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Abstract

This paper provides an overview of nonparametric
predictive inference for comparison of multiple groups
of data including right-censored observations. Differ-
ent right-censoring schemes discussed are early ter-
mination of an experiment, progressive censoring and
competing risks. Theoretical results are briefly stated,
detailed justifications are presented elsewhere. The
methods are illustrated and discussed via examples
with data from the literature.
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1 Introduction

This paper presents a brief overview of recent results
on nonparametric predictive inference (NPI) for mul-
tiple comparisons in situations with right-censored ob-
servations. Such data typically occur in reliability or
survival analysis, due to several reasons. For exam-
ple, when interest is in a specific failure mode for a
technical unit, it may fail due to a different failure
cause. If multiple failure modes are of interest, and
failure will be due to only a single failure mode, then
this situation is known as ”competing risks”, where
an observed failure time is actually a right-censoring
time with regard to all failure modes that did not
cause the failure. Another reason for right-censoring
may be removal of units from a lifetime experiment,
normally to save time or reduce cost, but this also
occurs if, at some point, one wishes to study units
which have not yet failed in an experiment in more
detail. If right-censoring is due to an experiment
being terminated before all units have failed, mul-
tiple comparisons of different groups of units based
on such data is known as ”precedence testing”. If
non-failing units are removed from the experiment at
several possible stages it is known as ”progressive cen-
soring”. Recently, we have developed NPI for mul-

tiple comparisons for precedence testing, progressive
censoring, and competing risks, and these results are
briefly presented here and illustrated and discussed
via examples. Detailed justifications of the results are
presented elsewhere. It should be emphasized that,
throughout the paper, unspecified reasons for right-
censoring are assumed to be based on processes that
are independent of the residual lifetimes of the cen-
sored units.

NPI is a statistical method that aims at using rela-
tively few modelling assumptions, it uses lower and
upper probabilities to quantify uncertainty. Some ba-
sic applications of NPI in reliability were summarized
by Coolen, et al [12], recently a variety of further ap-
plications in this area have been presented, includ-
ing probabilistic safety assessment if zero failures have
been observed [7], prediction of not-yet occurred fail-
ure modes [8], comparison of success-failure data [17],
and system reliability with optimal redundancy allo-
cation [18]. NPI has also been developed for replace-
ment problems, with specific attention to age replace-
ment of technical units [19, 21]. Imprecise probabilis-
tic methods are attractive in reliability, as their flex-
ibility for dealing with limited information is a par-
ticular advantage for dealing with practical aspects
of many reliability situations. Utkin and Coolen [35]
present an extensive overview of the literature, for a
concise overview see [13].

In Section 2 of this paper NPI is briefly introduced,
followed in Section 3 by explanation of the way in
which NPI deals with right-censored data. Recent de-
velopments of NPI for multiple comparisons with the
different right-censoring schemes discussed above are
presented in Sections 4, 5 and 6, and illustrated and
discussed in examples in Section 7. The same nota-
tion is used for different quantities in Sections 4-6, but
in the general NPI approach to multiple comparisons
they all relate to similar concepts, just the interpre-
tations in the specific applications are different per
section.



2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is based
on Hill’s assumption A(n) [25], which implies di-
rect (lower and upper) probabilities for a future ob-
servable random quantity, based on observed values
of n related random quantities [6]. Suppose that
X1, . . . , Xn, Xn+1 are positive, continuous and ex-
changeable random quantities representing lifetimes.
Let the ordered observed values of X1, . . . , Xn be de-
noted by x1 < x2 < . . . < xn < ∞, and let x0 = 0
and xn+1 = ∞ for ease of notation, note that the lat-
ter is not considered to be an observation for Xn+1.
We assume that no ties occur, our results can be gen-
eralised to allow ties [26]. For positive Xn+1, repre-
senting a future observation, based on n observations,
A(n) assigns P (Xn+1 ∈ (xi, xi+1)) = 1/(n + 1) for
i = 0, 1, . . . , n. A(n) does not assume anything else,
and is a post-data assumption related to exchange-
ability [22]. Hill [24] discusses A(n) in detail, and he
also provided a Bayesian justification for A(n) under
finite additivity [26]. Inferences based on A(n) can be
considered suitable if there is hardly any knowledge
about the random quantity of interest, other than the
n observations, or if one does not want to use such in-
formation. A(n) is not sufficient to derive precise prob-
abilities for many events of interest, but it provides
bounds for probabilities via the ‘fundamental theorem
of probability’ [22], which are lower and upper prob-
abilities in interval probability theory [36, 37]. NPI
has strong consistency properties within the theory of
interval probability [1], attractive frequentist proper-
ties, and compares favourably to objective Bayesian
methods [6, 24].

