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Abstract


In this paper we propose a credal representation of
the set of interval probabilities associated with a belief
function, and show how it relates to several classical
Bayesian transformations of belief functions through
the notion of “focus” of a pair of simplices. Start-
ing from the interpretation of the pignistic function
as the center of mass of the credal set of consistent
probabilities, we prove that relative belief and plau-
sibility of singletons and intersection probability can
be described as foci of different pairs of simplices in
the simplex of all probability measures. Such sim-
plices are associated with the lower and upper proba-
bility constraints, respectively. This paves the way for
the formulation of frameworks similar to the transfer-
able belief model for lower, upper, and interval con-
straints.


Keywords. Belief functions, credal sets, Bayesian
transformations, upper and lower simplices, focus.


1 Introduction


Consider a given decision or estimation problem Q.
We assume that the possible answers to Q form a
finite set Θ = {x1, ..., xn} called “frame of discern-
ment”. Given a certain amount of evidence, we are
allowed to describe our belief on the outcome of Q
in several possible ways: the classical option is to as-
sume a probability distribution on Θ. However, as
we may need to incorporate imprecise measurements
and people’s opinions in our knowledge state, or cope
with missing or scarce information, a more sensible
approach is to assume that we have no access to the
“correct” probability distribution. The available ev-
idence, though, provides us with some sort of con-
straint on this true distribution.
Such a constraint is often given in the form of a credal
set, i.e., the convex set of probability distributions
maintained by the agent [14]. A specific class of credal
sets is formed by belief functions [16]. Even though


in their original definition [16] belief functions are de-
fined as set functions b : 2Θ → [0, 1] on the power set
2Θ of a finite universe Θ, they are equivalent to a set
of linear constraints determining a credal set. Belief
functions are a popular tool for representing uncertain
knowledge under scarce information, as they can nat-
urally cope with ignorance, qualitative judgements,
and missing data.
Their credal interpretation is at the core of a widely
adopted approach to the theory of evidence, the
“Transferable Belief Model” (TBM) [20, 21]. In the
TBM, decisions are made by resorting to a probabil-
ity called “pignistic function”. Based on a number of
rationality principles, the pignistic function has a nice
geometric interpretation as the center of mass of the
credal set of probability measures “consistent” with b,
i.e. the probabilities that dominate b on all the events
A: P [b]


.
=


{


p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ
}


(here P
denotes the set of all the probability measures on Θ).


The relation between belief and probability mea-
sures or “Bayesian belief functions” has been widely
studied in the context of the theory of evidence
[1, 10, 11, 13, 26, 27], often with different goals. While
some authors have looked for efficient implementa-
tions of the rule of combination [15, 23], others have
argued that Bayesian and belief calculi have the same
expressive power as each model can be transformed
into the other.
An approach to the Bayesian transformation prob-
lem seeks approximations which enjoy commutativ-
ity properties with respect to some evidence com-
bination rule, in particular the original Dempster’s
sum [9]. Voorbraak [24] was probably the first to ex-
plore this direction. He proposed to adopt the rela-
tive plausibility of singletons, i.e., the unique proba-
bility that, given a belief function b with plausibility
plb : 2Θ → [0, 1], plb(A) = 1 − b(Ac), assigns to each
element x ∈ Θ of the domain its normalized plausi-
bility. Cobb and Shenoy later analyzed its properties
in detail [3]. More recently, a dual relative belief of
singletons has been investigated in terms of both its







semantics [7] and its properties with respect to Demp-
ster’s rule. The condition under which some of those
transformations coincide has been studied in [4].
Unlike the case of the pignistic transformation, a
credal semantic is still lacking for most other major
Bayesian approximations of belief functions. More-
over, not all such transformations are consistent with
the original belief function, i.e., they do not necessar-
ily fall into the corresponding credal set. We address
this issue here in the framework of “probability in-
tervals”. An admissible constraint on the true prob-
ability p which describes the given problem Q can
be provided by enforcing lower and upper bounds on
its probability values on the elements of the frame Θ.
What we get is a set of probability intervals [8, 22, 25]:


{


l(x) ≤ p(x) ≤ u(x), ∀x ∈ Θ
}


. (1)


Probability intervals are themselves a special class of
credal sets. Besides, each belief function determines
itself such a set of intervals, in which the lower bound
to p(x) is the belief value b(x) on x, while its upper
bound is the plausibility value plb(x) = 1 − b({x}c):


P [b, plb]
.
=


{


p ∈ P : b(x) ≤ p(x) ≤ plb(x), ∀x ∈ Θ
}


.
(2)


The credal set (2) determined by the set of probability
intervals associated with a belief function is strictly
related to the credal set of consistent probabilities.
More precisely, it is the intersection of two higher-
dimensional triangles or “simplices”: A “lower sim-
plex” T 1[b] determined by the lower bound constraint
b(x) ≤ p(x), and an “upper simplex” T n−1[b] deter-
mined by the upper bound constraint p(x) ≤ plb(x).


