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Abstract

We consider ordinary stochastic differential equations
whose coefficients depend on parameters. Conditions
are given under which modelling the parameter uncer-
tainty by compact-valued random sets leads to set-
valued stochastic processes. Finally, we define ana-
logues of first entrance times for set-valued processes.
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1 Introduction

Stochastic differential equations of the form

dxt = f(t, xt)dt + G(t, xt)dwt (1)

or the equivalent integral form

xt = xt0 +

∫ t

t0

f(s, xs)ds +

∫ t

t0

G(s, xs)dws (2)

with initial value xt0 , coefficients f : [t0, t]×R
d → R

d,
G : [t0, t] × R

d → R
d×m and {wt}t∈[t0,t] being an

m-dimensional Wiener process (Brownian motion)
are used in many applications to model classical
problems in physics and engineering under random
disturbances. The theory of such equations and their
solutions being stochastic processes can be found in
[1] or [12], for example.

The motivation for this work is the desire for ul-
timately investigating mechanical systems under
stochastic excitations depending on parameters. The
purpose of this article is thus to consider SDEs
whose initial value xt0 and coefficients f and G
depend on parameters. The uncertainty of these
parameters can be modelled by random variables
which requires the assumption of certain probability
distributions. But in practice, there may only be
scarce information available like a small sample size

or estimates on the mean value and the variance.
Hence, the classical probabilistic approach might
involve tacit assumptions that cannot be verified
and the need for alternative uncertainty models may
arise (for a general discussion see for example [24]).
Among those alternative models are random sets
which can be interpreted as imprecise observations
of random variables, that is, instead of a single value
one assigns a set which is supposed to include the
actual value to each of the elements of the under-
lying probability space. It has been demonstrated
in [23, 25, 26] how random intervals constructed
from Tchebycheff’s inequality can serve as a non-
parametric model of the variability of a parameter,
given its mean value and variance as sole information.

We will start in Section 2 with a rather detailed
review of the basic theory of stochastic processes
and measurability of random sets which is necessary
to understand the definitions and propositions of
Section 3 where conditions will be given under
which solution processes continuously depend on
the parameters contained in xt0 , f and G. We will
show that this continuity together with using random
compact sets for modelling parameter uncertainty
leads to set-valued processes with compact values
which are continuous with respect to the Hausdorff
metric. Section 4 discusses possible definitions
of analogues of first entrance times for set-valued
processes and their representability by first entrance
times of selections. In Section 5 an example is given
to illustrate the theoretical concept developed in the
foregoing sections.

We point out that this article addresses the case where
f and G are R

d-valued coefficient functions depending
on random set parameters. This is in contrast with
the case where f and G are functions taking values
in the space of (closed) subsets of R

d which is dis-
cussed in [15, 18, 19, 20, 27, 28]. Note that the latter



approach could also be applied to the case of single-
valued coefficients involving set-valued (even time de-
pendent) parameters. But one substantial restriction
is that a set-valued coefficient G in the noise term can
lead to unbounded random sets in the solution process
(even in very simple examples - see [27], Theorem
1) whereas using the method proposed in this paper
leads to compact values when random compact sets
are used to model parameter uncertainty. Of course,
instead of random sets we could use fuzzy sets. But
since each fuzzy set can be interpreted as a conso-
nant random set on the interval [0, 1] as underlying
probability space, dealing with random sets is more
general.

2 Preliminaries

2.1 Stochastic Processes

Throughout this section let (Ω,Σ, P ) denote a proba-
bility space with σ-algebra Σ and probability measure
P and let (T, r) and (E, ρ) be metric spaces. A sto-
chastic process is a map

x : T × Ω → E, ω 7→ xt(ω) = x(t, ω)

such that for each t ∈ T the map

xt : Ω → E, ω 7→ xt(ω)

is a random variable, that is, it is measurable. For
fixed ω ∈ Ω the map

x·(ω) : T → E, t 7→ xt(ω)

is called sample function. Very often properties of
stochastic processes cannot be verified for all ω ∈ Ω
but only for almost all ω, that is, for some subset of Ω
whose probability is 1. That is why the term version
is frequently used. Two stochastic processes x and
x̃ are called versions of each other (or stochastically
equivalent) if for all t ∈ T it holds that

P ({ω : xt(ω) = x̃t(ω)}) = 1.

The first property that should be mentioned here is
separability.

