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Abstract

Consistent belief functions represent collections of co-
herent or non-contradictory pieces of evidence. As
most operators used to update or elicit evidence do
not preserve consistency, the use of consistent trans-
formations cs[·] in a reasoning process to guarantee
coherence can be desirable. Such transformations are
turn linked to the problem of approximating an arbi-
trary belief function with a consistent one.
We study here the consistent approximation problem
in the case in which distances are measured using clas-
sical Lp norms. We show that, for each choice of the
element we want them to focus on, the partial approx-
imations determined by the L1 and L2 norms coincide,
and can be interpreted as classical focused consistent
transformations. Global L1 and L2 solutions do not
in general coincide, however, nor are they associated
with the highest plausibility element.

Keywords. Consistent belief function, simplicial
complex, approximation, Lp norms.

1 The consistent approximation
problem

Belief functions (b.f.s) [19] are complex objects, in
which different and sometimes contradictory bod-
ies of evidence may coexist, as they mathemati-
cally describe the fusion of possibly conflicting expert
opinions and/or imprecise/ corrupted measurements,
etcetera. Making decisions based on such objects can
then be misleading. This is a well known problem
in classical logics, where the application of inference
rules to inconsistent sets of assumptions or “knowl-
edge bases” may lead to incompatible conclusions, de-
pending on the subset of assumptions we start our
reasoning from.
Consistent belief functions (cs.b.f.s), i.e. belief func-
tions whose non-zero mass events or “focal elements”
have non-empty intersection or “core”, are then par-

ticularly interesting as they represent collections of
coherent or non-contradictory pieces of evidence. In
some situations it may then be desirable to design
a method which, given an arbitrary belief function
b, generates a consistent or non-contradictory belief
function cs[b]: we call this consistent transformation.
Such a transformation is all the more valuable as sev-
eral important operators used to update or elicit evi-
dence represented as belief measures, like Dempster’s
sum [8] and disjunctive combination [21], do not pre-
serve consistency. To guarantee the consistency of a
state of belief we may want to seek a scheme in which
each time new evidence is combined to yield a new
b.f., the consistent transformation cs[·] is applied to
reduce it to a coherent knowledge state.
Now, consistent transformations can be built by solv-
ing a minimization problem of the form cs[b] =
argmincs∈CS dist(b, cs), where dist is some distance
measure between belief functions, and CS denotes the
collection of all consistent b.f.s. We call this the con-
sistent approximation problem. By plugging in dif-
ferent distance functions we get different consistent
transformations.

In this paper, in particular, we study what happens
when using classical Lp norms. Indeed, consistent be-
lief functions correspond to possibility distributions
(Section 2), which are in turn inherently related to
the L∞ norm. Besides, the region of all cs.b.f.s is ge-
ometrically the set of belief functions for which the
L∞ norm of the plausibility distribution is equal to 1.
We can then conjecture that Lp consistent approxima-
tions will be meaningful in terms of degrees of belief.
This is indeed the case.

From a technical point of view, consistent b.f.s do
not live in a single linear space, but in a collection of
higher-dimensional triangles or simplices, called “sim-
plicial complex” [11]. A partial solution has then to
be found separately for each maximal simplex CSx

of the consistent complex CS, i.e., the set of cs.b.f.s
whose core includes the element x. These partial solu-



tions are later to be compared to determine the global
optimal solution.

We will prove here that the partial approximations de-
termined by both the L1 and the L2 norms are unique
and coincide. We will also prove that the L1/L2 con-
sistent approximation onto each component CSx of
CS generates indeed the consistent transformation fo-
cused on x [10, 1], i.e. a new belief function whose
focal elements have the form A′ = A ∪ {x}, where A
is a focal element of the original b.f. b. As we will see,
though, the associated global L1/L2 solutions do not
lie in general on the same component of the consistent
complex.

1.1 Paper outline

After recalling the notions of consistent and conso-
nant belief functions, we will recall their semantics
and stress why it can be desirable to transform a
generic belief function into a consistent one (Section
2). As we pose the approximation problem in a geo-
metric framework, we will briefly recall in Section 3
the geometry of consistent b.f.s. As the latter form a
complex, we need to solve the approximation problem
separately for each maximal simplicial component of
such complex (Section 4). After gaining some insight
from the analysis of the binary case (Section 5), we
will proceed to solve the L1 and L2 consistent approx-
imation problems in the general case in Section 6. We
will finally comment and interpret our results.

2 Semantics of consistent belief
functions

2.1 Consistent belief functions

We first recall the basic notions of the theory of evi-
dence, and the definition of consistent belief functions
in particular, to later discuss their semantics [19].

Definition 1 A basic probability assignment (b.p.a.)
on a finite set (frame of discernment [19]) Θ is a set
function mb : 2Θ → [0, 1] on 2Θ .

= {A ⊆ Θ} s.t.

mb(∅) = 0,
∑

A⊆Θ

mb(A) = 1, mb(A) ≥ 0 ∀A ⊆ Θ.

Subsets of Θ associated with non-zero values of mb

are called focal elements (f.e.), and their intersection
core:

Cb
.
=

⋂

A⊆Θ:mb(A) 6=0

A.