1.1 Contribution


We can exploit the different credal sets associated
with a belief function to provide several important
Bayesian transformations with a credal semantic sim-
ilar to that of the pignistic transformation. In this
paper we focus on relative plausibility [24] and be-
lief [7] of singletons, and on the so-called intersection
probability, a new Bayesian approximation introduced
in [5]. We prove that each of the above transfor-
mations can be geometrically described in a homo-
geneous fashion as the focus f(S, T ) of a pair S, T of
simplices, i.e., the unique point which has the same
coordinates w.r.t. the two simplices. When the focus
of two simplices falls into their intersection, it is the
unique intersection of the lines joining corresponding
vertices of S and T (see Figure 1).


Here we consider the pairs of simplices {P , T 1[b]},
{P , T n−1[b]}, {T 1[b], T n−1[b]}. We prove that, while
the relative belief of singletons is the focus of
{P , T 1[b]}, the relative plausibility of singletons is the
focus of {P , T n−1[b]} and the intersection probability


Figure 1: The focus f of a pair of simplices (e.g. two
triangles S, T in the 2-D case) is the unique intersec-
tion of the lines joining their corresponding vertices.


that of {T 1[b], T n−1[b]}.
Their respective focal coordinates encode major fea-
tures of the underlying belief function: the total mass
it assigns to singletons, their total plausibility, and
the fraction of the related probability intervals which
determines the intersection probability.
This provides a consistent, comprehensive credal se-
mantics for a wide family of Bayesian transformations
in terms of geometric loci in the probability simplex.
In perspective, this paves the way for TBM-like frame-
works based on those same transformations.


1.2 Paper outline


We start by recalling the credal interpretation of be-
lief functions and interval probabilities as convex con-
straints on the value of the unknown probability dis-
tribution assumed to describe the problem (Section
2). In particular we focus on the credal sets of prob-
abilities consistent with a belief function and a set of
probability intervals, respectively, and introduce what
we call the “lower” and “upper” simplices, i.e. the sets
of probability measures which meet the lower and up-
per probability constraints on singletons.
As the pignistic function has a strong credal interpre-
tation in its capacity of center of mass of the polytope
of consistent probabilities, we can conjecture the ex-
istence of an analogous credal interpretation for other
major Bayesian transformations of belief functions
(Section 3).
Drawing inspiration from the ternary case, we prove in
Section 4 that all the considered probability transfor-
mations (relative belief and plausibility of singletons,
intersection probability) are geometrically the foci of
different pairs of simplices, and discuss the meaning of
the map associated with a focus in terms of mass as-
signment. Finally, in Section 5 we comment on those
results, and outline alternative reasoning frameworks







based on the introduced credal interpretations of up-
per and lower probability constraints and the associ-
ated probability transformations.


2 Credal semantics of belief functions


and probability intervals


Belief functions and probability intervals are different
but related mathematical representations of the bod-
ies of evidence we possess on a given decision or es-
timation problem Q. They determine different credal
sets or sets of probability distributions on Θ.


2.1 Credal interpretation of belief functions


A belief function (BF) b : 2Θ → [0, 1] on a finite set
or “frame” Θ has the form


b(A) =
∑


B⊆A


mb(B), (3)


where mb : 2Θ → [0, 1] is a set function called “basic
probability assignment” (b.p.a.) or “basic belief as-
signment”, and is such that mb(A) ≥ 0 ∀A ⊆ Θ and
∑


A⊆Θ mb(A) = 1.
Events A ⊆ Θ such that mb(A) 6= 0 are called “focal
elements”. Bayesian BFs are belief functions which
assign non-zero mass to singletons only: mb(A) = 0
∀A : |A| > 1.
In the following we denote by bA the unique categor-
ical belief function assigning unitary mass to a single
event A: mbA


(A) = 1, mbA
(B) = 0 ∀B 6= A. We can


then write each belief function b with b.p.a. mb as [6]


b =
∑


A⊆Θ


mb(A)bA. (4)


Belief functions have a natural interpretation as con-
straints on the “true”, unknown probability distribu-
tion of Q. According to this interpretation the mass
assigned to each event A ⊆ Θ can float freely among
its elements x ∈ A. A probability distribution “con-
sistent” with b emerges by redistributing the mass of
each focal element to its singletons.


Example. Let us consider a little example, namely
a belief function b on a frame of cardinality three
Θ = {x, y, z} with focal elements (Figure 2-top):
mb({x, y}) = 2


3 , mb({y, z}) = 1
3 . One way of obtain-


ing a probability consistent with b is, for instance, to
equally share the mass of {x, y} among its elements
x and y, while attributing the entire mass of {y, z}
to y (Figure 2-bottom-left). Or, we can assign all the
mass of the focal element {x, y} to y, and give the
mass of {y, z} to z only, obtaining the Bayesian belief
function of Figure 2-bottom-right.