Definition 1. ([5, 11]) Suppose that (T, r) is separa-
ble. A stochastic process x : T ×Ω → E is said to be
separable if there exists a dense countable subset D
of T and a set N ∈ Σ of measure 0 such that for each
open subset G ⊆ T and every closed subset F ⊆ E

the two sets

{ω : ∀t ∈ G ∩ D : xt(ω) ∈ F}

{ω : ∀t ∈ G : xt(ω) ∈ F}

differ at most in N .

Hence, one could say that separability means that
considering x for countably many t ∈ T is enough
to observe the behavior of the whole process. The fol-
lowing theorem whose proof can for example be found
in [5] or [11] is fundamental for the theory of stochas-
tic processes.

Theorem 1. ([5, 11]) Suppose that T is separable
and E is compact. Then for any stochastic process
x : T × Ω → E there is a separable version.

Note that if E is only locally compact (which is the
case if E = R

d) then one can always find a separable
version in some compactification of E and its values
are still in E with probability 1 for each t ∈ T .

Definition 2. A stochastic process is called (almost
surely) continuous if (almost) all sample functions are
continuous.

Recall that a probability space (Ω,Σ, P ) is said to be
complete if all subsets of sets N ∈ Σ with P (N) = 0
are measurable, that is, lie in Σ. The completion of a

probability space (Ω,Σ, P ) is denoted (Ω,Σ
P

, P ).

Proposition 1. ([10]) Suppose that (T, r) is separa-
ble and (Ω,Σ, P ) is complete. Then a separable sto-
chastic process which has an almost surely continuous
version is almost surely continuous itself.

The next theorem states the so-called Kolmogorov-
Chentsov criterion for almost sure continuity of sam-
ple functions.

Theorem 2. ([16]) Let T = R
p, let (E, ρ) be

a complete metric space. Suppose that a process
x : T × Ω → E satisfies for some positive constants
α, β, γ the following condition

E(ρ(xs, xt)
α) ≤ γ ‖s− t‖p+β ∀s, t ∈ T = R

p. (3)

Then x has an almost surely continuous version.

In the situation of the above Theorem 2, separability
of x implies almost sure continuity of x if (Ω,Σ, P ) is
complete.

Definition 3. A stochastic process x : T × Ω → E is
called measurable if x is a measurable function with
respect to the product-σ-algebra B(T )⊗Σ where B(T )
denotes the Borel-σ-algebra of (T, r).

Theorem 3. ([13]) Suppose that T is separable.
Then a continuous process x : T × Ω → E is mea-
surable.

In the case where it is only known that almost all
sample functions are continuous one can construct a
version possessing only continuous sample functions
by choosing a continuous sample path and replacing
all discontinuous sample functions with this path.



2.2 Random Sets

A random set is a random variable whose values
are sets. It is usual to consider random closed
sets, that is, random variables whose values are
closed subsets of some topological space E. The
Borel-σ-algebra on E is denoted by B(E) while G(E),
F(E) and K(E) denote, respectively, the family of
open, closed and compact subsets of E. By F ′(E) and
K′(E) we mean F(E)\{∅} and K(E)\{∅}, respectively.

Again let (Ω,Σ, P ) be a probability space. As with
random variables a random closed set A : Ω → F(E)
has to fulfill some measurability condition. We shall
demand that

A−(B) = {ω : A(ω)∩B 6= ∅} ∈ Σ, ∀B ∈ B(E). (4)

For other measurability definitions for set-valued
maps we refer to [2, 13], for example. Furthermore,
we call A a random compact set if Condition (4) is
satisfied and for all ω ∈ Ω it holds that A(ω) ∈ K(E).

One can view a random set A as a collection of ran-
dom variables that fit inside A. Such single-valued
measurable functions α : Ω → E fulfilling

α(ω) ∈ A(ω), ∀ω ∈ Ω

are called selections of A. Let S(A) denote the set of
all measurable selections of A. The following theorem
which is referred to as the Fundamental Measurabil-
ity Theorem gives conditions for the measurability of
random closed sets and the existence of measurable
selections. For its proof and related results see [2]
and [13].

Theorem 4. ([2, 13]) Suppose that (E, ρ) is a com-
plete separable metric space. Let A : Ω → F ′(E) be a
set-valued mapping with non-empty values. Consider
the following properties:

(i) For all B ∈ B(E) it holds that A−(B) ∈ Σ,

(ii) for all F ∈ F(E) it holds that A−(F ) ∈ Σ,

(iii) for all G ∈ G(E) it holds that A−(G) ∈ Σ,

(iv) there is a Castaing representation of A, that is, a
sequence {αn}n∈N of measurable selections such
that for all ω ∈ Ω

A(ω) = cl({αn(ω)}n∈N)

where cl denotes the closure in E,

(v) for all x ∈ E the function ω 7→ infy∈A(ω) ρ(x, y)
is measurable,

(vi) the graph of A belongs to Σ ⊗ B(E).

