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Abstract

A prototype theory interpretation of the label seman-
tics framework is proposed as a possible model of
imprecise descriptions of real numbers. It is shown
that within this framework conditioning given impre-
cise descriptions of a real variable naturally results in
imprecise probabilities. An inference method is pro-
posed from data in the form of a set of imprecise de-
scriptions, which naturally suggests an algorithm for
estimating lower and upper probabilities given impre-
cise data values.
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1 Introduction

The label semantics framework [3], [4] is an epistemic
theory of the uncertainty associated with vague or
imprecise descriptions of an object or value. In label
semantics the focus is on the decision making pro-
cess an intelligent agent must go through in order to
identify which labels or expressions can actually be
used to describe an object or value. In other words,
in order to make an assertion describing an object in
terms of some set of linguistic labels, an agent must
first identify which of these labels are appropriate or
assertible in this context. Given the way that indi-
viduals learn language through an ongoing process of
interaction with the other communicating agents and
with the environment, then we can expect there to
be considerable uncertainty associated with any de-
cisions of this kind. Furthermore, there is a subtle
assumption central to the label semantic model, that
such decisions regarding appropriateness or assertibil-
ity are meaningful. For instance, the fuzzy logic view
is that vague descriptions like ‘John is tall’ are gener-
ally only partially true and hence it is not meaningful
to consider which of a set of given labels can truth-
fully be used to described John’s height. However,

we contest that the efficacy of natural language as a
means of conveying information between members of
a population lies in shared conventions governing the
appropriate use of words which are, at least loosely,
adhered to by individuals within the population.

In our everyday use of language we are continually
faced with decisions about the best way to describe
objects and instances in order to convey the informa-
tion we intend. For example, suppose you are witness
to a robbery, how should you describe the robber so
that police on patrol in the streets will have the best
chance of spotting him? You will have certain labels
that can be applied, for example tall, short, medium,
fat, thin, blonde, etc, some of which you may view
as inappropriate for the robber, others perhaps you
think are definitely appropriate while for some labels
you are uncertain whether they are appropriate or
not. On the other hand, perhaps you have some or-
dered preferences between labels so that tall is more
appropriate than medium which is in turn more ap-
propriate than short. Your choice of words to describe
the robber should surely then be based on these judg-
ments about the appropriateness of labels. Yet where
does this knowledge come from and more fundamen-
tally what does it actually mean to say that a label
is or is not appropriate? Label semantics proposes
an interpretation of vague description labels based on
a particular notion of appropriateness and suggests a
measure of subjective uncertainty resulting from an
agent’s partial knowledge about what labels are ap-
propriate to assert. Furthermore, it is suggested that
the vagueness of these description labels lies funda-
mentally in the uncertainty about if and when they
are appropriate as governed by the rules and conven-
tions of language use.

The above argument brings us very close to the epis-
temic view of vagueness as expounded by Timothy
Williamson [12]. Williamson assumes that for the
extensions of a vague concept there is a precise but
unknown dividing boundary between it and the ex-



tension of the negation of that concept. However,
while there are marked similarities between the epis-
temic theory and the label semantics view, there are
also some subtle differences. For instance, the epis-
temic view would seem to assume the existence of
some objectively correct, but unknown, definition of
a vague concept. Instead of this we argue that indi-
viduals when faced with decision problems regarding
assertions find it useful as part of a decision making
strategy to assume that there is a clear dividing line
between those labels which are and those which are
not appropriate to describe a given instance. We re-
fer to this strategic assumption across a population of
communicating agents as the epistemic stance [5], a
concise statement of which is as follows:

Each individual agent in the population as-
sumes the existence of a set of labeling con-
ventions, valid across the whole population,
governing what linguistic labels and expres-
sions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the
appropriate use of labels would not be imposed by
some outside authority. In fact, they may not exist
at all in a formal sense. Rather they are represented
as a distributed body of knowledge concerning the as-
sertability of predicates in various cases, shared across
a population of agents, and emerging as the result of
interactions and communications between individual
agents all adopting the epistemic stance. The idea is
that the learning processes of individual agents, all
sharing the fundamental aim of understanding how
words can be appropriately used to communicate in-
formation, will eventually converge to some degree on
a set of shared conventions. The very process of con-
vergence then to some extent vindicates the epistemic
stance from the perspective of individual agents. Of
course, this is not to suggest complete or even ex-
tensive agreement between individuals as to these ap-
propriateness conventions. However, the overlap be-
tween agents should be sufficient to ensure the effec-
tive transfer of useful information.