Figure 2: Top: A simple belief function in a frame of
size 3. Bottom: two probabilities consistent with it
on the same frame.


Belief function as lower bound. The credal set
associated with a belief function b (i.e., the set of all
the probability distributions consistent with b) is


P [b] =


{


p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ


}


(5)


i.e. the set of distributions whose values dominate
that of b on all events A. These are well known to
form a polytope in the space P of all probability mea-
sures [2], whose center of mass coincides with the pig-
nistic transformation. Let us denote by Cl the con-
vex closure operator: Cl(b1, ..., bk) = {b ∈ B : b =
α1b1 + · · · + αkbk,


∑


i αi = 1, αi ≥ 0 ∀i}, where B is
the space of all belief functions.


Proposition 1. The polytope P [b] of all the probabil-
ity measures consistent with a belief function b can be
expressed as the convex closure P [b] = Cl(pρ[b] ∀ρ),
where ρ is any permutation (xρ(1), ..., xρ(n)) of the el-
ements of Θ = {x1, ..., xn}, and the vertex pρ[b] is the
unique Bayesian BF such that


pρ[b](xρ(i)) =
∑


A∋xρ(i),A 6∋xρ(j)∀j<i


mb(A). (6)


Each probability function (6) assigns to each single-
tons x = xρ(i) the mass of all the focal elements of
b which contain it, but do not contain the elements
which precede x in the ordered list (xρ(1), ..., xρ(n))
generated by the permutation ρ.


2.2 Credal interpretation of probability


intervals


A set of probability intervals provides instead lower
and upper bounds for the probability values of the
elements of Θ (singletons):


{


l(x) ≤ p(x) ≤ u(x), ∀x ∈ Θ
}


.


Any belief function determines itself such a set of in-
tervals, in which the lower bound to p(x) is the belief







value b(x) on x, while its upper bound is the plausibil-
ity value plb(x) of x,


{


b(x) ≤ p(x) ≤ plb(x), ∀x ∈ Θ
}


.
The plausibility function plb(A) = 1−b(Ac) expresses
the evidence not against an event A.
Probability intervals possess themselves a credal rep-
resentation, which for intervals associated with belief
functions is also strictly related to the credal set P [b]
of all consistent probabilities.


Credal form. By definition (5) of P [b] it follows
that the polytope of consistent probabilities can be
decomposed into a number of polytopes


P [b] =


n−1
⋂


i=1


P i[b], (7)


where P i[b] is the set of probabilities meeting the
lower probability constraint for size i events :


P i[b]
.
=


{


p ∈ P : p(A) ≥ b(A), ∀A : |A| = i
}


.


Note that for i = n the constraint is trivially met by
all the probability distributions: Pn[b] = P .
In fact, a simple and elegant geometric description
can be given if we consider the credal sets


T i[b]
.
=


{


p ∈ P ′ : p(A) ≥ b(A), ∀A : |A| = i
}


where P ′ denotes the set of all pseudo-probabilities1


on Θ, the functions p : Θ → R which meet the normal-
ization constraint


∑


x∈Θ p(x) = 1 but not necessarily
the non-negativity one: it may exist an element x such
that p(x) < 0.
In particular we focus here on the set of pseudo-
probability measures which meet the lower constraint
on singletons


T 1[b]
.
=


{


p ∈ P ′ : p(x) ≥ b(x) ∀x ∈ Θ
}


, (8)


and the set T n−1[b] of pseudo-probabilities which
meet the lower constraint on events of size n − 1:
T n−1[b]


.
=


.
=


{


p ∈ P ′ : p(A) ≥ b(A) ∀A : |A| = n − 1
}


=
{


p ∈ P ′ : p({x}c) ≥ b({x}c) ∀x ∈ Θ
}


=
{


p ∈ P ′ : p(x) ≤ plb(x) ∀x ∈ Θ
}


,
(9)


i.e., the set of pseudo-probabilities which meet the
upper bound for the elements x of Θ.


Simplicial form. The generalization to pseudo-
probabilities allows to give the credal sets (8) and (9)
the form of simplices. A simplex is the convex clo-
sure of a collection of “affinely independent” points
v1, ..., vk of a vector space, i.e., points which cannot
be expressed as an affine combination of the others:


∄
{


αj , j 6= i :
∑


j 6=i


αj = 1
}


s.t. vi =
∑


j 6=i


αjvj .


1Also called “normalized signed measures” in measure the-
ory.


The notation introduced in Equation (4) is extensively
used in the following [4].