3 NPI for right-censored data

Coolen and Yan [16] presented rc-A(n) as a general-
ization of A(n) for right-censored data, using the addi-
tional assumption that, at a moment of censoring, the
residual lifetime of a right-censored unit is exchange-
able with the residual lifetimes of all other units that
have not yet failed or been censored.

Suppose that there are n observations consisting of u
event times, x1 < x2 < . . . < xu, and υ(= n − u)
right-censored observations, c1 < c2 < . . . < cυ. Let
x0 = 0 and xu+1 = ∞, and suppose that there are si

right-censored observations in the interval (xi, xi+1)
at times ci

1 < ci
2 < . . . < ci

si
, where

∑u
i=0 si = υ.

These data can also be denoted by pairs (ti, δi) for
i = 1, . . . , n, where ti = xi (so a failure time, or time
of other actual event of interest) if δi = 1 and ti = ci

(a right-censored observation) if δi = 0. For ease of
notation, let (t0, δ0) = (0, 1) and xn+1 = ∞. The
assumption rc-A(n) partially specifies the probability

distribution for Xn+1 by the following M -functions
[16], for i = 1, . . . , n:

MXn+1(ti, xi+1) =
1

n + 1
(ñti

)δi−1
∏

{r:cr<ti}

ñcr
+ 1

ñcr

(1)

where ñcr and ñti are the numbers of units in the
risk set (i.e. that have not yet failed or been cen-
sored) just prior to time cr and ti, respectively. These
M -functions are basic probability assignments in the
sense of Shafer [33], and lead to the following precise
probabilities for Xn+1 to be between two consecutive
observed failure times xi and xi+1,

P (Xn+1 ∈ (xi, xi+1)) =
1

n + 1

∏
{r:cr<xi+1}

ñcr + 1
ñcr

(2)

Coolen and Yan [15] developed NPI for comparison
of two groups of lifetime data including right-censored
observations. By applying the appropriate rc-A(n) as-
sumption for each group, their method is based on
comparing the next observation from each group, say
Xnx+1 and Yny+1. The NPI lower and upper proba-
bilities for the event that Xnx+1 < Yny+1 are

P =
ux∑
i=0

ny∑
j=0

1(xi+1 < ty,j)PX(xi, xi+1)MY (ty,j , yj+1)

P =
nx∑
i=0

uy∑
j=0

1(tx,i < yj+1)PY (yj , yj+1)MX(tx,i, xi+1)

where MX(tx,i, xi+1), MY (ty,j , yj+1), PX(xi, xi+1)
and PY (yj , yj+1) are as given by (1) and (2), and
1(A) is the indicator function that equals 1 if A is
true and 0 else. Coolen and Yan [15] did not con-
sider situations with more than two groups, nor the
effect of early termination of the lifetime experiment
or the specific features of progressive censoring and
competing risks. NPI for multiple comparisons for
real-valued data without right-censored observations
was presented in [14], and NPI multiple comparisons
for Bernoulli data in [11].

4 Early termination of experiment

In some circumstances, mostly in order to save costs
or time, an experiment to compare lifetimes of units
in different groups may be terminated before all units
have failed. We assume that all units are placed si-
multaneously on a lifetime experiment which is ter-
minated at a certain specified time, which may also
be the moment a specified number of failures have oc-
curred. The situation where for all units failing before
the moment of termination of the experiment the life-
times are observed, is also known as precedence testing



in the literature [3]. Coolen-Schrijner et al [20] pre-
sented NPI for comparison of two groups of lifetime
data with early termination of the experiment, say
at time T0, and they illustrated the effect of vary-
ing T0. The resulting data set contains, for each of
the two groups in the experiment, failure times prior
to T0 and right-censored observations at T0 for all
units that do not fail before T0. Maturi et al [28] ex-
tend this to more than two groups, with a variety of
inferential goals for the multiple comparisons in line
with different goals as presented in the statistical se-
lection literature [4]. Maturi et al [30] present further
generalized results, which also generalize the results
by Coolen and Yan [15], by developing NPI for com-
parison of multiple groups of lifetime data including
right-censored observations, and with possible early
termination of the experiment.

Consider an experiment to compare lifetimes of units
from k ≥ 2 groups, which are assumed to be fully
independent, with the experiment starting on all units
at time 0. The experiment can be terminated before
all units have failed, say at time T0. This T0 can be
fixed or random, but it is essential that it is assumed
not to hold any information on residual time-to-failure
for units that have not yet failed. We also allow non-
informative right-censoring to occur for some units
before the experiment is stopped. For group j, j =
1, . . . , k, nj units are in the experiment, of which uj

units fail before (or at) T0, with ordered failure times
0 < xj,1 < xj,2 < . . . < xj,uj

≤ T0, and with right-
censoring times cj,1 < cj,2 < . . . < cj,υj < T0. Let
xj,0 = 0 and xj,uj+1 = ∞ (j = 1, . . . , k), and let sj,ij

be the number of right-censored observations in the
interval (xj,ij

, xj,ij+1), with xj,ij
< c

ij

j,1 < c
ij

j,2 < . . . <

c
ij

j,sj,ij
< xj,ij+1 and

∑uj

ij=0 sj,ij
= υj , so nj−(uj +υj)

units from group j are right-censored at T0.