Then the following implications hold:

(i)⇒(ii)⇒(iii)⇔(iv)⇔(v)⇒(vi)

If (Ω,Σ, P ) is a complete probability space then all
properties are equivalent.

Note that in the literature (for example in [22]) one
can also find “almost all” versions of the above theo-
rem and definitions. For further background informa-
tion on random sets see [21, 22, 29].

3 Stochastic Differential Equations

with Random Set Parameters

3.1 Deterministic parameters

Let us consider stochastic differential equations of the
form (2) whose initial value xt0 and coefficients f and
G depend on some vector a = (a1, . . . , ap) ∈ A of
parameters where A ⊆ R

p denotes the set of possi-
ble parameter values, that is, we consider differential
equations of the form

xt,a = xt0,a +

∫ t

t0

f(s, a, xs,a)ds +

∫ t

t0

G(s, a, xs,a)dws

(5)
where t0 ≤ t ≤ t < ∞, a ∈ A, wt denotes an m-
dimensional Wiener process on a probability space
(Ω,Σ, P ) and

xt0 : A × Ω → R
d, (a, ω) 7→ xt0,a(ω),

f : [t0, t] × A × R
d → R

d, (t, a, x) 7→ f(t, a, x),
G : [t0, t] × A × R

d → R
d×m, (t, a, x) 7→ G(t, a, x).

Assume that for each a ∈ A the partial maps f(·, a, ·)
and G(·, a, ·) are measurable functions and the usual
conditions for the existence of a solution process ([1,
12]) are fulfilled, that is,

(IV) xt0,a is a random variable independent of the
increments wt − wt0 for t ≥ t0.

(Lip) Lipschitz condition: There is a constant L > 0
such that for all t ∈ [t0, t] and all x, y ∈ R

d it
holds that

‖f(t, a, x) − f(t, a, y)‖

+ ‖G(t, a, x) − G(t, a, y)‖ ≤ L‖x − y‖.

(RG) Restriction on growth: There is a constant
K > 0 such that for all t ∈ [t0, t] and all x ∈ R

d

it holds that

‖f(t, a, x)‖2 + ‖G(t, a, x)‖2 ≤ K(1 + ‖x‖2).



Note that the constants L and K can depend on a.
If the above conditions are fulfilled we get for each
a ∈ A a solution process {xt}t∈[t0,t] = {xt,a}t∈[t0,t],
which leads to a map of the form

x : [t0, t] × A × Ω → R
d, (t, a, ω) 7→ xt,a(ω). (6)

Since for each a ∈ A and each t ∈ [t0, t] the partial
map xt,a = x(t, a, ·) : Ω → R

d is measurable, (6) can
be interpreted as a stochastic process on [t0, t] × A

which is a metric space. Hence, according to Theo-
rem 1, we can assume x to be separable.

Looking at the process x defined by Equation (6) the
question arises if it is continuous in (t, a). From Itô’s
theory it is well-known that for fixed a ∈ A the solu-
tion process {xt,a}t∈[t0,t] is continuous in t. Further-
more, it fulfills the inequality in Theorem 2 (see [1] or
[12]), that is, there is some constant C such that for
all s, t ∈ [t0, t]

E(‖xt − xs‖
2n) ≤ C|t − s|n, t, s ∈ [t0, t] (7)

holds if the 2n-th moment of the initial value is finite.
The next proposition will give conditions under which
the corresponding inequality with respect to t and a
is fulfilled on a bounded subset of [t0, t] × A.

Proposition 2. Let {xt,a}(t,a)∈[t0,t]×A
denote the

process defined by Equation (6), let U ⊆ A be an ar-
bitrary bounded subset of A and let n ∈ N. Assume
that Conditions (IV), (Lip) and (RG) are fulfilled and
in addition, the following conditions hold:

(C1) L : A → R≥0 from (Lip) and K : A → R≥0

from (RG) are bounded on U .

(C2) Local Lipschitz condition with respect to a: For
all x ∈ R

d there exists a constant L̃ = L̃(U, x) >
0 such that for all t ∈ [t0, t] and for all a, b ∈ U
it holds that

‖f(t, a, x) − f(t, b, x)‖

+ ‖G(t, a, x) − G(t, b, x)‖ ≤ L̃(U, x)‖a − b‖

where the growth of L̃ is bounded by a polyno-
mial in ‖x‖, that is, there is an M = M(U) > 0
and a k = k(U) ∈ N such that for all x ∈ R

d

L̃(U, x) ≤ M(U)(1 + ‖x‖)k.