Proposition 2. The credal set T 1[b] or lower simplex
can be written as the convex closure


T 1[b] = Cl(t1x[b], x ∈ Θ) (10)


of the vertices


t1x[b] =
∑


y 6=x


mb(y)by +


(


1 −
∑


y 6=x


mb(y)


)


bx. (11)


Dually, the upper simplex T n−1[b] reads as the convex
closure


T n−1[b] = Cl(tn−1
x [b], x ∈ Θ) (12)


of the vertices


tn−1
x [b] =


∑


y 6=x


plb(y)by +


(


1 −
∑


y 6=x


plb(y)


)


bx. (13)


To clarify the above results, let us denote by


kb
.
=


∑


x∈Θ


mb(x) ≤ 1, kplb


.
=


∑


x∈Θ


plb(x) ≥ 1


the total mass and plausibility of singletons, respec-
tively. By Equation (11) each vertex t1x[b] of the lower
simplex is the distribution that adds the mass 1 − kb


of non-singletons to the original mass of the element
x, leaving all the others unchanged:


mt1x[b](x) = mb(x)+1−kb, mt1x[b](y) = mb(y) ∀y 6= x.


As mt1x[b](z) ≥ 0 ∀z ∈ Θ ∀x (all the t1x[b] are actual
probabilities) we have that


T 1[b] = P1[b] (14)


is completely included in the probability simplex P .
On the other hand the vertices (13) of the upper sim-
plex are not guaranteed to be valid probabilities, but
only pseudo-probabilities in the sense that they may
assign negative values to some element of Θ. Each
vertex tn−1


x [b] assigns to each element of Θ different
from x its plausibility plb(y), while it subtracts from
plb(x) the plausibility “in excess” kplb − 1:


mt
n−1


x [b](x) = plb(x) + (1 − kplb),


mt
n−1


x [b](y) = plb(y) ∀y 6= x.


As 1−kplb can be a negative quantity, mt
n−1


x [b](x) can


be negative too and tn−1
x [b] is not guaranteed to be a


“true” probability. We will see this in Section 4.
In conclusion, by Equations (2), (14) and (9) the
credal set of probabilities consistent with a probability
interval is the intersection2 P [b, plb] = T 1[b]∩T n−1[b].


2This credal set is an outer approximation [10] of P[b].







3 Bayesian transformations


The relation between belief and probability measures
or “Bayesian belief functions” is central in uncertainty
theory [1, 10, 11, 13, 27], and in the theory of evidence
[16] in particular.


3.1 Pignistic function as center of mass of


consistent probabilities


In Smets’ “Transferable Belief Model” [17, 18, 20, 21]
beliefs are represented as convex sets of probabilities,
while decisions are made by resorting to a Bayesian
BF called pignistic function:


BetP [b](x) =
∑


A⊇{x}


mb(A)


|A|
. (15)


The rationality principle behind the pignistic function
can be explained in terms of the “floating mass” in-
terpretation of focal elements exposed in Section 2.1.
If the mass of each focal element is uniformly dis-
tributed among all its elements, the probability we
obtain is (15). The pignistic function BetP [b] has a
strong credal interpretation, as it is known [2, 12] to
be the center of mass of the set P [b] of probabilities
consistent with b. Many other popular and signifi-
cant Bayesian functions used to approximate belief
functions or to represent them in a decision process,
however, have not yet a similar credal interpretation.
The aim of this paper is indeed to show that relative
plausibility [24], relative belief of singletons [7], and
intersection probability [5] possess such credal inter-
pretations in terms of the probability intervals asso-
ciated with a belief function.


3.2 Relative plausibility and belief


The relative plausibility of singletons [24] p̃lb is the
unique probability that, given a belief function b with
plausibility plb, assigns to each singleton its normal-
ized plausibility:


p̃lb(x) =
plb(x)


∑


y∈Θ plb(y)
=


plb(x)


kplb


. (16)


Voorbraak has proven that p̃lb is a perfect represen-
tative of b when combined with other probabilities
through Dempster’s orthogonal sum ⊕ [9], p̃lb ⊕ p =
b ⊕ p ∀p ∈ P . Cobb and Shenoy [3] have later shown
that (16) meets a number of other interesting proper-
ties with respect to ⊕.
Dually, a relative belief of singletons b̃ [7] can be de-
fined. This probability function assigns to the ele-
ments of Θ their normalized belief values:


b̃(x)
.
=


b(x)
∑


y∈Θ b(y)
. (17)


Even though the existence of (17) is subject to quite
a strong condition


kb =
∑


x∈Θ


mb(x) 6= 0,


the case in which b̃ does not exist is indeed patho-
logical, as it excludes a great number of belief and
probability measures [7].
While p̃lb is associated with the less conservative (but
incoherent) scenario in which all the mass that can
be assigned to a singleton is actually assigned to it, b̃
reflects the most conservative (but still not coherent)
choice of assigning to x only the mass that the BF b
(seen as a constraint) assures it belong to x.
It can be proven that relative belief meets a number of
dual properties with respect to Dempster’s sum which
are the dual of those enjoyed by relative plausibility
[7]. These two approximations form a strongly linked
couple: we will see what this implies in terms of their
geometry in the probability simplex.