For NPI with data containing right-censored observa-
tions, and with early termination of the experiment
at time T0, the assumption rc-A(nj) implies that the
following M -function values apply for a nonnegative
random quantity Xj,nj+1, on the basis of data con-
sisting of uj failure times and (nj−uj) right-censored
observations:

M j
ij

=MXj,nj+1(xj,ij
, xj,ij+1) =

1
nj+1

∏
{r:cr<xj,ij

}

ñj,cr
+1

ñj,cr

M j
ij ,aj

=MXj,nj+1(c
ij

j,aj
, xj,ij+1)=

(ñ
j,c

ij
j,aj

)−1

nj+1

∏
{r:cr<c

ij
j,aj

}

ñj,cr
+1

ñj,cr

M j
T0

=MXj,nj+1(T0,∞) =
nj−(uj+υj)

nj+1

∏
{r:cr<T0}

ñj,cr
+1

ñj,cr

where ij = 0, . . . , uj , aj = 1, . . . , sj,ij , and ñj,cr and
ñ

j,c
ij
j,aj

are the number of units from group j in the

risk set just prior to time cr and c
ij

j,aj
, respectively.

Also

P j
ij

=P (Xj,nj+1∈(xj,ij , xj,ij+1))=
1

nj+1

∏
{r:cr<xj,ij+1}

ñj,cr+1
ñj,cr

P j
T0

=P (Xj,nj+1 ∈ (T0,∞)) = MXj,nj+1(T0,∞) = M j
T0

The NPI lower and upper probabilities for the
event that the next observed lifetime from group
l is the maximum of all next observed lifetimes
for the k groups in the experiment, i.e. Xl,nl+1 =
max1≤j≤k Xj,nj+1, are

P (l) =
ul∑

il=0


k∏

j=1

j 6=l

 uj∑
ij=0

1(xj,ij+1 < xl,il
)P j

ij

M l
il

+
sl,il∑
al=1

k∏
j=1

j 6=l

 uj∑
ij=0

1(xj,ij+1< cil

l,al
)P j

ij

M l
il,al


+ M l

T0

k∏
j=1

j 6=l

uj∑
ij=0

1(xj,ij+1< T0)P
j
ij

(3)

P
(l)

=
ul∑

il=0

P l
il

k∏
j=1

j 6=l


uj∑

ij=0

1
(
xj,ij

< xl,il+1

)
M j

ij

+
uj∑

ij=0

sj,ij∑
aj=1

1(cij

j,aj
< xl,il+1)M

j
ij ,aj

+ 1 (T0 < xl,il+1)M j
T0

}
+ P l

T0
(4)

If the experiment is not terminated before the event
times of all units have been observed, so for each unit
either the failure time or a right-censoring time not
due to the experiment ending, then the terms includ-
ing T0 in formulae (3) and (4) disappear, and we get
a generalization of the results by Coolen and Yan
[15], who only considered NPI for comparison of two
groups of lifetime data including right-censored obser-
vations. Another special case occurs if there are no
right-censored observations before T0. In this case our
method generalizes the results by Coolen-Schrijner et
al [20], who considered NPI for comparison of two
groups with early termination of the experiment, but
without earlier right-censoring.

At any value of T0, we can state that the data pro-
vide a strong indication that group l is the best if



P (l) > P
(j)

for all j 6= l. It might seem attractive
to state that, if P (l) > P (j) and P

(l)
> P

(j)
for all

j 6= l, there would be a weak indication that group
l is the best. The difference between the upper and
lower probabilities reflects the amount of information
available, it decreases if more relevant information be-
comes available. A typical feature of NPI for these
methods with the experiment terminated at T0 is that,
if T0 is increased, the upper (lower) probability never
increases (decreases), while its value can only change
at observed event times.

5 Progressive censoring

Maturi et al [29] considered the comparison of two
groups, say X and Y , in which progressive censoring
schemes are applied for one or both groups. They
allow several such censoring schemes, known in the
literature as progressive Type-I censoring, progres-
sive Type-II censoring and Type-II progressively hy-
brid censoring scheme [2]. The main characteristic of
progressive censoring is that, at several stages some
units are randomly removed from the experiment.
For NPI for a progressive Type-II censoring scheme
with R = (R1, R2, . . . , Rr), where Ri is the num-
ber of units that are removed from the experiment
at the ith failure, the assumption rc-A(n) implies that
the probability distribution for a nonnegative random
quantity Xn+1 on the basis of data including r real
and n− r progressively censored observations, is par-
tially specified by the following M -function values, for
i = 0, 1, . . . , r,