Definition 2 The belief function (b.f.) b : 2Θ →
[0, 1] associated with a basic probability assignment mb

on Θ is defined as:

b(A) =
∑

B⊆A

mb(B).

A dual mathematical representation of the evidence
encoded by a belief function b is the plausibility func-
tion (pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A) where

plb(A)
.
= 1 − b(Ac) = 1 −

∑

B⊆Ac

mb(B)

expresses the amount of evidence not against A.
In the theory of evidence a probability function is sim-
ply a special belief function assigning non-zero masses
to singletons only (Bayesian b.f.): mb(A) = 0 |A| > 1.
Consonant belief functions are b.f.s whose f.e.s A1 ⊂
· · · ⊂ Am are nested. Consonant b.f.s always have a
non-empty core, namely their smallest f.e. A1. How-
ever, not all b.f.s whose core is non-empty are conso-
nant.

Definition 3 A belief function is said to be consis-
tent if its core is non-empty.

2.2 Semantics of consistent belief functions

Consistent belief functions (cs.b.f.s) form a signif-
icant class of b.f.s, for several reasons. On one
side, they correspond to possibility distributions,
and form therefore with consonant b.f.s the link be-
tween evidence and possibility theory. More impor-
tantly, though, they are the analogues of consistent,
non-contradictory sets of propositions (“knowledge
bases”) in logics. As maintaining coherence along an
inference process is highly desirable, the utility of an
operator which maps arbitrary belief functions to con-
sistent ones emerges. This is all the more valuable as
several evidence combination rules, like Dempster’s
sum [8] and disjunctive combination [21] do not pre-
serve consistency. To guarantee the consistency of the
knowledge state a scheme like the following (where
we use ⊕ to denote a valid combination rule) can be
brought forward

b1, b2 → b1 ⊕ b2

↓
cs[b1 ⊕ b2], b3 → cs[b1 ⊕ b2] ⊕ b3

↓
cs[cs[b1 ⊕ b2] ⊕ b3]

(1)
in which when new evidence is combined to yield a
new belief state, the consistent transformation cs[·] is
applied to ensure coherence.



2.3 Consistent b.f.s and possibility

distributions

In possibility theory [9, 14], subjective probability is
mathematically described by possibility measures, i.e.
functions Pos : 2Θ → [0, 1] such that Pos(∅) = 0,
Pos(Θ) = 1 and Pos

(
⋃

i Ai

)

= supi Pos(Ai), for any
family of subsets {Ai|Ai ∈ 2Θ, i ∈ I}, where I is an
arbitrary set index.
Each measure Pos is uniquely characterized by a pos-
sibility distribution π : Θ → [0, 1], π(x)

.
= Pos({x}),

via the formula Pos(A) = supx∈A π(x).
A central role in the connection between possibility
and evidence theory [20, 18, 14, 12, 23, 3] is played
by consonant and consistent belief functions. On one
side,

Proposition 1 The plausibility function plb associ-
ated with a b.f. b is a possibility measure iff b is con-
sonant.

On the other, after calling plausibility assignment p̄lb
the restriction of the plausibility function to single-
tons p̄lb(x) = plb({x}) it can be proven that [13, 5]

Proposition 2 The plausibility assignment p̄lb asso-
ciated with a belief function b is the admissible possi-
bility distribution of a possibility measure iff the b.f.
b is consistent.

Consistent b.f.s are then the counterparts of possibil-
ity distributions in the theory of evidence.
A different, powerful semantics comes in terms of con-
sistent knowledge bases.

2.4 Consistent b.f.s as collections of

coherent pieces of evidence

Belief functions are complex objects, in which some-
times contradictory bodies of evidence may coexist, as
they may result from the fusion of possibly conflicting
expert opinions and/or imprecise/corrupted measure-
ments. In formal logics, the application of inference
rules to inconsistent sets of assumptions or “knowl-
edge bases” may lead to incompatible conclusions, de-
pending on the subset of assumptions we start from.
A variety of approaches to solve this problem have
been proposed. These include fragmenting the knowl-
edge base into maximally consistent subsets, limiting
the power of the formalism, or adopting non-classical
semantics [17, 2]. Paris, on his side, tackles the prob-
lem by not assuming each proposition in the knowl-
edge base as a fact, but by attributing to it a certain
degree of belief [16]. This leads to something similar
to a belief function.
A mechanism able to obtain a consistent knowledge
base from an inconsistent one is therefore desirable.

In the theory of evidence such a mechanism can be
described as an operator

cs : B → CS, b 7→ cs[b]

where B, CS denote respectively the set of all b.f.s,
and that of all cs.b.f.s.

2.5 Consistent belief functions and

combination rules

Such a transformation acquires even more impor-
tance when we notice that most operators used to
update/elicit evidence in the theory of evidence do
not preserve consistency.