In this paper we consider the application of label se-
mantics to model the description of real numbers us-
ing vague or imprecise labels. In particular, given a
real valued variable x and a label L for real numbers
we attempt to understand the nature of the informa-
tion provided by assertions of the form ‘x is L’. Indeed
we will argue that from an epistemic perspective such
assertions naturally result in imprecise probabilities.
The model we propose will be based on a new inter-
pretation of label semantics linking random set theory
and Rosch’s [9] prototype theory of concepts.

2 The Prototype Interpretation of

Label Semantics

Label semantics proposes two fundamental and inter-
related measures of the appropriateness of labels as
descriptions of an object or value. Given a finite set
of labels LA a set of compound expressions LE can
then be generated through recursive applications of
logical connectives. The labels Li ∈ LA are intended
to represent words such as adjectives and nouns which
can be used to describe elements from the underlying
universe Ω. In other words, Li correspond to descrip-
tion labels for which the expression ‘x is Li’ is mean-
ingful for any x ∈ Ω. For example, if Ω is the set of
all possible rgb values then LA could consist of the
basic colour labels such as red, yellow, green, orange
etc. In this case LE then contains those compound
expression such as red & yellow, not blue nor orange
etc. The measure of appropriateness of an expression
θ ∈ LE as a description of instance x is denoted by
µθ (x) and quantifies the agent’s subjective belief that
θ can be used to describe x based on his/her (partial)
knowledge of the current labeling conventions of the
population. From an alternative perspective, when
faced with an object to describe, an agent may con-
sider each label in LA and attempt to identify the
subset of labels that are appropriate to use. Let this
set be denoted by Dx. In the face of their uncer-
tainty regarding labeling conventions the agent will
also be uncertain as to the composition of Dx, and
in label semantics this is quantified by a probability
mass function mx : 2LA → [0, 1] on subsets of labels.
The relationship between these two measures will be
described below.

Definition 1. Label Expressions
Given a finite set of labels LA the corresponding set of
label expressions LE is defined recursively as follows:

• If L ∈ LA then L ∈ LE

• If θ, ϕ ∈ LE then ¬θ, θ ∧ ϕ, θ ∨ ϕ ∈ LE

The mass function mx on sets of labels then quan-
tifies the agent’s belief that any particular subset of
labels contains all and only the labels with which it is
appropriate to describe x.

Definition 2. Mass Function on Labels
∀x ∈ Ω a mass function on labels is a function mx :
2LA → [0, 1] such that

∑

F⊆LA mx (F ) = 1

The appropriateness measure, µθ (x), and the mass
function mx are then related to each other on the ba-
sis that asserting ‘x is θ’ provides direct constraints
on Dx. For example, asserting ‘x is L1 ∧ L2’, for
labels L1, L2 ∈ LA is taken as conveying the infor-



mation that both L1 and L2 are appropriate to de-
scribe x so that {L1, L2} ⊆ Dx. Similarly, ‘x is ¬L’
implies that L is not appropriate to describe x so
L /∈ Dx. In general we can recursively define a map-

ping λ : LE → 22LA

from expressions to sets of sub-
sets of labels, such that the assertion ‘x is θ’ directly
implies the constraint Dx ∈ λ (θ) and where λ (θ) is
dependent on the logical structure of θ.

Definition 3. λ-mapping

λ : LE → 22LA

is defined recursively as follows:
∀Li ∈ LA, ∀θ, ϕ ∈ LE

• λ(Li) = {F ⊆ LA : Li ∈ F}

• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

• λ(¬θ) = λ(θ)c

Based on the λ mapping we then define µθ (x) as the
sum of mx over those sets of labels in λ (θ).

Definition 4. Appropriateness Measure
The appropriateness measure defined by mass func-
tion mx is a function µ : LA × Ω → [0, 1] satisfying

∀θ ∈ LE, ∀x ∈ Ω µθ (x) =
∑

F∈λ(θ)

mx (F )

where µθ(x) is used as shorthand notation for µ(θ, x).

Prototype theory and imprecise probabilities have al-
ready been linked by Walley and de Cooman [11] who
identified labels based on prototypes as a special case
of monotonic predicates which they argue naturally
induce possibility distributions. A prototype theory
interpretation of Label Semantics has recently been
proposed [6], [7], [10] in which the basic labels LA
correspond to natural categories each with an asso-
ciated set of prototypes. A label Li is then deemed
to be an appropriate description of an element x ∈ Ω
provided x is sufficiently similar to the prototypes of
Li. The requirement of being ‘sufficiently similar’ is
clearly imprecise and is modelled here by introducing
an uncertain threshold on distance from prototypes.