MX(xi, xi+1) =
1

n + 1

i−1∏
k=1

n− k −
∑k−1

l=1 Rl + 1

n− k −
∑k

l=1 Rl + 1
(5)

MX(x+
i , xi+1)=

Ri

n−i−
∑i

l=1Rl+1
MX(xi, xi+1) (6)

where x+
i represents the lower bound for the interval

that contains the set of censored units at xi, x0 = 0
and xr+1 = ∞. The corresponding NPI probabilities
for Xn+1 to be in (xi, xi+1) are

PX(xi, xi+1) =
1

n + 1

i∏
k=1

n− k −
∑k−1

l=1 Rl + 1

n− k −
∑k

l=1 Rl + 1
(7)

Suppose that we have two independent groups, X
and Y , for which nx and ny units, respectively, are
placed on a lifetime experiment. Both groups are pro-
gressively Type-II censored with the schemes Rx =
(Rx

1 , Rx
2 , . . . , Rx

rx
) and Ry = (Ry

1 , Ry
2 , . . . , Ry

ry
). Given

the data, Rx, Ry, and the assumptions rc-A(nx) and
rc-A(ny), the NPI lower and the upper probabilities

that the next observation from group Y is greater than
the next observation from group X, are

P =
ry∑

j=0

rx∑
i=0

1(xi+1 < yj)PX(xi, xi+1)PY(yj , yj+1)

(8)

P =
ry∑

j=0

rx∑
i=0

1(xi < yj+1)PX(xi, xi+1)PY (yj , yj+1)

(9)
We refer to [29] for NPI comparisons in case of pro-
gressive Type-I and Type-II progressively hybrid cen-
soring. It should be emphasized that, in classical fre-
quentist methods for such comparisons [2], via hy-
pothesis tests of assumed equality of underlying life-
time distributions, the details of the exact applied
censoring scheme are relevant, as they influence the
counter-factuals, outcomes of the experiment that
were possible but did not occur. In NPI such counter-
factuals play no role, as the comparison is directly
based on random quantities representing lifetimes of
one future unit per group. The different censoring
schemes affect the M -function values, but the corre-
sponding derivations of the lower and upper probabil-
ities of interest is similar in all cases.

6 Competing risks

In competing risks, a unit is subject to failure from
one of k distinct failure modes. Throughout we as-
sume that these failure modes are independent. Tsi-
atis [34] showed that competing risks data as consid-
ered here do not hold information about dependence
of failure modes. We assume that the unit fails due to
the first occurrence of a failure caused by one of the
possible failure modes, at which moment it is with-
drawn from further use. We suppose that such failure
observations are obtained for n units, and that failure
modes causing failures are known with certainty. As
is common in study of failure data under competing
risks, we consider for each unit k random quantities,
say Ti for i = 1, . . . , k, where Ti represents the unit’s
time to failure under the condition that failure oc-
curs due to failure mode i. We assume that these Ti

are independent continuous random quantities, and
the failure time of the unit is T = min(T1, . . . , Tk).
Therefore, for each unit considered we can have one
failure time and we will know, with certainty, the fail-
ure mode that caused the failure. Hence, for the Ti

corresponding to the other failure modes, which did
not cause the failure of the unit, the unit’s observed
failure time is a right-censoring time.

For the NPI approach, let the failure time of a future
item be denoted by Xn+1, and let the corresponding
notation for the failure time including indication of



the actual failure mode, say failure mode j, be Xj,n+1

(so Xn+1 corresponds to an observation T for unit
n + 1, and Xj,n+1 to Tj , according to the notation
in the previous paragraph). As we assume indepen-
dence between the different failure modes, our com-
peting risk data per failure mode consist of (possibly)
a number of observed failure times for failures caused
by the specific failure mode considered, and right-
censoring times for failures caused by other failure
modes. Hence we can apply rc-A(n) per failure mode
j, for inference on Xj,n+1. Let the number of failures
caused by failure mode j be uj and let υj(= n−uj) be
the number of the right-censored observations corre-
sponding to failure mode j. It should be emphasized
that we do not assume that each unit considered must
actually fail, if a unit does not fail then there will be
a right-censored observation recorded for this unit for
each failure mode, as we assume that the unit will
then be withdrawn from the study, or the study ends,
at some point. The random quantity representing the
failure time of the next unit, with all k failure modes
considered, is Xn+1 = min

1≤j≤k
Xj,n+1.

For failure mode j, j = 1, . . . , k, we have as data n
pairs (tj,ij , δj,ij ), for ij = 1, . . . , n, where δj,ij = 1 if
a failure at time tj,ij (= xj,ij ) was caused by failure
mode j and where δj,ij

= 0 denotes that the event
at the corresponding time tj,ij

(= cj,ij
) is, for as far

as this specific failure mode j is concerned, a right-
censored observation.