3.3 Intersection probability


For any set of probability intervals (1) we can define
its intersection probability as the unique probability
of the form p(x) = l(x) + α(u(x)− l(x)) for all x ∈ Θ
for some α ∈ [0, 1] such that:


∑


x∈Θ


p(x) =
∑


x∈Θ


[


l(x) + α(u(x) − l(x))
]


= 1


(see Figure 3). This corresponds to the reasonable re-
quest that the desired probability, as a candidate to
represent the set of intervals (1), should behave ho-
mogeneously for each element x of the domain. When


Figure 3: An illustration of the notion of intersection
probability for an upper/lower probability system.


the set of intervals is that associated with a belief
function, the upper bound to the probability of a sin-
gleton is obviously u(x) = plb(x), its lower bound
l(x) = b(x) = mb(x). The intersection probability
can then be written as [5]


p[b](x) = β[b]plb(x) + (1 − β[b])b(x) (18)


as the quantity α of Figure 3 has value


β[b] =
1 − kb


kplb − kb


. (19)







Here kplb , kb denote again the total plausibility and
belief of singletons, respectively.
The ratio β[b] (19) measures the fraction of each prob-
ability interval which we need to add to the lower
bound b(x) to obtain a valid distribution.
Another interpretation of the intersection probability
comes from its alternative form


p[b](x) = b(x) +
(


1 −
∑


x


b(x)
)


R[b](x) (20)


where


R[b](x)
.
=


plb(x) − b(x)


kplb − kb


=
plb(x) − b(x)


∑


y(plb(y) − b(y))
. (21)


The quantity plb(x)− b(x) measures the width of the
probability interval on x, i.e., the uncertainty on the
probability value on each element of Θ. Then R[b](x)
indicates how much the uncertainty on the probability
value on x “weights” on the total uncertainty associ-
ated with the set of intervals (1). It is the natural to
call it relative uncertainty on singletons.
According to (20), p[b] re-distributes to each x ∈ Θ a
fraction of the mass of non-singletons (1−


∑


x b(x)) in
proportion to the relative uncertainty R[b](x) of each
singleton in the set of intervals.


4 Credal interpretation of Bayesian


approximations


4.1 The ternary case


Taking inspiration from the important case of the pig-
nistic transformation, here we will be able to prove
that other Bayesian transformations of belief func-
tions possess a similar credal interpretation.
Let us first analyze the case of a frame of cardinality
three: Θ = {x, y, z}. Consider the BF


mb(x) = 0.2, mb(y) = 0.1, mb(z) = 0.3,
mb({x, y}) = 0.1, mb({y, z}) = 0.2, mb(Θ) = 0.1.


(22)
Figure 4 illustrates the geometry of the related con-
sistent polytope P [b] in the simplex Cl(bx, by, bz) of
all probability measures on Θ. By Proposition 1 P [b]
has as vertices ρ1, ρ2, ρ3, ρ4, ρ5[b]


ρ1 = (x, y, z),
ρ1[b](x) = .4, ρ1[b](y) = .3, ρ1[b](z) = .3;


ρ2 = (x, z, y),
ρ2[b](x) = .4, ρ2[b](y) = .1, ρ2[b](z) = .5;


ρ3 = (y, x, z),
ρ3[b](x) = .2, ρ3[b](y) = .5, ρ3[b](z) = .3;


ρ4 = (z, x, y),
ρ4[b](x) = .3, ρ4[b](y) = .1, ρ4[b](z) = .6;


ρ5 = (z, y, x),
ρ5[b](x) = .2, ρ5[b](y) = .2, ρ5[b](z) = .6;


(23)


(as the permutations (y, x, z) and (y, z, x) yield the
same probability distribution). We can notice that:


1. P [b] (the polygon delimited by little squares) is
the intersection of two triangles (2-dimensional
simplices) T 1[b] and T 2[b];


2. the relative belief of singletons


b̃(x) =
1


3
, b̃(y) =


1


6
, b̃(z) =


1


2


is the intersection of the lines joining the corre-
sponding vertices of the probability simplex P and
the lower simplex T 1[b];


3. the relative plausibility of singletons


p̃lb(x) =
4


15
, p̃lb(y) =


1


3
, p̃lb(z) =


2


5


is the intersection of the lines joining the corre-
sponding vertices of P and upper simplex T 2[b];


4. finally, the intersection probability


p[b](x) = mb(x) + β[b](mb({x, y}) + mb(Θ))
= .2 + .4


1.5−0.40.2 = .27,


p[b](y) = .1 + .4
1.10.4 = .245, p[b](z) = .485


is the unique intersection of the lines joining the
corresponding vertices of upper T 2[b] and lower
T 1[b] simplices.


