
lower probability. If(

L−1+R
R

)(
n−L−1+(m−R)

m−R

)(
L+R

R

)(
n−L+(m−R)

m−R

) (12)

is less than 1 for every possible value of R, then (11)
must always be less than 1. Using the identities of the
binomial coefficients, we can rewrite (12) as

L(n− L)
(L + R)(n− L + m−R)

.

Then, L(n − L) < (L + R)(n − L + m − R) ⇔ 0 <
(L + R)(m − R) + R(n − L). The term (L + R)
is clearly always positive, (m − R) must always be
positive regardless of the value of R since m is the
maximum value of R, and (n − L) must always
be positive since L will always be less than n.
Therefore P (MS ≥ ms) is increasing in L, and our
initial aim translates to making L as large as possible.

We now consider how the composition of the
subset S affects the value of L. By (8), the inclusion
of an unobserved category in S will add 0 to the
first term in L and 1 to the second term in L. The
inclusion of an observed category in S will add nj−1

n
to the first term in L and 2 to the second term in
L. So we see that it is always optimal to include
observed categories in S before unobserved ones.
Additionally, we see that the observed categories
which will increase L by the greatest amount are
those with the largest values of nj . It is therefore
always optimal to add categories to S in decreasing
order of nj .

The following example illustrates how Theorem 3.2
can be implemented when selecting subsets.

Example 3.3. Suppose that we have 8 possible
categories, which we label A to H. We have made 100
observations. The table below shows how many of
these observations were in each category.

Category A B C D E F G H
Observations 25 20 18 13 10 9 5 0

We want to investigate subsets of these 8 cate-
gories, and we will do this by making inferences about
2 future observations. There are two events of interest
here: first, the event that at least one of the two future
observations is in some subset S, and second, the
event that both of the two future observations are in S.

Consider an increasing sequence of subsets S1, ..., S8,
where we begin with a subset of size 1 and add one
category at a time. By Theorem 3.2, we know that
the categories will be added in decreasing order of
number of observations. The table below shows the
composition of each of the subsets.



i Si P (MSi ≥ 1) P (MSi ≥ 2)
1 A [0.4206, 0.4505] [0.0594, 0.0695]
2 A,B [0.6727, 0.7166] [0.1873, 0.2234]
3 A-C [0.8376, 0.8822] [0.3624, 0.4378]
4 A-D [0.9196, 0.9543] [0.5204, 0.6257]
5 A-E [0.9697, 0.9846] [0.6903, 0.7754]
6 A-F [0.9945, 0.9980] [0.8655, 0.9220]
7 A-G [0.9998, 1.0000] [0.9802, 1.0000]
8 A-H [1.0000, 1.0000] [1.0000, 1.0000]

Using (9) and (10) with mS = 1, we can find
the lower and upper probabilities that at least one
of the two future observations will be in Si for
i = 1, ..., 8. Similarly, we can use (9) and (10) with
mS = 2 to find the lower and upper probabilities that
both of the two future observations will be in Si for
i = 1, ..., 8. The above table shows these probabilities.

Suppose that we want to select a subset of min-
imal size such that there is at least a 50% lower
probability that one or more of the future observa-
tions will belong to a category in that subset. Looking
at the above table of probabilities for the event
(MSi

≥ 1), we see that the first row which satisfies
P (MSi

≥ 1) ≥ 0.5 is the row corresponding to i = 2.
We therefore select the subset S2 = {A, B}.

However, now suppose that we want to select
the smallest possible subset of categories such that
there is at least a 50% lower probability that both
of the future observations will belong to a category
in that subset. We will now need to select a larger
subset in order to achieve the minimally required
probability. Looking at the above table for the event
(MSi

≥ 2), we see that the first row which satisfies
P (MSi

≥ 2) ≥ 0.5 is the row corresponding to i = 4.
We therefore select the subset S4 = {A, B,C, D}.

4 Concluding remarks

Coolen and Augustin [7] proved strong consistency
properties for NPI, including F-probability in Weich-
selberger’s theory of interval probability [10], but only
for inferences involving a single future observation.
For the case with multiple future observations, consid-
ered in this paper, these properties have not yet been
proved, as we have thus far only derived the lower and
upper probabilities of specific events. We would need
to derive general formulae in order to investigate such
properties. This is an interesting and important topic
for future research. Further related research topics in-
clude other applications of NPI for multinomial data,
where for example applications to classification are
being investigated. Detailed comparisons of the NPI
methods to more established alternatives may provide
further insight into their practical value.
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