(C3) The 2nk-th moments of the initial values xt0,a

exist and are bounded on U , that is,

sup
a∈U

E(‖xt0,a‖
2nk) < ∞.

In addition, there is a constant c = c(U, n) such
that for all a, b ∈ U it holds that

E(‖xt0,a − xt0,b‖
2n) ≤ c‖a − b‖2n.

Then there is a constant C = C(U, n) > 0 such that
for all s, t ∈ [t0, t] and for all a, b ∈ U the following
inequality holds

E(‖xs,a − xt,b‖
2n) ≤ C

∥

∥

∥

∥

(

s − t
a − b

)
∥

∥

∥

∥

n

. (8)

The rather technical proof is omitted since it is similar
to the proof of (7) (see [1, 12]).

Now, we can conclude that a separable version of our
process (6) is almost surely continuous with respect
to (t, a) if the conditions of the above proposition are
satisfied for n ∈ N big enough.

Proposition 3. The stochastic process
{xt,a}(t,a)∈[t0,t]×A

defined by (6) is almost surely con-
tinuous with respect to (t, a) if there is an n ≥ p + 2
such that the conditions of Proposition 2 are satisfied
for each bounded subset U ⊆ A.

Proof. Let c ∈ A and let U(c) ⊆ A denote a bounded
neighborhood of c. Since the conditions of Proposi-
tion 2 are fulfilled for some n ≥ p+2 we know that (8)
holds for all (s, a), (t, b) ∈ [t0, t] × U(c) which means
that, according to Proposition 1, x is an almost surely
continuous process on [t0, t]×U(c), that is, there is a
measure-zero set N(c) ∈ Σ such that for all ω ∈ N(c)c

the sample function x·,·(ω) is continuous. Since A can
be covered by bounded neighborhoods of countably
many c ∈ A the set N c =

⋂

c N(c)c is measurable and
has probability 1 which means that x is an almost
surely continuous process on [t0, t] × A.

If we replace, as described at the end of Section 2.1,
{xt,a}(t,a)∈[t0,t]×A

by a continuous version, we can in-
fer measurability from Theorem 3.

Corollary 1. Let A ∈ B(Rp) be a Borel set and
let {xt,a}(t,a)∈[t0,t]×A

be a continuous process of the
form (6). If we choose an ω ∈ Ω such that x·,·(ω) is
continuous and replace all discontinuous sample func-
tions by x·,·(ω) we get a continuous version which is,
according to Theorem 3, measurable with respect to
B([t0, t]) ⊗ B(A) ⊗ Σ.

3.2 Parameters modelled by random
variables

From now on the probability space on which the
Wiener process {wt}t≥t0 is defined shall be denoted
(Ωw,Σw, Pw). We assume that the stochastic process
{xt,a}(t,a)∈[t0,t]×A

defined by Equation (6) is measur-

able with respect to the product-σ-algebra B([t0, t])⊗
B(A) ⊗ Σw and all sample functions are continuous
on [t0, t] × A. The measurability of x allows us to
model the parameter uncertainty of a by a random



variable, that is, a measurable function α : ΩA → A on
some probability space (ΩA,ΣA, PA). Consequently,
the map

α̂ : [t0, t] × ΩA × Ωw → [t0, t] × A × Ωw

(t, ωA, ωw) 7→ (t, α(ωA), ωw)

is measurable with respect to the product σ-algebra
B([t0, t])⊗ΣA ⊗Σw. Composing α̂ and x leads to the
measurable map ξ = x ◦ α̂

ξ : [t0, t] × ΩA × Ωw → R
d

(t, ωA, ωw) 7→ x(t, α(ωA), ωw)
(9)

which can be interpreted as a stochastic process
{ξt}t∈[t0,t] on the time interval [t0, t] and the prod-
uct space (Ω,Σ, P ) = (ΩA × Ωw,ΣA ⊗ Σw, PA ⊗ Pw).

Proposition 4. The map ξ defined by (9) can
be interpreted as a stochastic process {ξt}t∈[t0,t] on

the time interval [t0, t] and the probability space
(Ω,Σ, P ). The process {ξt}t∈[t0,t] is measurable and
all sample functions are continuous.