Point 1. is easily explained by noticing that in the
ternary case, by Equation (7), P [b] = T 1[b] ∩ T 2[b].
Figure 4 suggests that b̃, p̃lb and p[b] might be con-
sistent with b, i.e. they could lie inside the consistent
simplex P [b]. This, though, is not guaranteed to be
true in the general case.


Theorem 1. The relative belief of singletons is not
always consistent.


A counterexample similar to that of the proof of The-
orem 1 can be found for p̃lb. The inconsistency of
relative belief and plausibility is due to the fact that
those functions only constrain the probabilities of sin-
gletons, not considering higher size events as full be-
lief functions do. Indeed these approximations b̃, p̃lb,
p[b] are consistent with the set of probability intervals
associated with b:


b̃, p̃lb, p[b] ∈ P [b, plb] = T 1[b] ∩ T n−1[b].


Their geometric behavior, described by points 2., 3.
and 4., holds in the general case too.







Figure 4: The polytope of all the probabilities consistent with the belief function (22) is shown here in the
simplex P = Cl(bx, by, bz) of all probability distributions on Θ = {x, y, z}. Its vertices (red squares) are given


by Equation (23). Intersection probability p[b], relative belief b̃ and plausibility p̃lb of singletons are the foci of
the pairs of simplices {T 1[b], T 2[b]}, {T 1[b],P} and {P , T 2[b]} respectively. In the ternary case the lower and
upper simplices T 1[b] and T 2[b] are nothing but triangles. Their focus is geometrically the intersection of the
lines joining corresponding vertices (dashed lines for {P , T 1[b]} and {P , T 2[b]}, solid ones for {T 1[b], T 2[b]}).


4.2 Focus of a pair of simplices


In the ternary case relative belief, plausibility and
intersection probability lie in the intersection of the
lines joining corresponding vertices of pairs formed by
the upper simplex, the lower simplex, or the probabil-
ity simplex. This remark can be formalized through
the notion of focus of a pair of simplices, laying the
foundations for a credal interpretation of these three
Bayesian transformations.


Definition 1. Consider a pair of simplices S =
Cl(s1, ..., sn), T = Cl(t1, ..., tn) in Rn−1.
We call focus of the pair (S, T ) the unique point
f(S, T ) of S ∩ T which has the same affine coordi-
nates {α1, ...αn} in both simplices:


f(S, T ) =


n
∑


i=1


αisi =


n
∑


i=1


αitj,


n
∑


i=1


αi = 1. (24)


Such point always exists, even though it does not al-
ways fall into the intersection of the two simplices. In
the latter case, though, the focus coincides with the
unique intersection of the lines joining corresponding
vertices of S and T (see Figure 1 again).
Suppose indeed that a point p is such that


p = αsi + (1 − α)ti, ∀ i = 1, ..., n (25)


(i.e. p lies on the line passing through si and ti ∀i).
Then necessarily ti = 1


1−α
[p − αsi] ∀ i = 1, ..., n. If p


has coordinates {αi, i = 1, ..., n} in T , p =
∑n


i=1 αiti,
then


p =


n
∑


i=1


αiti =
1


1 − α


∑


i


αi


[


p − αsi


]


= 1
1−α


[


p
∑


i αi − α
∑


i αisi


]


=
1


1 − α


[


p − α
∑


i


αisi


]


which implies p =
∑


i αisi, i.e. p is the focus of (S, T ).
Notice that the center of mass itself of a simplex is a
special case of focus. Indeed, the center of mass of
a d-dimensional simplex S is the intersection of the
medians of S, i.e. the lines joining each vertex with
the center of mass of the opposite (d−1 dimensional)
face (see Figure 5). But those centers of mass for all
d − 1 dimensional faces form themselves the vertices
of a simplex T . Therefore, the pignistic function itself
can be thought of as the focus of two simplices.


4.3 Bayesian transformations as foci


Theorem 2. The relative belief of singletons is the
focus of the pair of simplices {P , T 1[b]}.







Figure 5: The center of mass b of a simplex S is the
focus of the simplex itself and the simplex T formed
by the centers of mass of all its n − 1-dimensional
faces. Here a 2-dimensional example is shown.


A dual result can be proven for the relative plausibility
of singletons.


Theorem 3. The relative plausibility of singletons is
the focus of the pair of simplices {P , T n−1[b]}.