Definition 4 The orthogonal sum or Dempster’s
sum of two belief functions b1, b2 is a new belief func-
tion b1 ⊕ b2 with b.p.a.

mb1⊕b2(A) =

∑

B∩C=A mb1(B) mb2(C)
∑

B∩C 6=∅ mb1(B) mb2(C)
,

where mbi denotes the b.p.a. associated with bi.
Their disjunctive combination is a new belief function
b1 ∩ b2 with b.p.a.

mb1∩b2(A) =
∑

B∩C=A

mb1(B)mb2 (C).

Their conjunctive combination is instead the b.f. b1∪
b2 with b.p.a.

mb1∪b2(A) =
∑

B∪C=A

mb1(B)mb2 (C).

Now, it is not difficult to prove that:

Proposition 3 If b1, b2 are consistent then b1 ∪ b2 is
also consistent. On the other hand, if b1, b2 are con-
sistent and their cores Cb1 , Cb2 have non-empty inter-
section, then both b1 ⊕ b2 and b1 ∩ b2 are consistent
with core Cb1∩b2 = Cb1 ∩ Cb2 . Finally, if Cb1 ∩ Cb2 = ∅
then b1 ⊕ b2, b1 ∩ b2 are not consistent.

In other words, consistency is preserved by the con-
junctive rule, the price to pay being increasing un-
certainty as new evidence is combined, since the core
of the belief state tends to Θ (complete ignorance).
On the other side, both Dempster’s rule and disjunc-
tive combination preserve consistency only when the
collection of focal elements of b1 and b2 is already con-
sistent (i.e. any intersection A∩B of a f.e. A of b1 and
a f.e. B of b2 is non-empty). As long as the new ev-
idence is consistent with the existing one uncertainty
is reduced. The price to pay is the loss of consistency
in most cases.
The use of a consistent transformation in a reasoning
process (1) would then guarantee consistency, while
allowing the degree of uncertainty affecting our knowl-
edge of the problem to decrease with time.



2.6 Making a belief function consistent

Consistent transformations can be built by solving a
minimization problem of the form

cs[b] = arg min
cs∈CS

dist(b, cs) (2)

where dist is some distance measure between belief
functions, and CS denotes again the collection of all
consistent b.f.s.
We call (2) the consistent approximation problem.
Plugging in different distance functions in (2) we get
different consistent transformations.

In this paper we study what happens when using clas-
sical Lp norms in the approximation problem. As
possibility measures are inherently related to the L∞

norm (see above) cs.b.f.s live in a space linked to such
a norm (Section 3). This leads to suppose that Lp-
based approximations may indeed generate meaning-
ful consistent transformations.

3 The simplicial complex of
consistent belief functions

To solve the consistent approximation problem (2) we
need to understand the structure of the space in which
consistent belief functions live. We can then move
forward and find the projection of b onto this space
by minimizing the chosen distance.

3.1 The consistent complex

A belief function is determined by its N −2, N = 2|Θ|

belief values {b(A) ∅ ( A ( Θ} (since b(∅) = 0,
b(Θ) = 1 for all b.f.s). It can then be thought of
as a vector of RN−2. The collection B of points of
RN−2 which are b.f.s is a “simplex” (in rough words
a higher-dimensional triangle), which we call belief
space. B is the convex closure1

B = Cl(bA, ∅ ( A ⊆ Θ)

of the (“categorical”) belief functions bA assigning all
the mass to a single event A: mb(A) = 1, mb(B) = 0
∀B 6= A. In the belief space the vector b ∈ B which
represents a belief function is the convex combination

b =
∑

∅(A⊆Θ

mb(A)bA (3)

of the vectors bA representing all the categorical belief
functions.

1Here Cl denotes the convex closure operator:
Cl(b1, ..., bk) = {b ∈ B : b = α1b1 + · · · + αkbk,

∑

i
αi =

1, αi ≥ 0 ∀i}.

The geometry of consistent belief functions can be de-
scribed as a structure collection of simplices or sim-
plicial complex [7]. More precisely, CS is the union

CS =
⋃

x∈Θ

Cl(bA, A ∋ x)

of the maximal simplices Cl(bA, A ∋ x) formed by all
the b.f.s with core containing a given element x of Θ.

3.2 Example: the binary case

As an example let us consider a frame of discernment
formed by just two elements, Θ2 = {x, y}. In this
very simple case each belief function b : 2Θ2 → [0, 1]
is completely determined by its belief values b(x), b(y)
as b(Θ) = 1, b(∅) = 0 ∀b ∈ B.
We can then represent each b.f. b as the vector

[b(x) = mb(x), b(y) = mb(y)]′

of RN−2 = R2 (since N = 22 = 4). Since

mb(x) ≥ 0, mb(y) ≥ 0, mb(x) + mb(y) ≤ 1

the set B2 of all the possible belief functions on Θ2 is
the triangle of Figure 1, whose vertices are the points
bΘ = [0, 0]′, bx = [1, 0]′, by = [0, 1]′ which corre-
spond respectively to the vacuous belief function bΘ

(mbΘ(Θ) = 1), the Bayesian b.f. bx with mbx(x) = 1,
and the Bayesian b.f. by with mby (y) = 1. The re-

b =[0,0]'
Θ

b =[0,1]'y

b =[1,0]'
x

b

B

P

m (x)

m (y)
b

b

CS

CS

2

2

x

y

Figure 1: The belief space B for a binary frame is a
triangle of R2 whose vertices are the categorical b.f.s
focused on {x}, {y} and Θ. The probability region is
the segment Cl(bx, by), while all consistent b.f.s live
in the union of the two segments CSx = Cl(bΘ, bx)
and CSy = Cl(bΘ, by).

gion P2 of all the Bayesian b.f.s on Θ2 is the segment
Cl(bx, by). In the binary case consistent belief func-
tions can have as list of focal elements either {{x}, Θ2}



or {{y}, Θ2}. Therefore the space of cs.b.f.s CS2 is
the union of two one-dimensional simplices (line seg-
ments):

CS2 = CSx ∪ CSy = Cl(bΘ, bx) ∪ Cl(bΘ, by).