A distance function d is defined on Ω such that d :
Ω2 → [0,∞) and satisfies d(x, x) = 0 and d(x, y) =
d(y, x) for all elements x, y ∈ Ω. This function is then
extended to sets of elements such that for S, T ⊆ Ω,
d(S, T ) = inf{d(x, y) : x ∈ S and y ∈ T}. For each
label Li ∈ LA let there be a set Pi ⊆ Ω corresponding
to prototypical elements for which Li is certainly an
appropriate description. Within this framework Li

is deemed to be appropriate to describe an element
x ∈ Ω provided x is sufficiently close or similar to

a prototypical element in Pi. This is formalized by
the requirement that x is within a maximal distance
threshold ǫ of Pi. i.e. Li is appropriate to describe
x if d(x, Pi) ≤ ǫ where ǫ ≥ 0. From this perspective
an agent’s uncertainty regarding the appropriateness
of a label to describe a value x is characterised by his
or her uncertainty regarding the distance threshold
ǫ. Here we assume that ǫ is a random variable and
that the uncertainty is represented by a probability
density function δ for ǫ defined on [0,∞). Within
this interpretation a natural definition of the complete
description of an element Dx and the associated mass
function mx can be given as follows:

Definition 5. Prototype Interpretations of Dx and
mx

For ǫ ∈ [0,∞) Dǫ
x = {Li ∈ LA : d(x, Pi) ≤ ǫ} and

∀F ⊆ LA mx(F ) = δ({ǫ : Dǫ
x = F})1

Appropriateness measures can then be evaluated ac-
cording to definition 4. Alternatively, we can de-
fine a random set neighbourhood for each expression
θ ∈ LE corresponding to those elements of Ω which
can be appropriately described as θ, and then define
µθ(x) as the single point coverage function of this ran-
dom set as follows:

Definition 6. Random Set Neighbourhood of an Ex-
pression
For θ ∈ LE and ǫ ∈ [0,∞), N ǫ

θ ⊆ Ω is defined recur-
sively as follows: ∀Li ∈ LA, ∀θ, ϕ ∈ LE

• N ǫ
Li

= {x ∈ Ω : d(x, Pi) ≤ ǫ}

• N ǫ
θ∧ϕ = N ǫ

θ ∩N ǫ
ϕ

• N ǫ
θ∨ϕ = N ǫ

θ ∪N ǫ
ϕ

• N ǫ
¬θ = (N ǫ

θ )c

Theorem 1. Random Neighbourhood Representation
Theorem [7]

∀θ ∈ LE, ∀x ∈ Ω µθ(x) = δ({ǫ : x ∈ N ǫ
θ})

Proof. Initially we show by induction that ∀θ ∈ LE,
∀ǫ ≥ 0 N ǫ

θ = {x : Dǫ
x ∈ λ(θ)}. Let LE(1) = LA and

for k > 1 LE(k) = LE(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈
LE(k−1)}. We now proceed by induction on k.
Limit Case: k = 1 For Li ∈ LA we have by defi-
nition 6 that N ǫ

Li
= {x : d(x, Pi) ≤ ǫ} = {x : Li ∈

Dǫ
x} = {x : Dǫ

x ∈ λ(Li)} by definition 3.
Inductive Step: Assume true for k For Ψ ∈

1For Lesbegue measurable set I ⊆ [0,∞), we denote δ(I) =
R

I
δ(ǫ)dǫ i.e. we also use δ to denote the probability measure

induced by density function δ.



LE(k+1) either Ψ ∈ LE(k), in which case the result
holds trivially by the inductive hypothesis, or one of
the following holds for θ, ϕ ∈ LE(k):

• Ψ = θ ∧ ϕ so that N ǫ
Ψ = N ǫ

θ∧ϕ = N ǫ
θ ∩ N ǫ

ϕ (by
definition 6) = {x : Dǫ

x ∈ λ(θ)}∩{x : Dǫ
x ∈ λ(ϕ)}

(by the inductive hypothesis) = {x : Dǫ
x ∈ λ(θ)∩

λ(ϕ)} = {x : Dǫ
x ∈ λ(θ ∧ ϕ)} (by definition 3).

• Ψ = θ ∨ ϕ so that N ǫ
Ψ = N ǫ

θ∨ϕ = N ǫ
θ ∪ N ǫ

ϕ (by
definition 6) = {x : Dǫ

x ∈ λ(θ)}∪{x : Dǫ
x ∈ λ(ϕ)}

(by the inductive hypothesis) = {x : Dǫ
x ∈ λ(θ)∪

λ(ϕ)} = {x : Dǫ
x ∈ λ(θ ∨ ϕ)} (by definition 3).