Proof. The map ξ = x◦ α̂ is measurable since it is the
composition of the two measurable functions α̂ and x
where the domain of x is the same measure space as
the range of α̂. Consequently, for each t ∈ [t0, t] the
partial map

ξt : Ω → R
d, ω 7→ xt,α(ωA)(ωw)

is a random variable which means that ξ is a measur-
able stochastic process. Note that for each a ∈ A and
each ωw ∈ Ωw the partial map x·,a(ωw) is continuous
because the sample function x·,·(ωw) is continuous.
Since for all ωA we have α(ωA) ∈ A we can infer that
ξ·(ω) = x·,α(ωA)(ωw) is continuous for all ω ∈ Ω.

3.3 Parameters modelled by random sets

The uncertainty of the parameter a in Equation (5)
shall now be modelled by a random compact set

A : ΩA → K′(A)

where K′(A) denotes the set of all non-empty compact
subsets of R

p being also a subset of A. Then we can
define a set-valued function X by

X : (t, ω) 7→ {xt,a(ωw) : a ∈ A(ωA)} (10)

where (t, ω) ∈ [t0, t] × Ω and x is the process defined
by (6) which is still assumed to be measurable and
continuous. The next proposition states that X is a
set-valued process with compact values, that is, for
each t ∈ [t0, t] it holds that Xt is a random compact
set which particularly means that the measurability
condition (4) is fulfilled.

Proposition 5. Let A : ΩA → K′(A) be a random
compact set and let X be the set-valued map defined
by Equation (10). Then the following holds:

1. X can be interpreted as a set-valued process on
the time interval [t0, t] and the completed prob-

ability space (Ω,Σ
P

, P ) with values in K′(Rd),

2. All sample functions of X are continuous with
respect to the Hausdorff-metric H on K′(Rd).

3. X is measurable with respect to the product-σ-

algebra B([t0, t]) ⊗ ΣA ⊗ Σw
PA⊗Pw

.

4. For a Castaing representation {αn}n∈N of A the
processes {ξn}n∈N defined by

ξn
t (ω) = xt,αn(ωA)(ωw), (t, ω) ∈ [t0, t] × Ω

form a Castaing representation of X and for each
t ∈ [t0, t] the family {ξn

t }n∈N forms a Castaing
representation of Xt.

Proof. First note that Xt(ω) is a non-empty compact
subset of R

d for all t ∈ [t0, t] and all ω ∈ Ω since
xt,·(ωw) is continuous in a and A(ωA) is a non-empty
compact subset of R

p for all ωA ∈ ΩA. Since for the
proof of the first three statements the Castaing repre-
sentation {ξn}n∈N is used Assertion 4 is proved first.
Hence, we show that for all (t, ω) ∈ [t0, t]×Ω it holds
that

{xt,a(ωw) : a ∈ A(ωA)} = cl({ξn
t (ω)}n∈N).

In fact, since {αn}n∈N is a Castaing representa-
tion of A we know that for all a ∈ A(ωA) there
is a subsequence {αnj

}j∈N such that αnj
(ωA) → a

for j → ∞. Continuity of xt,·(ωw) in a implies
ξ

nj

t (ω) = xt,αnj
(ωA)(ωw) → xt,a(ωw) which means

that xt,a(ωw) ∈ cl({ξn
t (ω)}). On the other hand,

it is clear that αn(ωA) ∈ A(ωA) for all ωA ∈ ΩA,
n ∈ N and consequently ξn

t (ω) ∈ Xt(ω) for all ω ∈ Ω
and n ∈ N. Since Xt(ω) is closed, it holds that
cl({ξn

t (ω)}n∈N) ⊆ Xt(ω). Hence, for each t ∈ [t0, t]
it follows that Xt(ω) = cl({ξn

t (ω)}n∈N) for all ω ∈ Ω.
According to the Fundamental Measurability Theo-
rem 4, this means that Xt is a random compact set
on the completion of the probability space (Ω,Σ, P ),
that is,

(ΩA × Ωw,ΣA ⊗ Σw
PA⊗Pw

, PA ⊗ Pw).

The continuity of X is a consequence of the continuity
of the processes ξn (n ∈ N). Indeed, after recalling
that for A,B ∈ K′(Rd) the Hausdorff-metric H is de-
fined by

H(A,B) = max(sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖)



suppose that for arbitrary ω ∈ Ω there is a t ∈ [t0, t]
and an ε0 > 0 such that for all δ > 0 there is an
s = s(δ) such that |s − t| < δ and

H(Xs(ω), Xt(ω)) ≥ ε0.

Because of the closedness of Xt(ω) and Xs(ω) this
corresponds to the assumption that at least one of
the following two inequalities holds

sup
n∈N

inf
m∈N

‖ξn
s (ω) − ξm

t (ω)‖ ≥ ε0,

sup
m∈N

inf
n∈N

‖ξn
s (ω) − ξm

t (ω)‖ ≥ ε0.