4 The Lp consistent approximation
problem

4.1 Using norms of the Lp family

The geometry of the binary case hints to a strict rela-
tion between consistent belief functions and Lp norms.
As the plausibility of all the elements of their core is

plb(x) =
∑

A⊇{x}

mb(A) = 1 ∀x ∈ Cb,

the region of consistent b.f.s

CS =
{

b : max
x∈Θ

plb(x) = 1
}

=
{

b : ‖p̄lb‖L∞
= 1

}

is the set of b.f.s for which the L∞ norm of the plau-
sibility distribution is equal to 1. This reinforces the
observation that cs.b.f.s correspond to possibility dis-
tributions (Section 2), which are in turn inherently
related to L∞.
It makes then sense to conjecture that the consistent
transformation we obtain by picking as distance func-
tion in the approximation problem (2) one of the clas-
sical Lp norms

‖b − b′‖L1
=

∑

A⊆Θ |b(A) − b′(A)|,

‖b − b′‖L2
=

√

∑

A⊆Θ(b(A) − b′(A))2,

‖b − b′‖L∞
= maxA⊆Θ{|b(A) − b′(A)|}

will be meaningful.
When looking for a probabilistic approximation p[b] =
arg minp∈P dist(b, p) the use of Lp norms leads indeed
to quite interesting results. The L2 approximation
produces the so-called “orthogonal projection” of b
onto P [6], while, at least in the binary case, the set
of L1/L∞ probabilistic approximations of b coincide
with the set of probabilities dominating b:

P [b]
.
= {p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ}.

4.2 Approximation on a complex

As the consistent complex CS is a collection of lin-
ear spaces (better, simplices which generate a linear
space) solving the problem (2) involves finding a num-
ber of partial solutions

csx
Lp

[b] = arg min
cs∈CSx

‖b − cs‖Lp (4)

Figure 2: To minimize the distance of a point from
a simplicial complex, we need to find all partial so-
lutions (4) for all maximal simplices in the complex
(empty circles), and later compare these partial solu-
tions to select the global optimum (black circle).

(see Figure 2). Then, the distance of b from all such
partial solutions has to be assessed in order to select
a global optimal approximation.
In the rest of the paper we will apply this scheme to
both the approximation problems associated with L1

and L2, respectively.

5 Approximation in the binary case

To get some insight on how to proceed in the general
case, we will first consider the case study of a binary
frame (Figure 3), and discuss how to approximate a
belief function b ∈ B2 with a Bayesian or a consistent
b.f. using an Lp norm. We will denote by

pLp [b]
.
= argmin

p∈P
‖b − p‖Lp

the probability which minimizes the Lp distance from
b. Analogously, we will use the notation

csLp [b]
.
= arg min

cs∈CS
‖b − cs‖Lp

for Lp consistent approximations.
In the Bayesian case we get

pL2
[b] =

[

mb(x) +
mb(Θ)

2
, mb(y) +

mb(Θ)

2

]′

;

this probability is called orthogonal projection π[b] of
b onto P [6], and coincides with the pignistic function
BetP [b] [22, 4] in the binary case.
The L1 solution pL1

[b], instead, is the whole set of
probabilities “dominating” b [15], i.e.,

pL1
[b] = P [b]

.
=

{

p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ
}

. (5)

Figure 3 illustrates the geometry of all Lp Bayesian
and consistent approximations of a belief function b
in the binary frame. We can notice that:



b =[0,0]'
Θ

b =[0,1]'y

b =[1,0]'
x

b

P

m (x)

m (y)
b

b

CS

CS x

y
P[b]=p  [b]

L1

p  [b]=p  [b]=BetP[b]
L2Linf

CS[b]=cs  [b]
Linf

cs  [b]=cs  [b]
L2L1

m (x)+
b

m (y)
b

m (x)−
b

m (y)
b

Figure 3: The dual behavior of Bayesian pLi [b] and
consistent cLi [b] approximations of a b.f. b associated
with the norms L1, L2, L∞ is shown in the binary case.

1. the solution of the L∞ approximation problem
determines an entire set CS[b] of consistent b.f.s;

2. on the other hand, L1/L2 approximations on the
same component CSx of CS are point-wise and
coincide;

3. the corresponding consistent transformation
csx

L2
[b] maps the original belief function b to a

new b.f. with a focal element A ∪ {x} whenever
A is a f.e. of b. The resulting b.p.a. is

mcsx
L2

[b](x) =
∑

A:A∪{x}={x}

mb(A) = mb(x),

mcsx
L2

[b](Θ) =
∑

A:A∪{x}=Θ

mb(A)

= mb(y) + mb(Θ).