• Ψ = ¬θ so that N ǫ
Ψ = N ǫ

¬θ = (N ǫ
θ )c (by defi-

nition 6) = {x : Dǫ
x ∈ λ(θ)}c (by the inductive

hypothesis) = {x : Dǫ
x 6∈ λ(θ)} = {x : Dǫ

x ∈
λ(θ)c} = {x : Dǫ

x ∈ λ(¬θ)} (by definition 3).

Now by definition 4 we have that ∀θ ∈ LE µθ(x) =
∑

F∈λ(θ) mx(F ) =
∑

F∈λ(θ) δ({ǫ : Dǫ
x = F}) (by defi-

nition 5) = δ({ǫ : Dǫ
x ∈ λ(θ)}) = δ({ǫ : x ∈ N ǫ

θ }) (by
above).

For example, for Li ∈ LA N ǫ
Li

= {x : d(x, Pi) ≤ ǫ}.
Hence, µLi

(x) = ∆(d(x, Pi)) where ∆(ǫ) = δ([ǫ,∞)).

Theorem 1 shows a clear link between appropriateness
measures and Goodman and Nguyen’s characterisa-
tion of fuzzy set membership functions as single point
coverage functions of random sets [1], [2], [8].

Theorem 2. Restricted Consonance [7]
Let LE∧,∨ be those expressions in LE which can be
generated from LA using only the connectives ∧ and
∨. Then ∀θ ∈ LE∧,∨, ∀0 ≤ ǫ ≤ ǫ′ N ǫ

θ ⊆ N ǫ′

θ

Proof. Let LE∧,∨,(1) = LA and for k > 1 let
LE∧,∨,(k) = LE∧,∨,(k−1) ∪ {θ ∧ ϕ, θ ∨ ϕ : θ, ϕ ∈
LE∧,∨,(k−1)}. We now proceed by induction on k.
Limit Case: k = 1 For Li ∈ LA, since ǫ′ ≥ ǫ then
trivially N ǫ

Li
= {x : d(x, Pi) ≤ ǫ} ⊆ {x : d(x, Pi) ≤

ǫ′} = N ǫ′

Li

Inductive Step: Assume true for k For Ψ ∈
LE(k+1) either Ψ ∈ LE(k), in which case the result
holds trivially by the inductive hypothesis, or one of
the following holds for θ, ϕ ∈ LE(k):

• Ψ = θ ∧ ϕ: In this case N ǫ
Ψ = N ǫ

θ∧ϕ = N ǫ
θ ∩ N ǫ

ϕ

(by definition 6) ⊆ N ǫ′

θ ∩ N ǫ′

ϕ (by the inductive

hypothesis) = N ǫ′

Ψ (by definition 6).

• Ψ = θ ∨ ϕ: In this case N ǫ
Ψ = N ǫ

θ∨ϕ = N ǫ
θ ∪ N ǫ

ϕ

(by definition 6) ⊆ N ǫ′

θ ∪ N ǫ′

ϕ (by the inductive

hypothesis) = N ǫ′

Ψ (by definition 6).

3 Imprecise Descriptions of Real

Numbers

In this section we apply label semantics and prototype
theory to model inference from imprecise descriptions
of real numbers. Adopting random set neighbour-
hoods to represent extensions of concepts we will con-
sider what imprecise probabilities result from condi-
tioning given linguistic descriptions of a real variable.
This approach is grounded in a clear interpretation
of vague linguistic descriptions, in contrast to fuzzy
methods in which membership functions and conse-
quently probabilities of fuzzy events have no clear op-
erational semantics [4].

Here we take Ω = R and d(x, y) = ‖x − y‖ and we
consider descriptions based on number labels of the
following form:

Definition 7. Number Labels
We consider a set LA of number labels Li describ-
ing R with prototype sets Pi each corresponding to an
interval of R

The appropriateness measure for a number expres-
sions θ ∈ LE (generated as in definition 1) is defined
directly as the single point coverage function of N ǫ

θ as
in theorem 1. This allows us to relax the requirement
in label semantics that LA is finite.

Here we particularly consider appropriateness mea-
sures generated by two types of density δ; normal dis-
tributions and uniform distributions.