From the first inequality one can infer that there is
an n ∈ N such that for all m ∈ N it holds that

‖ξn
s (ω) − ξm

t (ω)‖ ≥ inf
m∈N

‖ξn
s (ω) − ξm

t (ω)‖ ≥
ε0

2
.

Of course, this inequality also holds for the choice
m = n which leads to

‖ξn
s (ω) − ξn

t (ω)‖ ≥
ε0

2
,

but this would mean that ξn is not continuous at t. If
we apply the same argument to the second inequality
we can conclude that H(Xs(ω), Xt(ω)) ≥ ε0 cannot
hold. Hence, X is a continuous process.

Since K′(Rd) together with the Hausdorff metric H
is a metric space the measurability of X is a direct
consequence of the continuity of all sample functions
X·(ω) and Theorem 3.

The different maps that appeared in this section
together with the underlying measure spaces are
summarized in the following table. (Note that λ and
λp denote the Lebesgue measures on B([t0, t]) and
B(A), respectively.)

map underlying measure space
x ([t0, t] × A × Ωw,

B([t0, t]) ⊗ B(A) ⊗ Σw, λ ⊗ λp ⊗ Pw)

α, A (ΩA,ΣA, PA)

α̂, ξ ([t0, t] × ΩA × Ωw,
B([t0, t]) ⊗ ΣA ⊗ Σw, λ ⊗ PA ⊗ Pw)

X ([t0, t] × ΩA × Ωw,

B([t0, t]) ⊗ ΣA ⊗ Σw
PA⊗Pw

, λ ⊗ PA ⊗ Pw)

4 First Entrance and Inclusion Times

for Set-valued Processes

In many applications, it is useful to observe the first
time where a single-valued stochastic process enters

some subset of the state space or the last time where
it leaves this subset. For example, one could be
interested in the first exceedance of a certain level
by a real-valued process to assess the reliability of
a system described by this process (see for example
[30]). In his book [7], Dynkin discusses the theory
of first entrance and exit times of right-continuous
Markov processes. Other theoretical background can
be found in [4, 17].

For a (single-valued) d-dimensional process {ξt}t∈[t0,t]

on a probability space (Ω,Σ, P ) and a subset B ⊆ R
d

we shall call

τB
ξ : Ω → [t0, t], ω 7→ inf{t : ξt(ω) ∈ B} (11)

the first entrance time of ξ into B. Note that if the
infimum does not exist we set τB

ξ (ω) = t. One can

show (see [7]) that (11) is measurable if B ∈ B(Rd)
and ξ is right-continuous. Furthermore, if ξ is con-
tinuous and B is a closed subset of R

d then τB
ξ is a

stopping time w.r.t. the natural filtration {At}t∈[t0,t]

defined by

At = σ(ξ−1
s (B) : s ∈ [t0, t], B ∈ B(Rd)), (12)

and if B is open then τB
ξ is a stopping time w.r.t. the

right-continuous filtration {At+}t∈[t0,t] where

At+ =
⋂

t<s≤t

As, At+ = At. (13)

If we consider a continuous process {Xt}t∈[t0,t] with

values in K′(Rd) we can define the following two maps
that correspond to (11):

τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ∩ B 6= ∅} (14)

τB : Ω → [t0, t], ω 7→ inf{t : Xt(ω) ⊆ B} (15)

If the infimum does not exist, we set τB(ω) = t or
τB(ω) = t, respectively. We call τB the first entrance
time of X into B, and we call τB the first inclusion
time of X in B.

Considering the natural filtration {Σt}t∈[t0,t] of X de-
fined by

Σt = σ(X−
s (B) : s ∈ [t0, t], B ∈ B(Rd)) ⊆ Σ (16)

the next proposition (which is the set-valued analogue
of Dynkin’s Lemma 4.1 in [7]) gives conditions under
which τB and τB are measurable or even stopping
times w.r.t. the augmented filtration {Σ̂P

t }t∈[t0,t],
that is the ascending family of complete σ-algebras
defined by

Σ̂P
t = σ(Σt ∪N ) ⊆ Σ

P
(17)

where N is the set of all subsets of measure-zero sets
in Σ.



Proposition 6. Suppose that {Xt}t∈[t0,t] is a con-

tinuous K′(Rd)-valued process on a probability space
(Ω,Σ, P ) and {Σt}t∈[t0,t] is its natural filtration de-
fined by (16).