4. finally, the global L1/L2 consistent transforma-
tions also coincide, as they belong to the same
component of the consistent complex (CSx in the
figure).

These facts (except the last point, which turns out
to be an artifact of binary frames) are valid in the
general case. Here we are going to focus on L1/L2

approximations.

6 Consistent L1/L2 approximations

6.1 Reducing the approximation problem to

a linear system

In the case of an arbitrary frame a cs.b.f. cs ∈ CSx is
a solution of the L2 partial approximation problem if

b − cs is orthogonal to all the generators bB − bΘ of
the simplex CSx = Cl(bB, B ⊇ {x}):

〈b − cs, bB − bΘ〉 = 〈b − cs, bB〉 = 0 ∀B ⊇ {x}

(as bΘ = 0 is the origin of RN−2, see binary example).
We denote by α(A)

.
= mcs(A) the b.p.a. of cs so that

we can write each consistent belief function whose core
contains {x} as

cs =
∑

A⊇{x}

α(A)bA

(by Equation (3)). After introducing the notation

β(A)
.
= mb(A) − α(A)

we can write b − cs =
∑

A(Θ β(A)bA and the orthog-
onality condition reads as

〈

∑

A(Θ

β(A)bA, bB

〉

= 0 ∀B ⊇ {x}

i.e. (still for ∀B ⊇ {x}),
{

∑

A⊇{x}

β(A)〈bA, bB〉 +
∑

A 6⊃{x}

mb(A)〈bA, bB〉 = 0.

(6)
The L1 minimization problem reads instead as

arg min
~α

{

∑

A⊇{x}

∣

∣

∑

B⊆A

mb(B) −
∑

B⊆A,B⊇{x}

α(B)
∣

∣

}

=

arg min
~β

{

∑

A⊇{x}

∣

∣

∑

B⊆A,B⊇{x}

β(B) +
∑

B⊆A,B 6⊃{x}

mb(B)
∣

∣

}

which is clearly solved by setting all addenda to zero,
obtaining the linear system:
{

∑

B⊆A,B⊇{x}

β(B)+
∑

B⊆A,B 6⊃{x}

mb(B) = 0 ∀A ⊇ {x}.

(7)

6.2 Linear transformation

We are going to show here that the two minimization
problems associated with the linear systems (6) and
(7) coincide. The solution is indeed conserved due
to the fact that the second linear system is obtained
from the first one through a linear transformation.

Lemma 1
∑

B⊇A〈bB, bC〉(−1)|B\A| = 1 if C ⊆ A, 0
otherwise.

Corollary 1 The linear system (6) can be reduced
to the system (7) through a linear transformation of
rows:

rowA 7→
∑

B⊇A

rowB(−1)|B\A|. (8)



Proof. If we apply the linear transformation (8) to
the system (6) we get

∑

B⊇A

[

∑

C⊇{x}

β(C)〈bB , bC〉 +
∑

C 6⊃{x}

mb(C)〈bB , bC〉
]

·

·(−1)|B\A| =
∑

C⊇{x}

β(C)
∑

B⊇A

〈bB, bC〉(−1)|B\A|+

+
∑

C 6⊃{x}

mb(C)
∑

B⊇A

〈bB, bC〉(−1)|B\A| ∀A ⊇ {x}.

Therefore by Lemma 1 we get
∑

C⊇{x},C⊆A

βC +
∑

C 6⊃{x},C⊆A

mb(C) = 0 ∀A ⊇ {x}

i.e. the system of equations (7). �

6.3 Form of the solution

To obtain both the L2 and the L1 consistent approx-
imations of b it then suffices to solve the system (7)
associated with the L1 norm.

Theorem 1 The unique solution of the linear system
(7) is given by

β(A) = −mb(A \ {x}).

Proof. We can prove it by substitution. System (7)
becomes

−
∑

B⊆A,B⊇{x}

mb(B \ {x}) +
∑

B⊆A,B 6⊃{x}

mb(B) =

= −
∑

C⊆A\{x}

mb(C) +
∑

B⊆A,B 6⊃{x}

mb(B) =

= −
∑

C⊆A\{x}

mb(C) +
∑

C⊆A\{x}

mb(C) = 0. �

Therefore, according to what discussed in Section 4,
the partial L1/L2 consistent approximations of b on
the maximal component CSx of the consistent com-
plex have b.p.a.

mcsx
L1

(A) = mcsx
L2

(A) = α(A) = mb(A) − β(A)

= mb(A) + mb(A \ {x})

for all events A such that {x} ⊆ A ( Θ.
The value of α(Θ) can be obtained by normalization:

α(Θ) = 1 −
∑

{x}⊆A(Θ

α(A)

= 1 −
∑

{x}⊆A(Θ

mb(A) + mb(A \ {x})

= 1 −
∑

{x}⊆A(Θ

mb(A) −
∑

{x}⊆A(Θ

mb(A \ {x})

= 1 −
∑

A 6=Θ,{x}c

mb(A) = mb({x}
c) + mb(Θ)

as B 6⊃ {x} iff B = A \ {x} for A = B ∪ {x}.