Let f(c, σ, ǫ) denote the normal density function with
mean c and standard deviation σ so that:

f(c, σ, ǫ) =
1√
2πσ

e−
(ǫ−c)2

2σ2

From this we can define a density δ as a normalised
normal density of the form:

δ(c, σ, ǫ) =
f(c, σ, ǫ)

1 − k
where k =

∫ 0

−∞
f(c, σ, ǫ)dǫ

From this we also have that:

∆(c, σ, ǫ) =
erfc( ǫ−c

σ
√

2
)

erfc( −c

σ
√

2
)

where erfc is the complementary error function

erfc(x) =
2√
π

∫ ∞

x

e−t2dt

Now let µ
(c,σ)
θ (x) denote the appropriateness measure

for θ generated by a normalised normal distribution δ
with mean c and standard deviation σ. Figure 1 shows
the appropriateness measure for a number label with
prototypes Pi = [5, 7] based on a normalised normal
distribution with c = 2 and σ = 1.
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Figure 1: Appropriateness for label with prototypes
[5, 7] generated by a normalised normal distribution
with mean c = 2 and standard deviation σ = 1

Theorem 3. Let c ≤ c′ then for Li ∈ LA it holds
that:

∀x ∈ R,∀σ ∈ R µ
(c,σ)
Li

(x) ≤ µ
(c′,σ)
Li

(x)

Proof. It is sufficient to show that ∆(c, σ, ǫ) is an in-
creasing function of c. Let t = c

σ
√

2
and s = ǫ

σ
√

2

then:

∆(c, σ, ǫ) = h(t, s) =
erfc(s − t)

erfc(−t)

Hence it is sufficient to show that h is an increasing
function of t.

∂h

∂t
=

2e−(s−t)2

√
2erfc(t)

+
2erfc(s − t)e−t2

erfc(t)2
√

π
≥ 0

as required.

Another interesting case is where δ is the uniform dis-
tribution on an interval [k, r] for r > k ≥ 0. This
results in trapezoidal (or triangular) appropriateness
measures. In this case we have:

δ(k, r, ǫ) =











0 : ǫ < k
1

r−k
: ǫ ∈ [k, r]

0 : ǫ > r

and ∆(k, r, ǫ) =











1 : ǫ < k
r−ǫ
r−k

: ǫ ∈ [k, r]

0 : ǫ > r

Now let µ
(k,r)
θ (x) denote the appropriateness measure

for θ generated by a uniform distribution δ on [k, r].
Figure 2 shows the appropriateness for a number label
with prototypes [a, b] based on a uniform δ.

a b
r r

k k

1

Figure 2: Appropriateness for label with prototypes
[a, b] generated by a uniform distribution δ on [k, r]

Theorem 4. Let 0 ≤ k < r, 0 ≤ k′ < r′, k ≤ k′, and
r ≤ r′ then for Li ∈ LA it holds that:

∀x ∈ R µ
(k,r)
Li

(x) ≤ µ
(k′,r′)
Li

(x)

Proof. Trivially from the above it holds that ∀ǫ ≥ 0
∆(k, r, ǫ) ≤ ∆(k′, r′, ǫ) and hence ∆(k, r, d(x, Pi)) ≤
∆(k′, r′, d(x, Pi)) as required.

4 Information from Imprecise

Descriptions

In this section we discuss the issue of conditioning
given information in the form of imprecise descrip-
tions of a real valued variable x. In other words,
suppose we learn that ‘x is high’ or ‘x is high ∧
¬very high’ or more generally ‘x is θ’, what can we
infer from such information about the value of x? To
answer this question it is necessary to have a clear
operational interpretation of statements ‘x is θ’. For
example, Zadeh [14] proposes that such statements
define a possibility distribution on x when imprecise
descriptions are represented by fuzzy sets. However,
such a claim remains unconvincing while there is no
clear operational meaning for fuzzy set membership
functions. For the prototype model proposed in this
paper a statement ‘x is θ’ is clearly interpreted as
x ∈ N ǫ

θ . In other words, an imprecise description of x



restricts x to a random set neighbourhood generated
by that description. Consequently, given the infor-
mation ‘x is θ’ the remaining uncertainty concerning
the value of x has two distinct sources. Firstly, for a
specific value of ǫ, N ǫ

θ is imprecise in the sense that
typically it is a union of intervals of R rather than a
precise value. Secondly, the value of the threshold ǫ
is uncertain resulting in uncertainty about the defini-
tion of N ǫ

θ . Here, we shall argue that in the absence
of any further information about x these two sources
of uncertainty naturally result in lower and upper cu-
mulative distributions. Furthermore, in the presence
of a known prior probability distribution on x, condi-
tioning on ‘x is θ’ results in a second order probability
distribution on the cumulative probabilities for x.