We can specify the NPI M -functions for Xj,n+1 (j =
1, . . . , k), similar to (1), as

M j
tj,ij

=M j(tj,ij , xj,ij+1)=
(ñtj,ij

)δj,ij
−1

(n + 1)

∏
{r:cr<tj,ij

}

ñcr+1
ñcr

(10)
with ñcr

and ñtj,ij
the numbers of units in the risk

set just prior to times cr and tj,ij
, respectively. The

corresponding NPI probabilities, similar to (2), are

P j=P j(xj,ij
, xj,ij+1)=

1
n + 1

∏
{r:cr<xj,ij+1}

ñcr
+1

ñcr

(11)

where xj,ij and xj,ij+1 are two consecutive observed
failure times caused by failure mode j (and xj,0 = 0,
xj,n+1 = ∞).

The event of interest is that a single future unit, which
we call the ’next unit’, undergoing the same test or
process as the n units for which failure data are avail-
able, fails due to a specific failure mode, say mode l.
The NPI lower and upper probabilities for the event
Xl,n+1 = min

1≤j≤k
Xj,n+1, for l = 1, . . . , k, are

P (l)=
n∑∑∑

ij=0

j 6=l

 ul∑
il=0

1(xl,il+1 < min
1≤j≤k

j 6=l

{tj,ij})P l

 k∏
j=1

j 6=l

M j
tj,ij

(12)

P
(l)

=
uj∑∑∑

ij=0

j 6=l

 n∑
il=0

1(tl,il
< min

1≤j≤k

j 6=l

{xj,ij+1})M l
tl,il

 k∏
j=1

j 6=l

P j

(13)
where the first summation signs denote the sums over
all ij from 0 to n or uj for j = 1, . . . , k but not in-
cluding j = l. The derivation of these NPI lower and
upper probabilities is given in [31].

We briefly consider the special case of the general
competing risks problem in which there are only two
failure modes (so k = 2), 1 and 2, also denoted by
FM1 and FM2, and with all n units considered ac-
tually failing due to one of these two failure modes.
Therefore, any unit which fails due to FM1 leads to
a right-censored observation for FM2, and vice versa.
In this case, the number of failures due to FM1 (FM2)
is equal to the number of right-censored observations
for FM2 (FM1), so υ1 = u2 and υ2 = u1. The NPI
lower and upper probabilities for the event that the
next unit will fail due to FM1 are

P (1) =
n∑

i2=0

{
u1∑

i1=0

1(x1,i1+1 < t2,i2)P
1

}
M2

t2,i2
(14)

P
(1)

=
u2∑

i2=0

{
n∑

i1=0

1(t1,i1 < x2,i2+1)M1
t1,i1

}
P 2 (15)

This special case enables us to illustrate some inter-
esting features of the NPI approach in this setting.
We consider two specific scenarios in detail:

(A) all failures due to FM2 come first, followed by
all failures due to FM1, meaning that the u2 failure
times of failures due to FM2 are all smaller than the
u1 failure times of failures due to FM1. In this case,
the NPI lower and upper probabilities for the event
that the next unit will fail due to FM1 are

P (1),A =
1

u1 + 1

υ2∑
i2=1

i2 M2(c2,i2 ,∞)

P
(1),A

=
1

n+1

[
υ2+1 +

u2

n+1
+
υ1−1∑
i1=1

(υ1−i1) M1(c1,i1 , x1,1)

]

(B) all failures due to FM1 come first, followed by all
failures due to FM2, in which case the NPI lower and



upper probabilities for the event that the next unit
will fail due to FM1 are

P (1),B =
1

n + 1

[
u1 u2

u2 + 1
+

υ2∑
i1=1

i1 M2(c2,i2 , x2,1)

]

P
(1),B

=
1

u2+1

[
1+

u2(u1+1)
n+1

+
υ1−1∑
i1=1

(υ1−i1)M1(c1,i1 ,∞)

]

These NPI lower and upper probabilities follow
straightforwardly from the general expressions given
before. The main reason for highlighting these two
special cases is an interesting observation in our study
of NPI for competing risks data, namely that case (A)
always seems to give the minimal NPI lower and upper
probabilities, when all possible orderings of u2 failures
due to FM2 and u1 failures due to FM1 are consid-
ered, while case (B) always seems to give the maximal
NPI lower and upper probabilities. For now, we pro-
pose this property as a conjecture, which we strongly
believe to hold and hope to prove generally in the near
future.