Corollary 2 The partial L1 and L2 consistent ap-
proximations of a belief function b with b.p.a. mb onto
the component CSx of the consistent complex coincide.
They have b.p.a.

mcsx
L1

(A) = mcsx
L2

(A) = mb(A) + mb(A \ {x})

∀x ∈ Θ, and for all A s.t. {x} ⊆ A ⊆ Θ.

6.4 Partial solutions as focused consistent

transformations

The basic probability assignment of the L1/L2 con-
sistent approximations of b has an elegant expression.
It also has a straightforward interpretation: to get a
consistent b.f. focused on a singleton x, the mass con-
tribution of all the events B such that B ∪ {x} = A
coincide is assigned indeed to A. But there are just
two such events: A itself, and A \ {x}.
As an example, the partial consistent approximation
of a belief function on a frame Θ = {x, y, z, w} with
core {x} is illustrated in Figure 4. The b.f. with focal

Figure 4: A belief function (left) and its L1/L2 con-
sistent approximation with core {x} (right).

elements {y}, {y, z}, and {x, z, w} is transformed by
the map

{y} 7→ {x} ∪ {y} = {x, y},
{y, z} 7→ {x} ∪ {y, z} = {x, y, z},
{x, z, w} 7→ {x} ∪ {x, z, w} = {x, z, w}

into the consistent b.f. with focal elements {x, y},
{x, y, z}, and {x, z, w} and the same b.p.a.

Partial solutions to the L1/L2 consistent approxima-
tion problem turn out to be related to classical in-
ner consonant approximations of a belief function b,
i.e. the set of consonant b.f.s such that c(A) ≥ b(A)
∀A ⊆ Θ (or equivalently plc(A) ≤ plb(A) ∀A).
Dubois and Prade [10] proved indeed that such an ap-
proximation exists iff b is consistent. However, when
b is not consistent a “focused consistent transforma-
tion” can be applied to get a new belief function b′

such that

m′(A ∪ xi) = m(A) ∀A ⊆ Θ

and xi is the element of Θ with highest plausibility.
Theorem 1 and Corollary 2 state that the L1/L2 con-
sistent approximation onto each component CSx of CS
generates the consistent transformation focused on x.



6.5 Global optimal solution for L1

To find the global consistent approximation of b we
need to work out which of the partial approximations
csx

L1/2
[b] has minimal distance from b. To do so we

need to find

argmin
x

‖b − csx
L1/2

[b]‖.

The L1 distance of b from CSx can be computed as

‖b − csx
L1

[b]‖L1
=

∑

A⊆Θ

|b(A) − csx
L1

[b](A)|

=
∑

A 6⊃{x}

|b(A) − 0| +
∑

A⊇{x}

∣

∣b(A) −
∑

B⊆A,B⊇{x}

α(B)
∣

∣

=
∑

A 6⊃{x}

b(A) +
∑

A⊇{x}

∣

∣

∣

∑

B⊆A

mb(B)+

−
∑

B⊆A,B⊇{x}

(

mb(B) + mb(B \ {x})
)

∣

∣

∣

=
∑

A 6⊃{x}

b(A) +
∑

A⊇{x}

∣

∣

∣

∑

B⊆A,B 6⊃{x}

mb(B)+

−
∑

B⊆A,B⊇{x}

mb(B \ {x})
∣

∣

∣
=

∑

A 6⊃{x}

b(A)+

+
∑

A⊇{x}

∣

∣

∣

∑

C⊆A\{x}

mb(C) −
∑

C⊆A\{x}

mb(C)
∣

∣

∣

=
∑

A 6⊃{x}

b(A) =
∑

A⊆{x}c

b(A).

(9)
Immediately,

Theorem 2 The global optimal L1 consistent ap-
proximation of any belief function b is given by

csL1
[b]

.
= arg min

cs∈CS
‖b − csx

L1
[b]‖ = csx̂

L1
[b]

i.e. the partial approximation associated with the ele-
ment x̂ which minimizes (9):

x̂ = argmin
x

{

∑

A⊆{x}c

b(A), x ∈ Θ

}

.

6.6 A counterexample

In the binary case (Figure 3) the condition of Theorem
2 reduces to

x̂ = argmin
x

∑

A⊆{x}c

b(A) = argmin
x

mb({x}
c)

= argmaxx plb(x)

and the global approximation falls on the component
of the consistent complex associated with the element
of maximal plausibility.
Unfortunately, this is not generally the case for arbi-
trary frames of discernment Θ. Let us see this in a

simple counterexample. Let us first write
∑

A⊆{x}c

b(A) =
∑

A⊆{x}c

∑

B⊆A

mb(B) =
∑

B⊆{x}c

mb(B)·

·|{A ⊆ {x}c : A ⊇ B}| =
∑

B⊆{x}c

mb(B) · 2|{x}c|−|B|.