Definition 8. Upper and Lower Distributions
Given a real valued random variable x for which we
know only that ‘x is θ’ for some θ ∈ LE we define
upper and lower cumulative distribution functions for
the probability that x ≤ y as follows:

F (y|θ) = δθ({ǫ : N ǫ
θ ⊆ (−∞, y]}) and

F (y|θ) = δθ({ǫ : N ǫ
θ ∩ (−∞, y] 6= ∅}) and where

δθ(ǫ) =







δ(ǫ)
R

ǫ:Nǫ
θ
6=∅

δ(ǫ)dǫ
: N ǫ

θ 6= ∅
0 : otherwise

In definition 8 δθ is the posterior density on ǫ resulting
from updating δ based on the information that N ǫ

θ 6=
∅. A possible justification for this normalisation of
δ is that if we learn ‘x is θ’ this would intuitively
imply that N ǫ

θ 6= ∅ since otherwise our information
would be contradictory. In other words, accepting the
assertion ‘x is θ’ implicitly implies accepting that the
threshold ǫ must be such that N ǫ

θ 6= ∅. Clearly such
conditioning is only possible if δ({ǫ : N ǫ

θ 6= ∅}) > 0
otherwise the lower and upper probabilities given in
definition 8 are undefined.

Theorem 5. For θ ∈ LE∧,∨ then ∀y ∈ R

F (y|θ) = sup{wµθ(x) : x ≤ y}
F (y|θ) = 1 − sup{wµθ(x) : x > y}

where w =
1

∫

ǫ:N ǫ
θ
6=∅ δ(ǫ)dǫ

Proof. Straightforward from theorem 2 and definition
8

Theorem 5 shows that for θ not involving negation
F (y|θ) and F (y|θ) are necessity and possibility mea-
sures respectively generated by the normalised possi-
bility distribution wµθ(x).

Corollary 1. Let F
(c,σ)

and F (c,σ) be the upper and
lower cumulative distributions as given in definition
8 and where δ is the normalised normal distribution
with parameters c and σ. Then ∀Li ∈ LA, ∀c ≤ c′,
∀σ ∈ R, ∀y ∈ R

F (c′,σ)(y|Li) ≤ F (c,σ)(y|Li) and

F
(c,σ)

(y|Li) ≤ F
(c′,σ)

(y|Li)

Proof. Straightforward from theorems 5 and 3

Corollary 2. Let F
(k,r)

and F (k,r) be the upper and
lower cumulative distributions as given in definition
8 and where δ is the a uniform distribution on [k, r].
Then ∀Li ∈ LA, 0 ≤ k < r, 0 ≤ k′ < r′, k ≤ k′, and
r ≤ r′, ∀y ∈ R

F (k′,r′)(y|Li) ≤ F (k,r)(y|Li) and

F
(k,r)

(y|Li) ≤ F
(k′,r′)

(y|Li)

Proof. Straightforward from theorems 5 and 4

Now suppose we have prior information that x is dis-
tributed according to density function p(x). In this
case if we learn ‘x is θ’ then we should generate a
posterior distribution by updating p(x) given the new
constraint that x ∈ N ǫ

θ . Let F (y|N ǫ
θ ) denote the cor-

responding updated cumulative distribution. How-
ever, the values of F (y|N ǫ

θ ) are uncertain given the
remaining uncertainty about the value of the thresh-
old ǫ. Hence, updating a prior distribution on x given
an imprecise description of x results in a second order
probability distribution as follows:

Definition 9. Second Order Distribution
Given a prior density p(x) for x we define a second
order cumulative distribution on the cumulative prob-
ability that x ≤ y as follows: ∀p ∈ [0, 1]

F̃y,θ(p) = δθ({ǫ : F (y|N ǫ
θ) ≤ p}) where

F (y|N ǫ
θ) =

∫ y

−∞
p(x|N ǫ

θ )dx and where

p(x|N ǫ
θ ) =







p(x)
R

Nǫ
θ

p(x)dx
: x ∈ N ǫ

θ

0 : otherwise

If a precise posterior distribution is required condi-
tional on θ, then one possibility is to take the expected
value of posterior distributions given N ǫ

θ , as ǫ varies.

Definition 10. Expected Density
Given prior density p(x) for x we can define an ex-
pected density for x conditional on θ by taking the



expected value of p(x|N ǫ
θ ) as ǫ varies:

p(x|θ) = Eδθ
(p(x|N ǫ

θ ))

Notice that the above is a clearly motivated definition
of conditional probability given imprecise linguistic
information, consistent with a random set and proto-
type theory view of vague concepts. This is a distinct
advantage over earlier work on the probability of fuzzy
events [13], in which definitions do not appear to be
linked to any underlying interpretation of fuzziness.

The following theorem shows that the expected cumu-
lative distribution obtained from definition 10 is con-
sistent with the lower and upper distributions given
in definition 8.

Theorem 6. For y ∈ R and θ ∈ LE, F (y|θ) ≤
F (y|θ) ≤ F (y|θ) where F (y|θ) =

∫ y

−∞ p(x|θ)dx =
Eδθ

(F (y|N ǫ
θ )).

Proof.