7 Examples

7.1 Example I: Early termination

Desu and Raghavarao [23] present recorded times
(months) until promotion at a large company, for
19 employees in k = 3 departments. The data are:
Dept 1: 15, 20+, 36, 45, 58, 60 (n1 = 6); Dept 2:
12, 25+, 28, 30+, 30+, 36, 40, 45, 48 (n2 = 9); Dept 3:
30+, 40, 48, 50 (n3 = 4), where ” + ” indicates that
the employee left the company at that length of ser-
vice before getting promotion, this is considered to be
a right-censored observation (one could argue about
whether or not this right-censoring process is inde-
pendent of the promotion process, but as we only use
this data set for illustration, and have no further cir-
cumstantial information, we do not address this in
more detail). We consider at which department the
data suggest that one needs to work the longest to
get a promotion. This data set contains tied observa-
tions, in NPI these are dealt with by assuming that
they differ by a very small amount, in such a way that
the lower (or upper) probability of interest is smallest
(largest) over all possible ways to break the ties.

To illustrate NPI for multiple comparisons with early
termination, as summarized in Section 4, assume that
all these employees started working at this company
at the same time, and that one considers the data after
T0 months, so all larger observations in the data above
are treated as being right-censored at T0. For several
values of T0, the lower and upper probabilities for the
event that one has to work the longest in department

T0 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

11 0 1 0 1 0 1
14 0 1 0 0.903 0 1
17 0 0.863 0 0.903 0.011 1
27 0 0.863 0 0.903 0.011 1
33 0 0.863 0 0.797 0.024 1
38 0 0.714 0 0.659 0.089 1
42 0.068 0.714 0.025 0.540 0.114 0.833
47 0.081 0.615 0.032 0.434 0.197 0.833
49 0.167 0.615 0.032 0.354 0.216 0.748
52 0.239 0.615 0.032 0.354 0.216 0.662
59 0.239 0.615 0.032 0.354 0.216 0.662
61 0.239 0.615 0.032 0.354 0.216 0.662

Table 1: Lower and upper probabilities, Example I

l, P (l) and P
(l)

, for l = 1, 2, 3, are presented in Table
1. There is no value of T0 for which the corresponding
data would strongly indicate that one of the depart-
ments leads to longest time to promotion, according
to the formulation of such indications as explained in
Section 4. For several T0, for example T0 = 17, both
the lower and upper probabilities for department 3
are greater than the lower and upper probabilities,
respectively, for department 1 and for department 2.
As discussed in Section 4, one could argue that this
provides a weak indication that department 3 leads to
the longest times until promotion. However, the large
imprecision in these lower and upper probabilities in-
dicates that the evidence for such a claim is weak, so
care must be taken when formulating any conclusion
along these lines. For larger values of T0, department
3 has most imprecision remaining, which reflects that
there are only few observations for this department.

7.2 Example II: Progressive censoring

In this example, we illustrate the above presented NPI
approach for comparison of two groups of lifetime data
under several progressive censoring schemes. We use
a subset of Nelson’s data [32] on breakdown times (in
minutes) of an insulating fluid that is subject to high
voltage stress. The data are given below, 10 units per
group involved in the experiment, so nx = ny = 10.
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, 4.75

Y : 1.34, 1.49, 1.56, 2.10, 2.12, 3.83, 3.97, 5.13, 7.21, 8.71

We present the NPI lower and upper probabilities that
group Y is better than group X, by comparing single
next future observations from both groups, X11 and
Y11. The appropriate assumptions rc-A(n) are again
made per group, and it is assumed that the groups
are fully independent.

Suppose that progressive Type-II censoring is applied
to group Y , with three units withdrawn from the
experiment at the first observed breakdown time



for group Y (at y1 = 1.34), and two units for this
group withdrawn at the last observed breakdown
time, y5 = 5.13, so with Ry = (3, 0, 0, 0, 2). It
is also assumed that all breakdown times for the
units from group X are observed. Assume that,
with yc denoting a right-censored observation at
time y, the data actually observed in this case are
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, 4.75

Y : 1.34, 1.34c, 1.34c, 1.34c, 1.49, 1.56, 2.12, 5.13, 5.13c, 5.13c

The NPI lower and upper probabilities are
P (Y11 > X11) = 0.6139 and P (Y11 > X11) = 0.8052.

Now suppose that the progressive Type-II censor-
ing scheme is applied to both groups X and Y ,
with Rx = (2, 1, 0, 1, 0, 0) and Ry = (1, 2, 0, 3)
and resulting in the following data, X :

0.49, 0.49c, 0.49c, 0.64, 0.64c, 0.93, 1.99, 1.99c, 2.06, 4.75

Y : 1.34, 1.34c, 1.49, 1.49c, 1.49c, 2.10, 2.12, 2.12c, 2.12c, 2.12c

These data lead to NPI lower and upper probabilities
P (Y11 > X11) = 0.5148 and P (Y11 > X11) = 0.8506.