(10)
Now, consider a belief function on a frame Θ =
{x1, ..., xn} of cardinality n, with just two focal el-
ements:

mb(x1) = mx,
mb({x1}c) = mb({x2, ..., xn}) = 1 − mx.

If mx < 1/2 all y 6= x1 have maximal plausibility, as
plb(x1) = 1 − b({x1}c) = mx, while plb(y) = 1 − mx

for all y 6= x. However, according to (10),

‖b − csx1

L1
[b]‖L1

=
∑

A⊆{x1}c

b(A)

= (1 − mx)2n−1−(n−1) = 1 − mx,

where n = |Θ|, while

‖b − csy
L1

[b]‖L1
=

∑

A⊆{y}c

b(A)

= mx2n−1−1 = mx2n−2

∀y 6= x. But when

mx2n−2 ≥ 1 − mx ≡ n ≥ 2 + log2

(1 − mx

mx

)

we have that

‖b − csx1

L1
[b]‖L1

≤ ‖b − csy
L1

[b]‖L1
∀y 6= x1,

and therefore the global L1 consistent approximation
can fall on a component not associated with the max-
imal plausibility element.

6.7 Global optimal solution for L2

In the L2 case we get

‖b − csx
L2

[b]‖2 =
∑

A⊆Θ

(

b(A) − csx
L2

[b](A)
)2

=

=
∑

A⊆Θ

[

∑

B⊆A

mb(B) −
∑

B⊆A,B⊇{x}

α(B)
]2

=

=
∑

A⊆Θ

[

∑

B⊆A

mb(B) −
∑

B⊆A,B⊇{x}

mb(B)+

−
∑

B⊆A,B⊇{x}

mb(B \ {x})
]2

=

=
∑

A 6⊃{x}

(

b(A)
)2

+
∑

A⊇{x}

[

∑

B⊆A,B 6⊃{x}

mb(B)+

−
∑

B⊆A,B⊇{x}

mb(B \ {x})
]2

=
∑

A 6⊃{x}

(

b(A)
)2

+

+
∑

A⊇{x}

[

∑

C⊆A\{x}

mb(C) −
∑

C⊆A\{x}

mb(C)
]2



so that, in analogy with the L1 case,

‖b − csx
L2

[b]‖2 =
∑

A⊆{x}c

(b(A))2.

Theorem 3 The global optimal L2 consistent ap-
proximation of any belief function b is given by

csL2
[b]

.
= arg min

cs∈CS
‖b − csx

L2
[b]‖ = csx̂

L2
[b]

i.e. the partial approximation associated with the ele-
ment

x̂ = argmin
x

{

∑

A⊆{x}c

(b(A))2, x ∈ Θ
}

.

Other simple counterexamples show that the global
L2 consistent approximation can fall on a component
not associated with the maximal plausibility element.

7 Comments and conclusions

Belief functions represent coherent knowledge bases
in the theory of evidence. As consistency is not pre-
served by most operators used to update or elicit ev-
idence, the use of a consistent transformation in con-
junction with those combinations rules can be desir-
able. Consistent transformations are strictly related
to the problem of approximating a generic belief func-
tion with a consistent one.

In this paper we solved the instance of the consis-
tent approximation problem we obtain when measur-
ing distances between uncertainty measures by means
of the classical Lp norms. This makes sense as cs.b.f.s
live in a simplicial complex defined in terms of the L∞

norms, and correspond to possibility distributions. A
partial approximation for each component of the com-
plex has to be found. The conclusions of this study
are the following:
1. partial L1/L2 approximations coincide on each
component of the consistent complex;
2. such partial approximation turns out to be the con-
sistent transformation focused on the given element of
the frame;
3. the corresponding global solutions have not in gen-
eral as core the maximal plausibility element, and may
lie in general on different components of CS.

The interpretation of the polytope of all L∞ solutions
is worth to be fully investigated in the near future, in
the light of the intuition provided by the binary case.
In particular its clear analogy with the polytope of
consistent probabilities will be interesting matter to
study. A natural continuation of this line of research is
obviously the solution of the Lp approximation prob-
lem for consonant belief functions, as counterparts of

possibility measures in the theory of evidence. That
will complete our understanding of the relation be-
tween geometric norms and evidence consistency.

Proof of Lemma 1

We first note that, by definition of dogmatic belief
function bA (Section 3),

〈bB, bC〉 =
∑

D⊇B,C;D 6=Θ

1 =
∑

E((B∪C)c

1 = 2|(B∪C)c|−1.