1. If B ∈ G(Rd) is an open subset of R
d then

{ω : τB(ω) ≤ t}, {ω : τB(ω) ≤ t} ∈ Σ̂P
t+.

2. If B ∈ F(Rd) is a closed subset of R
d then

{ω : τB(ω) ≤ t}, {ω : τB(ω) ≤ t} ∈ Σ̂P
t .

Proof. The proof is omitted here since it is very sim-
ilar to the proof of Lemma 4.1 in [7].

An interesting question is if τB and τB can be at-
tained by first entrance times of selections of X. The
next proposition states that this is possible.

Proposition 7. Let X : [t0, t] × Ω → K′(Rd) be a
continuous set-valued process with non-empty com-
pact values and let B ⊆ R

d be an arbitrary subset of
R

d. Then for all ω ∈ Ω it holds that

inf
ξ∈S(X)

τB
ξ (ω) = τB(ω),

sup
ξ∈S(X)

τB
ξ (ω) ≤ τB(ω).

If (Ω,Σ, P ) is complete and B ∈ G(Rd) then for all
ω ∈ Ω the second inequality becomes an equality.

Proof. The equality for τB and the inequality for τB

can be seen easily by using the equation

Xt(ω) = {ξt(ω) : ξ ∈ S(X)}

which holds for all t ∈ [t0, t] and ω ∈ Ω. If (Ω,Σ, P )
is complete and B is an open subset of R

d then τB is
Σ-measurable by Proposition 6. Consider the map

Y : (t, ω) 7→

{

Xt(ω) if τB(ω) ≤ t

Xt(ω) ∩ Bc if τB(ω) > t

which has non-empty closed values. Note that

M = {(t, ω) ∈ [t0, t] × Ω : τB(ω) ≤ t} ∈ B([t0, t]) ⊗ Σ

since (t, ω) 7→ τB(ω) − t is a measurable function.
Furthermore, it can be checked easily that for any
C ∈ B(Rd) it holds that

Y −(C) = (X−(C) ∩ M) ∪ (X−(Bc ∩ C) ∩ M c)

which means that Y is a random closed set. From
Theorem 4 one can infer that there is a selection ξ ∈
S(Y ) which implies that τB

ξ (ω) = τB(ω) for all ω ∈ Ω.
Since Y (ω) ⊆ X(ω) for all ω ∈ Ω the map ξ is also a
selection of X.

For a set-valued process defined by (10) which fulfills
the conditions of Proposition 5 we can consider for
each α ∈ S(A) and a ∈ A the special entrance times

τB
α : ω 7→ inf{t ∈ [t0, t] : xt,α(ωA)(ωw) ∈ B},

τB
a : ωw 7→ inf{t ∈ [t0, t] : xt,a(ωw) ∈ B}.

Proposition 8. Let X : [t0, t] × Ω → K′(Rd) be a
set-valued process defined by (10) which fulfills the
conditions of Proposition 5. Then the following rela-
tions hold for all ω ∈ Ω

inf
a∈A(ωA)

τB
a (ωw) = inf

α∈S(A)
τB
α (ω) = inf

ξ∈S(X)
τB
ξ (ω)

sup
a∈A(ωA)

τB
a (ωw) = sup

α∈S(A)

τB
α (ω) ≤ sup

ξ∈S(X)

τB
ξ (ω).

Proof. Let ω ∈ Ω. Note that τB
α (ω) = τB

α(ωA)(ωw) for

all α ∈ S(A) and A(ωA) = {α(ωA) : α ∈ S(A)}. Then
in both lines the left equality is obvious. According
to Proposition 7 the second equality in the first line
is proved by showing

inf
a∈A(ωA)

τB
a (ωw) = τB(ω).

From the relations {x·,α : α ∈ S(A)} ⊆ S(X) and
τB
x
·,α

(ω) = τB
α (ω) we get the inequality in the second

line.

This means that for processes of the form (10) the
first entrance time τB can be attained by observing
the first entrance times of the special selections x·,a or
x·,α. This can be useful for the practical calculation
of τB . Unfortunately, there does not seem to be an
obvious condition under which the attainability of τB

holds.

5 Example

In the following we shall give an illuminating example
how the concept described in the foregoing sections
can be applied to problems from structural mechanics
where systems of ODEs of order one and two play an
important role.