The notion of focus of upper and lower simplices pro-
vides indeed the desired credal semantics for the fam-
ily of Bayesian transformations linked to Dempster’s
rule of combination, in terms of the credal set associ-
ated with the related set of probability intervals.
The coordinate of the focus on the intersecting lines
also has a meaning in terms of degrees of belief.


Theorem 4. The affine coordinate of b̃ as focus of
{P , T 1[b]} on the corresponding intersecting lines is
the inverse of the total mass of singletons.


A similar result holds for the relative plausibility of
singletons.


Theorem 5. The affine coordinate of p̃lb as focus of
{P , T n−1[b]} on the corresponding intersecting lines
is the inverse of the total plausibility of singletons.


An analogous result has recently been proven [4] for
the intersection probability (18).


Proposition 3. The intersection probability is the fo-
cus of the pair of simplices {T n−1[b], T 1[b]}.


As we could have expected, the line coordinate of the
intersection probability as a focus also corresponds to
a basic feature of the underlying belief function (or
better, the associated set of probability intervals).


Theorem 6. The coordinate of the intersection prob-
ability as focus of {T 1[b], T n−1[b]} on the correspond-
ing intersecting lines is the ratio β[b] (19).


The fraction of the uncertainty of the singletons that
generates the intersection probability can be read in
the probability simplex, as its coordinate on any the
lines determining the focus of {T 1[b], T n−1[b]}.


5 Comments and conclusions


The notion of focus of a pair of simplices pro-
vides a unifying geometric framework for a num-
ber of different Bayesian transformations of belief
functions. In fact, as we pointed out here, it
is more correct to think of relative belief, plau-
sibility, and intersection probability as transforma-
tions/approximations/representatives of lower, up-
per, and interval probability systems respectively.
While b̃, p̃lb and p[b] are potentially inconsistent with
the original BF, they are perfectly consistent with the
associated lower/upper probability systems (as they
fall into the corresponding credal set). Therefore we
can argue that simply replacing the pignistic trans-
form with a different transformation when operating
on BFs in the TBM would not be semantically correct.


The geometric notion of focus has a simple semantic in
terms of probability constraints. Selecting the focus
of two simplices representing two different constraints
(i.e., the point with the same convex coordinates in
the two simplices) means adopting the single proba-
bility distribution which meets both constraints in ex-
actly the same way. Notice that the second constraint
can be empty, like in the case of upper or lower prob-
ability systems. If we assume homogeneous behavior
in the two sets of constraints as a rationality princi-
ple for a probability transformation, then the above
Bayesian functions follow as the necessary unique so-
lutions to the corresponding transformation problems.
The notion can be easily extended to more than two
constraints.


Finally, the credal interpretation of upper, lower,
and interval probability constraints on singletons lays
in perspective the foundations of the formulation of
TBM-like frameworks for such systems.
In the Transferable Belief Model belief functions b are
represented by their credal sets, while decisions are
made through the corresponding center of mass, the
pignistic function BetP [b]:


{


P [b], BetP [b]
}


. We can
therefore imagine similar frameworks


{


{


P , T 1[b]
}


, b̃


}


,


{


{


P , T n−1[b]
}


, p̃lb


}


,
{


{


T 1[b], T n−1[b]
}


, p̃lb


} (26)


in which lower, upper, and interval constraints on a
probability distribution on P are represented by the
associated credal sets. This would involve replacing
the TBM’s disjunctive/conjunctive combination rules
[19] by specific evidence elicitation/revision operators
for lower, upper, and interval probability systems.
Decisions would then be made based on the appro-
priate focus probability: relative belief, plausibility,







or interval probability respectively.
Notice that, even though in the case of belief func-
tions such systems are simply less informative than
the original BF, and their credal sets outer approx-
imations of the credal set of consistent probabilities
P [b], they can be defined independently in their own
right, according to the available evidence at hand. In
such a case, the use of the appropriate transformation
according to the above rationality principle would en-
sure the consistency of the result. We plan to elabo-
rate on this line of research in the near future.


Appendix: proofs


Proof of Theorem 1. Consider a belief function b :
2Θ → [0, 1], Θ = {x1, x2, ..., xn} such that mb(xi) =
kb/n, mb({x1, x2}) = 1 − kb. Then


b({x1, x2}) = 2 ·
kb


n
+ 1 − kb = 1 − kb


(


n − 2


n


)


,


b̃(x1) = b̃(x2) =
1


n
⇒ b̃({x1, x2}) =


2


n
.


For b̃ to be consistent with b it is necessary that
b̃({x1, x2}) ≥ b({x1, x2}), i.e.


2


n
≥ 1 − kb


n − 2


n
⇒ kb ≥ 1


i.e. kb = 1. Therefore if kb < 1 (b is not a probability)
its relative belief of singletons is not consistent.