Precedence testing can be considered as a special case
of progressive censoring. Suppose that the experi-
ment is terminated as soon as the fifth breakdown
from group Y is observed, i.e. at time y5 = 2.12.
Then the breakdown times of five units from
group Y are right-censored at that time, together
with three units from group X, resulting in data
X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.12c, 2.12c, 2.12c

Y : 1.34, 1.49, 1.56, 2.10, 2.12, 2.12c, 2.12c, 2.12c, 2.12c, 2.12c

For these data, NPI gives P (Y11 > X11) = 0.5289
and P (Y11 > X11) = 0.8264. Coolen-Schrijner et
al [20] present several results for NPI precedence
testing, including the attractive fact that, if one
increases the end-time of the experiment, such an
NPI lower (upper) probability for comparison of two
groups never decreases (increases).

7.3 Example III: Competing risks

In this example, a well-known data set from the liter-
ature [27] is used to illustrate some aspects of the NPI
method for dealing with competing risks. The data
contain information about 36 units of a new model
of a small electrical appliance which were tested, and
where the lifetime observation per unit consists of the
number of completed cycles of use until the unit failed.
These data are presented in Table 2, which also in-
cludes the specific failure mode (FM) that caused the
unit to fail. In the study, there were 18 different
ways in which an appliance could fail, so 18 failure
modes, but to illustrate the NPI method we will first
reduce this to two failure modes, thereafter we con-
sider grouping into three failure modes. Three units in
the test did not fail before the end of the experiment,
so for these units we have right-censored observations
(2565, 6367 and 13403) for all failure modes consid-

ered, indicated by ‘-’ for the failure mode in Table
2.

# cycles FM # cycles FM # cycles FM

11 1 1990 9 3034 9
35 15 2223 9 3034 9
49 15 2327 6 3059 6
170 6 2400 9 3112 9
329 6 2451 5 3214 9
381 6 2471 9 3478 9
708 6 2551 9 3504 9
958 10 2565 - 4329 9
1062 5 2568 9 6367 -
1167 9 2702 10 6976 9
1594 2 2761 6 7846 9
1925 9 2831 2 13403 -

Table 2: Failure data for electrical appliance test

The two most frequently occurring failure modes in
these data are FM9, which caused 17 units to fail, and
FM6 which caused 7 failures. We consider how likely
it is that the next unit, say unit 37, would fail due to
FM9, assuming it would undergo the same test and
its number of completed cycles would be exchange-
able with these numbers for the 36 units reported.
Let us first group all failure modes other than FM9
together, and consider these jointly as a failure mode,
so we consider the NPI approach with 2 failure modes,
FM9 and, say, ’other failure mode’ (OFM). There are
still three units that do not fail and for which we only
have right-censored observations (RC). The data cor-
responding to this definition of failure modes are pre-
sented in Table 3.

FM9 1167 1925 1990 2223 2400 2471
2551 2568 3034 3034 3112 3214
3478 3504 4329 6976 7846

OFM 11 35 49 170 329 381
708 958 1062 1594 2327 2451
2702 2761 2831 3059

RC 2565 6367 13403

Table 3: Failure data for FM9, OFM and RC

In this case there are tied observations, as two units
have failed due to FM9 after 3034 completed cycles.
To deal with this, we assume a small difference be-
tween these values, such that their ordering does not
change with regard to observations of units in other
groups, so, we assume that one of these two units ac-
tually failed after 3035 completed cycles. If such a
tie would occur among different groups, then one can
break it similarly in two ways, different for upper and
lower probabilities in such a way that these are maxi-
mal and minimal, respectively, over the possible ways
of breaking such ties, without changing the order of



these observations with respect to all other observa-
tions. For competing risks data, a failure time obser-
vation caused by one failure mode is simultaneously a
right-censored observation for all other failure modes.
This situation is dealt with in the NPI approach, as is
common in many statistical approaches, by assuming
that the right-censoring time is just beyond the fail-
ure time. For the three right-censored observations
for units that were not observed to fail, we also have
tied observations for the two failure modes considered
(FM9 and OFM), so for both these right-censoring
times coincide. We deal with this again by assuming
that for one of the failure modes this event occurred
fractionally later than for the other, and then we cal-
culate the lower and upper probabilities for the event
of interest by considering the maximum and minimum
of the upper and lower probabilities, respectively, cor-
responding to the different possible orderings of these
‘un-tied’ right-censoring times.

The NPI lower and upper probabilities for the event
that unit 37 will fail due to FM9 are

P (XFM9
37 < XOFM

37 ) = 0.4358,

P (XFM9
37 < XOFM

37 ) = 0.5804

while the corresponding NPI lower and upper proba-
bilities for unit 37 to fail due to OFM are

P (XOFM
37 < XFM9

37 ) = 0.4196,

P (XOFM
37 < XFM9

37 ) = 0.5642

These lower and upper probabilities satisfy the con-
jugacy property as, implicit in our method, it is as-
sumed that the experiment on unit 37 would actually
continue until it fails, and this is assumed to happen
with certainty. NPI can be generalized to take the
possibility of ’non-failure’ of the next unit by a cer-
tain time into account, but we have not developed this
further. On the basis of these NPI lower and upper
probabilities, one could interpret the data as contain-
ing weak evidence that the event that unit 37 will fail
due to FM9 is (a bit) more likely than for it to fail
due to another failure mode, with all the other failure
modes grouped together as done in this case.