For the sake of simplicity we consider the so-called
Langevin equation

dxt = −a1xtdt + a2dwt

with initial value x0 where wt is a one dimensional
Wiener process, a1 > 0 and a2 ∈ R (d = m = 1,
t0 = 0). Its unique solution is the so-called Ornstein-
Uhlenbeck process

xt = e−a1tx0 + a2

∫ t

0

e−a1(t−s)dws (18)



which is a Gaussian stochastic process if and only if
x0 is normally distributed or constant. For modelling
the uncertainty of the parameters a1 and a2 we shall
use the following two finite random sets

A1 : ωA11 7→ [1, 3], PA1(ωA11) = 2/5
ωA12 7→ [2, 4], PA1(ωA12) = 3/5

A2 : ωA21 7→ [0.5, 1.5], PA2(ωA21) = 1/3
ωA22 7→ [1, 2], PA2(ωA22) = 2/3

which can be written in the shorter form

A1 = {([1, 3], 2/5), ([2, 4], 3/5)},

A2 = {([0.5, 1.5], 1/3), ([1, 2], 2/3)}.

From these random sets we construct the follow-
ing joint random set on a probability space ΩA =
{ωAi}1≤i≤4 with values in K′(R2)

A = {([1, 3] × [0.5, 1.5], 2/15), ([1, 3] × [1, 2], 4/15),

([2, 4] × [0.5, 1.5], 1/5), ([2, 4] × [1, 2], 2/5)}

by taking as focal elements the Cartesian products of
each focal element of the first with each focal element
of the second random set and multiplying the respec-
tive weights. This is a kind of independence which is
called random set independence (see [3, 8, 9]). Ac-
cording to Equation (10) we get a set-valued process
X with values in K′(R) which can be bounded by the
single-valued processes L and U defined by

Lt(ω) = inf
x∈Xt(ω)

x, Ut(ω) = sup
x∈Xt(ω)

x.

Furthermore, we consider the selection

α : ωA1 7→ (1.7, 1.1), PA(ωA1) = 2/15
ωA2 7→ (2.3, 1.5), PA(ωA2) = 4/15
ωA3 7→ (3.0, 0.9), PA(ωA3) = 1/5
ωA4 7→ (3.2, 1.4), PA(ωA4) = 2/5

and the corresponding process ξ defined by (9).

Figure 1 shows details of sample functions of the
boundary processes L and U (solid lines) with respect
to the same sample function of the Wiener process
and the choice ωA = ωA1. The dashed line shows the
corresponding sample function of ξ. The graphs were
simulated by using the Euler method (see for exam-
ple [14]) with 1000 time steps from t0 = 0 to t = 10,
x0 ≡ 0. The interval [1, 3] × [0.5, 1.5] was discretized
by a grid of 101 × 101 points applying to each of the
grid points the Euler scheme and choosing in each
time step the greatest value for U and the smallest
value for L.
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1

1.5

2
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0 1 2 30.5 1.5 2.5

Figure 1: Sample functions of X (boundaries in solid
lines) and ξ (dashed line).

Figure 2 shows upper and lower cumulative distribu-
tion functions

F t(x) = P (Xt ⊆ (−∞, x)) = P (Ut < x)

F t(x) = P (Xt ∩ (−∞, x) 6= ∅) = P (Lt < x)

of the random set Xt at time t = 10. They were
calculated by simulating 1000 sample functions of the
Wiener process and considering all four possible focal
elements of A. The dashed line shows the cumulative
distribution function Ft,α of the random variable ξt

(t = 10).
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Figure 2: P-box of Xt (solid lines) and cumulative
distribution function of ξt (dashed line) (t = 10).

Finally, one can consider the first entrance times τB ,
τB
α and the first inclusion time τB for B = (0.5,∞).

The corresponding cumulative distribution functions
are displayed in Figure 3.
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Figure 3: CDFs of first entrance time τB and first
inclusion time τB (solid lines), CDF of first entrance
time τB

α (dashed line).

6 Summary and Conclusions

In this paper, we consider ordinary stochastic dif-
ferential equations whose coefficients depend on
parameters. Conditions are given under which
solution processes continuously depend on these
parameters. If this is the case then modelling
parameter uncertainty by using random compact sets
leads to set-valued processes with compact values
which are continuous with respect to the Hausdorff
metric. We show that the single-valued solutions of
the stochastic differential equation under scrutiny
obtained by choosing single parameter values are se-
lections which can be used to represent the set-valued
process. Furthermore, analogues of first entrance
times for set-valued processes are defined and their
attainability by selections is discussed. Finally, an
example is given to illustrate the theoretical concept.

As a topic for future research, we plan the investiga-
tion of further properties of the set-valued processes of
the form (10). Furthermore, this theoretical concept
will be applied to engineering problems (from struc-
tural mechanics) and it will be explored how first en-
trance and inclusion times (defined by (14), (15)) can
be calculated or simulated.
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