Proof of Theorem 2. We need to prove that b̃ has
the same simplicial coordinates in P and T 1[b]. By
definition (17) b̃ can be expressed in terms of the ver-
tices of the probability simplex P as


b̃ =
∑


x∈Θ


mb(x)


kb


bx.


We then need to prove that b̃ can be written as the
same affine combination


b̃ =
∑


x∈Θ


mb(x)


kb


t1x[b]


in terms of the vertices t1x[b] of T 1[b]. Replacing (11)


in the above equation yields
∑


x∈Θ
mb(x)


kb
t1x[b] =


=
∑


x∈Θ


mb(x)


kb


[


∑


y 6=x


mb(y)by +


(


1 −
∑


y 6=x


mb(y)


)


bx


]


=


=
∑


x∈Θ


bx


(


mb(x)


kb


∑


y 6=x


mb(y)


)


+
∑


x∈Θ


mb(x)


kb


bx+


−
∑


x∈Θ


bx


(


mb(x)


kb


∑


y 6=x


mb(y)


)


=
∑


x∈Θ


mb(x)


kb


bx = b̃.


Proof of Theorem 3. We just need to replace belief
with plausibility values in the proof of Theorem 2.


Proof of Theorem 4. In the case of the pair
{P , T 1[b]} we can compute the (affine) line coordi-
nate α of b̃ = f(P , T 1[b]) by imposing condition (25).
The latter assumes the following form (being si = bx,


ti = t1x[b]):
∑


x∈Θ
mb(x)


kb
bx =


= t1x[b] + α(bx − t1x[b]) = (1 − α)t1x[b] + αbx


= (1 − α)


[


∑


y 6=x


mb(y)by +
(


1 − kb + mb(x)
)


bx


]


+ αbx


= bx


[


(1 − α)
(


1 − kb + mb(x)
)


+ α
]


+


+
∑


y 6=x


mb(y)(1 − α)by,


and for 1 − α = 1
kb


, α = kb−1
kb


the condition is met.


Proof of Theorem 5. Again we can compute the
line coordinate α of p̃lb = f(P , T n−1[b]) by imposing
condition (25). The latter assumes the form (being


si = bx, ti = tn−1
x [b]):


∑


x∈Θ
plb(x)
kplb


bx =


= tn−1
x [b] + α(bx − tn−1


x [b]) = (1 − α)tn−1
x [b] + αbx


= (1 − α)


[


∑


y 6=x


plb(y)by +
(


1 − kplb + plb(x)
)


bx


]


+ αbx


= bx


[


(1 − α)
(


1 − kplb + plb(x)
)


+ α
]


+


+
∑


y 6=x


plb(y)(1 − α)by ,


and for 1−α = 1
kplb


, α =
kplb


−1


kplb


the condition is met.


Proof of Theorem 6. Again, we need to impose
condition (25) on the pair {T 1[b], T n−1[b]}, or


p[b] = t1x[b]+α(tn−1
x [b]−t1x[b]) = (1−α)t1x[b]+αtn−1


x [b]


for all the elements x ∈ Θ of the frame, α being some
constant. This is equivalent to (after replacing the
expressions (11), (13) of t1x[b] and tn−1


x [b])
∑


x∈Θ


bx


[


mb(x) + β[b](plb(x) − mb(x))
]


=


= (1 − α)
[


∑


y 6=x


mb(y)by + (1 − kb + mb(x))bx


]


+


+α
[


∑


y 6=x


plb(y)by +
(


1 −
∑


y 6=x


plb(y)
)


bx


]


= (1 − α)
[


∑


y∈Θ


mb(y)by + (1 − kb)bx


]


+


+α
[


∑


y∈Θ


plb(y)by + (1 − kplb)bx


]


= bx


[


(1 − α)(1 − kb) + (1 − α)mb(x) + αplb(x)+


+α(1 − kplb )
]


+
∑


y 6=x


by


[


(1 − α)mb(y) + αplb(y)
]


= bx


{


(1 − kb) + mb(x)+


+α
[


plb(x) + (1 − kplb ) − mb(x) − (1 − kb)
]


}


+


+
∑


y 6=x


by


[


mb(y) + α(plb(y) − mb(y))
]


.







If we set α = β[b] = 1−kb


kplb
−kb


we get for the coefficient


of bx (the probability value of x)


1 − kb


kplb − kb


[


plb(x) + (1 − kplb) − mb(x) − (1 − kb)
]


+


+(1 − kb) + mb(x) = β[b]
[


plb(x) − mb(x)
]


+ (1 − kb)
+mb(x) − (1 − kb) = p[b](x)


while obviously mb(y) +α(plb(y)−mb(y)) = mb(y) +
β[b](plb(y)−mb(y)) = p[b](y) for all y 6= x, no matter
the choice of x.
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