F (y|θ) =

∫ y

−∞
p(x|θ)dx =

∫ y

−∞

∫ ∞

0

p(x|N ǫ
θ )δθ(ǫ)dǫdx

=

∫ ∞

0

F (y|N ǫ
θ )δθ(ǫ)dǫ

=

∫

ǫ:N ǫ
θ
∩(−∞,y] 6=∅

F (y|N ǫ
θ )δθ(ǫ)dǫ

≤
∫

ǫ:N ǫ
θ
∩(−∞,y] 6=∅

δθ(ǫ)dǫ = F (y|θ)

Alternatively

F (y|θ) =

∫

ǫ:N ǫ
θ
⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ+

∫

ǫ:N ǫ
θ
6⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ

=

∫

ǫ:N ǫ
θ
⊆(−∞,y]

δθ(ǫ)dǫ +

∫

ǫ:N ǫ
θ
6⊆(−∞,y]

F (y|N ǫ
θ )δθ(ǫ)dǫ

≥
∫

ǫ:N ǫ
θ
⊆(−∞,y]

δθ(ǫ)dǫ = F (y|θ)

Example 1. Consider the number label Li = about 2

for which Pi = {2}. Let δ(ǫ) =

{

1 : ǫ ∈ [0, 1]

0 : otherwise
then

the lower and upper cumulative distributions given the

information ‘x is about 2’ are as follows:

F (y|Li) =

{

0 : y ≤ 2

1 − µLi
(y) : y > 2

and

F (y|Li) =











0 : y ≤ 1

µLi
(y) : 1 < y ≤ 2

1 : y > 1

and where

µLi
(y) =



















0 : x < 1

x − 1 : x ∈ [1, 2]

3 − x : x ∈ (2, 3]

0 : x > 3

Suppose we now further learn that x is distributed
according to a uniform distribution on [0, 10] then
we can infer a second order distribution the prob-
ability that x ≤ y as follows: Initially note that
N ǫ

Li
= [2 − ǫ, 2 + ǫ] so that for ǫ ≤ 1

p(x|N ǫ
Li

) =

{

1
2ǫ

: x ∈ [2 − ǫ, 2 + ǫ]

0 : otherwise
and hence

F (y|N ǫ
Li

) =











1 : y > 2 + ǫ
y+ǫ−2

2ǫ
: y ∈ [2 − ǫ, 2 + ǫ]

0 : y < 2 − ǫ

From this we obtain four cases of F̃y,Li
as follows:

For y < 1

∀p ∈ [0, 1] F̃y,Li
(p) = 1

For 1 ≤ y ≤ 2 (see figure 3)

F̃y,Li
(p) =

{

1 : p > y−1
2

2−y
1−2p

: p ≤ y−1
2

For 2 < y ≤ 3 (see figure 4)

F̃y,Li
(p) =











0 : p < y−1
2

2p−y+1
2p−1 : y−1

2 ≤ p < 1

1 : p = 1

For y > 3

F̃y,Li
(p) =

{

0 : p < 1

1 : p = 1

The expected density p(x|Li) is given by (figure 5):

p(x|Li) =



















0 : x < 1

− 1
2 ln(2 − x) : 1 ≤ x < 2

− 1
2 ln(x − 2) : 2 < x ≤ 3

0 : x > 3

Figure 6 shows the upper and lower cumulative distri-
butions given ‘x is about 2’ together with the expected
cumulative distribution assuming that x is distributed
according to a uniform distribution on [0, 10].
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Figure 3: F̃y,Li
for 1 < y ≤ 2
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5 Information from Imprecise Data

In this section we consider inference on the basis of
data taking the form of imprecise descriptions of real
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Figure 6: Lower and upper cumulative distribution
F (y|Li), F (y|Li) together with expected cumulative
distribution F (y|Li) assuming a uniform prior on x

values. Let x be a real valued random variable, and
let DB = {θ1, . . . , θN} where θi ∈ LE be a set of
independently generated descriptions of x. Given DB
we define lower and upper cumulative distributions for
x as follows:

Definition 11.

∀y ∈ R F (y|DB) =
1

N

N
∑

i=1

F (y|θi)

F (y|DB) ==
1

N

N
∑

i=1

F (y|θi)

Definition 12. Given a density p(x) we can define
a expected density cumulative distribution conditional
on DB according to:

∀x ∈ R p(x|DB) =
1

N

N
∑

i=1

p(x|θi) and

∀y ∈ R F (y|DB) =
1

N

N
∑

i=1

F (y|θi)

The underlying intuition behind these definitions is as
follows: In order to estimate x one approach would be
to randomly select a description θi from DB and then
condition on the information ‘x is θi’. Assuming that
each element of DB is equally likely to be selected (i.e.
has equal weighting) then the expected information
we would learn about x is as given in definitions 11
and 12.