Let us now group the failure modes differently, by
considering FM9 and FM6 separately, causing 17 and
7 units to fail, respectively. We group all the other
failure modes together into OFM. The data used here
are given in Table 4. The NPI lower and upper proba-
bilities for the event that unit 37 will fail due to FM9,
due to FM6 or due to OFM, are

P
(
XFM9

37 <min
{
XFM6

37 , XOFM
37

})
=0.3915 ,

FM9 1167 1925 1990 2223 2400 2471
2551 2568 3034 3034 3112 3214
3478 3504 4329 6976 7846

FM6 170 329 381 708 2327 2761
3059

OFM 11 35 49 958 1062 1594
2451 2702 2831

RC 2565 6367 13403

Table 4: Failure data for FM9, FM6, OFM and RC

P
(
XFM9

37 <min
{
XFM6

37 , XOFM
37

})
=0.5804

P
(
XFM6

37 <min
{
XFM9

37 , XOFM
37

})
=0.1749 ,

P
(
XFM6

37 <min
{
XFM9

37 , XOFM
37

})
=0.3279

P
(
XOFM

37 <min
{
XFM6

37 , XFM9
37

})
=0.2265 ,

P
(
XOFM

37 <min
{
XFM6

37 , XFM9
37

})
=0.3808

Since

P
(
XFM9

37 < min
{
XFM6

37 , XOFM
37

})
>

P
(
XFM6

37 < min
{
XFM9

37 , XOFM
37

})
one could interpret the data as providing strong evi-
dence that unit 37 is more likely to fail due to FM9
than due to FM6, in this setting with all other fail-
ure modes grouped into OFM. If one adopts a sub-
jective interpretation of lower and upper probabilities
in terms of prices for desirable gambles, in line with
Walley [36], then these lower and upper probabilities
would imply that, for any price between 0.3279 and
0.3915, one would be willing both to buy the gam-
ble which pays 1 if unit 37 fails due to FM9 and to
sell the gamble which pays 1 if unit 37 fails due to
FM6. If one has a quick look at the data, one may
be surprised that FM6 is not the more likely one to
lead to failure, as it has caused relatively many early
failures. However, it only caused failure of 7 out of
the 36 units tested, the comparisons would be differ-
ent if the data were not competing risks data on the
same units but failure times for independent groups
without the important aspect of a failure due to one
failure mode providing a right-censored observation
for all other failure modes. Similarly, strong evidence
that unit 37 is more likely to fail due to FM9 than
due to OFM can be claimed because

P
(
XFM9

37 < min
{
XFM6

37 , XOFM
37

})
>

P
(
XOFM

37 < min
{
XFM6

37 , XFM9
37

})
Comparison of these two cases illustrates some fea-
tures that are different in statistics using lower and
upper probabilities when compared to methods using



precise probabilities. The lower and upper probabili-
ties for unit 37 to fail due to FM9 are [0.4358, 0.5804]
in the first case, with all other failure modes grouped
together, and [0.3915, 0.5804] in the second case, with
FM6 also taken separately. In the latter case, there is
more imprecision in these upper and lower probabili-
ties, while data are represented in more detail. This
increase in imprecision, actually the fact that these
upper and lower probabilities are nested with more
imprecision if data are represented in more detail, is
in line with a fundamental principle of NPI proposed
and discussed by Coolen and Augustin [9, 10] in the
context of multinomial data. This leads to the con-
jecture that, for such competing risks data, if more
failure modes are treated separately instead of being
grouped together, then lower and upper probabilities
for an event that the next unit’s failure is caused by a
specific failure mode are nested, with imprecision in-
creasing with the number of failure modes used. We
hope to prove this conjecture in the near future.

The two NPI upper probabilities for the event that
unit 37 will fail due to FM9, for the cases with all
other failure modes grouped together (first case) and
with FM6 separated (second case), are both equal to
0.5804. This is a consequence of the fact that this
upper probability is realized with the extreme assign-
ments of probability masses in the intervals created
by the data in accordance to the lower survival func-
tion for FM9 and the upper survival function for the
other failure modes. With all failure modes assumed
to be independent, the upper survival function for the
other failure modes combined is actually the same,
whether or not FM6 is considered separately, this was
discussed by Coolen et al [12], who presented individ-
ual NPI lower and upper survival functions and also
considered the data used in this example, but they
did not develop the NPI method for multiple compar-
isons that underlies the NPI method for competing
risks presented here.
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