Hence
∑

B⊆A

〈bB, bC〉(−1)|B\A| =

=
∑

B⊆A

(2|(B∪C)c| − 1)(−1)|B\A|

=
∑

B⊆A

2|(B∪C)c|(−1)|B\A| −
∑

B⊆A

(−1)|B\A|

=
∑

B⊆A

2|(B∪C)c|(−1)|B\A|,

as
∑

B⊆A

(−1)|B\A| =

|B\A|
∑

k=0

1|A
c|−k(−1)k = 0

for Newton’s binomial:

n
∑

k=0

pkqn−k = (p + q)n. (11)

Now, as both B ⊇ A and C ⊇ A the set B can be

Figure 5: Decomposition of B into A+B′+B′′ in the
proof of Lemma 1.

decomposed into the disjoint sum

B = A + B′ + B′′

where

∅ ⊆ B′ ⊆ C \ A, ∅ ⊆ B′′ ⊆ (C ∪ A)c

(see Figure 5), so that the above quantity can be writ-
ten as

∑

∅⊆B′⊆C\A

∑

∅⊆B′′⊆(C∪A)c

2|(A∪C)|c−|B′′|(−1)|B
′|+|B′′| =

∑

∅⊆B′⊆C\A

(−1)|B
′|

∑

∅⊆B′′⊆(C∪A)c

(−1)|B
′′|2|(A∪C)|c−|B′′|



where
∑

∅⊆B′′⊆(C∪A)c

(−1)|B
′′|2|(A∪C)|c−|B′′| = [2+(−1)]|(A∪C)|c

= 1|(A∪C)|c = 1, again for Newton’s binomial (11).
The desired quantity becomes

∑

∅⊆B′⊆C\A

(−1)|B
′|

which is nil for C \A 6= ∅, equal to 1 when C \A = ∅,
i.e. C ⊆ A.

References

[1] P. Baroni, Extending consonant approximations
to capacities, IPMU, 2004, pp. 1127–1134.

[2] D. Batens, C. Mortensen, and G. Priest, Fron-
tiers of paraconsistent logic, Studies in logic and
computation (J.P. Van Bendegem, ed.), vol. 8,
Research Studies Press, 2000.

[3] L. Caro and A. Babak Nadjar, Generalization
of the Dempster-Shafer theory: a fuzzy-valued
measure, IEEE Transactions on Fuzzy Systems
7 (1999), 255–270.

[4] B.R. Cobb and P.P. Shenoy, A comparison of
Bayesian and belief function reasoning, Informa-
tion Systems Frontiers 5 (2003), no. 4, 345–358.

[5] F. Cuzzolin, An interpretation of consistent be-
lief functions in terms of simplicial complexes,
submitted to Information Sciences (2007).

[6] F. Cuzzolin, Two new Bayesian approximations
of belief functions based on convex geometry,
IEEE Trans. on Systems, Man, and Cybernetics
- Part B 37 (2007), no. 4, 993–1008.

[7] F. Cuzzolin, An interpretation of consistent belief
functions in terms of simplicial complexes, Proc.
of ISAIM’08, 2008.

[8] A.P. Dempster, A generalization of Bayesian in-
ference, Journal of the Royal Stat. Soc., Series B
30 (1968), 205–247.

[9] D. Dubois and H. Prade, Possibility theory,
Plenum Press, New York, 1988.

[10] D. Dubois and H. Prade, Consonant approxima-
tions of belief functions, International Journal of
Approximate Reasoning 4 (1990), 419–449.

[11] B.A. Dubrovin, S.P. Novikov, and A.T. Fomenko,
Sovremennaja geometrija. metody i prilozenija,
Nauka, Moscow, 1986.

[12] S. Heilpern, Representation and application of
fuzzy numbers, Fuzzy Sets and Systems 91

(1997), 259–268.

[13] C. Joslyn, Towards an empirical semantics of
possibility through maximum uncertainty, Proc.
IFSA 1991 (R. Lowen and M. Roubens, eds.),
vol. A, 1991, pp. 86–89.

[14] G. J. Klir, W. Zhenyuan, and D. Harmanec, Con-
structing fuzzy measures in expert systems, Fuzzy
Sets and Systems 92 (1997), 251–264.

[15] H. Kyburg, Bayesian and non-Bayesian eviden-
tial updating, Artificial Intelligence 31 (1987),
no. 3, 271–294.

[16] J.B. Paris, D. Picado-Muino, and M. Rose-
field, Information from inconsistent knowledge:
A probability logic approach, Interval / Prob-
abilistic Uncertainty and Non-classical Logics,
Advances in Soft Computing, vol. 46, Springer-
Verlag, Berlin - Heidelberg, 2008.

[17] G. Priest, R. Routley, and J. Norman, Para-
consistent logic: Essays on the inconsistent,
Philosophia Verlag, 1989.

[18] C. Roemer and A. Kandel, Applicability anal-
ysis of fuzzy inference by means of generalized
Dempster-Shafer theory, IEEE Transactions on
Fuzzy Systems 3 (1995), no. 4, 448–453.

[19] G. Shafer, A mathematical theory of evidence,
Princeton University Press, 1976.

[20] Ph. Smets, The transferable belief model and pos-
sibility theory, NAFIPS-90 (Kodratoff Y., ed.),
1990, pp. 215–218.

[21] Ph. Smets, Belief functions : the disjunctive rule
of combination and the generalized Bayesian the-
orem, International Journal of Approximate Rea-
soning 9 (1993), 1–35.

[22] Ph. Smets and R. Kennes, The transferable belief
model, Artificial Intelligence 66 (1994), 191–234.

[23] R. R. Yager, Class of fuzzy measures generated
from a Dempster-Shafer belief structure, Interna-
tional Journal of Intelligent Systems 14 (1999),
1239–1247.