One natural example of this approach is where we
have an independent sample {x1, . . . , xN} of values of
x for which we are assuming there is an associated



uncertain error ǫ with density δ, so that each xi effec-
tively identifies a random set interval [xi − ǫ, xi + ǫ].
In this case we define DB = {L1, . . . , LN} where
Li is a number label with prototype Pi = {xi} (i.e.
Li = about xi ).

Example 2. A sample of 100 values was drawn at
random from the normal mixture distribution g =
N(2,3)+N(8,0.5)

2 . DB was then taken to correspond to
the set of labels Li with prototype Pi = {xi} for each
value xi in the sample. δ was assumed to be a uni-
form distribution on [k, r] where k and r are effec-
tively treated as parameters in the estimating of dis-
tributions from DB.

To compare the upper and lower cumulative distribu-
tions obtained from DB with that of the generating
distribution g we introduce two measure as follows:

IE :=
1

N

N
∑

i=1

χ[F (xi|DB),F (xi|DB)](G(xi))

where χ[F (xi|DB),F (xi|DB)] is the characteristic func-

tion for the interval [F (xi|DB), F (xi|DB)] and G
is the cumulative distribution function for density
g. Hence, IE provides a measure of the extent to
which the generating cumulative density G is con-
tained within the estimated upper and lower envelope
across the original sample.

We also evaluate the average range of the upper and
lower distribution envelope according to:

Range =
1

N

N
∑

i=1

(F (xi|DB) − F (xi|DB))

Table 1 shows the IE and Range values for a number
of different k, r values. Notice that by corollary 2 it
follows immediately that as k and r increase the IE
values decrease. Figure 7 shows the upper and lower
envelope together with G for k = 0 and r = 2.2, these
corresponding to the values in table 1 for which IE is
0 and Range is minimal.

Table 2 compares p(x|DB) with g(x) according to
MSE defined as follows:

MSE =
1

N

N
∑

i=1

(p(xi|DB) − g(xi))
2

Figure 8 shows p(x|DB) and g(x) for k = 0.4, r = 0.5
these corresponding to the values in table 2 with lowest
MSE.

6 Summary and Conclusions

The prototype theory interpretation of label seman-
tics has been introduced as a possible model for im-

Table 1: Table showing IE and Range for different
values of k and r

k r IE Range
0.7 1.1 0.1 0.2926
0.8 1.1 0.09 0.3036
0.9 1.1 0.07 0.31324
1 1.1 0.03 0.3221

0.8 1.2 0.04 0.3122
0.9 1.2 0.02 0.3213
1 1.2 0.01 0.3298

1.1 1.2 0 0.3584
0.9 1.3 0.01 0.3286
1 1.3 0 0.3367

0.9 1.4 0.01 0.3286
0.7 1.4 0.02 0.3171
0.8 1.4 0 0.3245
0.6 1.5 0.02 0.31413
0.7 1.5 0 0.3245
0.6 1.6 0 0.3212
0.5 1.7 0 0.3176
0.4 1.8 0 0.3135
0.3 1.9 0 0.3087
0.2 2 0 0.3034
0.1 2.1 0 0.2979
0 2.2 0 0.2920
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Figure 7: Upper and lower cumulative distributions
based on uniform δ with k = 0 and r = 2.2, com-
pared with cumulative distribution for the generating
distribution g (dashed line)

precise descriptions of real numbers. Based on this in-
terpretation it has been shown that conditioning given
information in the form ‘x is θ’, for θ ∈ LE, naturally
results in imprecise probabilities. Also, within this
framework, we have proposed a possible approach to
inference from data in the form of imprecise descrip-



Table 2: Table showing MSE for different values of k
and r

k r MSE
0.1 0.2 0.0039
0.1 0.3 0.00229
0.2 0.3 0.001689
0.1 0.4 0.001596
0.2 0.4 0.001224
0.3 0.4 0.001005
0.1 0.5 0.00119
0.2 0.5 0.000929
0.3 0.5 0.00077
0.4 0.5 0.000698
0.1 0.6 0.000968
0.2 0.6 0.000817
0.3 0.6 0.000733
0.4 0.6 0.0007535
0.5 0.6 0.000925

x
K6 K4 K2 0 2 4 6 8 10 12

0.1

0.2

0.3

0.4

Figure 8: Density estimate based on uniform δ with
k = 0.4 and r = 0.5 (dashed line), compared with
generating distribution g

tions of a real variable. This naturally suggests an
algorithm of estimating distributions given imprecise
data values.
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