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Abstract

In the paper we introduce a family of almost Bayesian
basic assignments, which slightly extends Bayesian
basic assignments. This extension incorporates all
the distributions that can be created from low-
dimensional Bayesian basic assignments by applica-
tion of the operator of composition, and simultane-
ously preserves the property of Bayesian basic assign-
ments concerning the number of focal elements: it
does not exceed cardinality of the frame of discern-
ment. The other goal of the paper is to propagate a
new way of definition of conditional independence re-
lation in D-S theory. It follows ideas of P. P. Shenoy
from [7], where the author defines the notion of condi-
tional independence for valuation-based system based
on his operation of “combination”. Here we do the
same but using the operator of “composition”. The
notion of independence we get in this way seems to
meet better the general requirements on conditional
independence relation for basic assignments.

Keywords. Dempster-Shafer theory of evidence,
multidimensionality, operator of composition, condi-
tional independence, semigraphoids.

1 Introduction

Regarding purely computational point of view, the
greatest disadvantage of Dempster-Shafer theory of
evidence (D-S) is that in contrast to probabilistic or
possibilistic models, which can be described by the
respective density functions (i.e. point functions),
D-S models must be described by set functions. It
means that while the number of necessary parameters
of probabilistic or possibilistic models grows exponen-
tially with the number of dimensions, for D-S models
one needs a superexponential number of parameters.

It is known from theory of Bayesian networks (or
graphical Markov models, in general) that the num-
ber of parameters can be drastically decreased by uti-

lization of properties of conditional independence re-
lations valid for the modelled situation. This was
among the reasons why we designed an alternative ap-
proach for multidimensional probability distribution
representation based on so called operator of com-
position [2]. The basic idea of these models is very
simple: multidimensional models are assembled (com-
posed) from a system of low-dimensional distributions
by the operator of composition (in a specified order).
Later on, Vejnarová introduced an analogous operator
also for composition of possibility distributions and
showed it manifested similar properties as its proba-
bilistic counterpart [10, 11]. Recently we designed the
operator of composition also for basic assignments in
D-S theory of evidence [5] and proved that it met
all the required properties necessary for multidimen-
sional models representation [3, 4].

However, it is not the goal of this paper to publicize
advantageous properties of the operator of composi-
tion for basic assignments. The goal of this contribu-
tion is twofold. The first one is to show that there
exists a family of basic assignments, for specification
of which one does not need more parameters than
for probabilistic models and yet it enables modelling
some type of ignorance (Section 4). The other goal is
to show that if the conditional independence for basic
assignments is defined with the help of the operator of
composition (which was already done in [3]) one can
prove semigraphoid axioms from a small number of
operator’s basic properties. This is done in Section 5.

2 Basic notion

Set notation

In the whole paper we shall deal with a finite number
of variables X1, X2, . . . , Xn each of which is specified
by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 ×X2 × . . .×Xn,



and its subspaces. For K ⊂ N = {1, 2, . . . , n}, XK

denotes a Cartesian product of those Xi, for which
i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will
denote a projection of A into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when
K = ∅. In this case A↓∅ = ∅.

Set A ⊆ XK is said to be a point-cylinder if it can be
expressed as a Cartesian product of a singleton and a
subspace XL. More precisely: a point-cylinder is a set
A ⊆ XK for which there exists an index set (possibly
empty) L ⊆ K such that |C↓L| ≤ 1 and

C = C↓L ×XK\L.

Let us stress that if L = ∅ then C = XK (it is the
only situation when |C↓L| < 1), and when L = K
then |C| = 1.

In addition to the projection, in this text we will need
also the opposite operation which will be called a join.
By a join of two sets A ⊆ XK and B ⊆ XL we will
understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then the join of
the corresponding sets is just their Cartesian product

A⊗B = A×B.

For K = L, A ⊗ B = A ∩ B. If K ∩ L 6= ∅ and
A↓K∩L ∩B↓K∩L = ∅ then also A⊗B = ∅.

In one of the following proofs we will need the follow-
ing (rather technical) property of set joins.

Lemma 1. Let K1 ∩K2 ⊆ L ⊆ K2 ⊆ N . Then for
any C ⊆ XK1∪K2 the following condition (a) holds if
and only if both conditions (b) and (c) hold true.

(a) C = C↓K1 ⊗ C↓K2 ;

(b) C↓K1∪L = C↓K1 ⊗ C↓L;

(c) C = C↓K1∪L ⊗ C↓K2 .

Proof. Let us prove the assertion in three steps. First,
however, let us realize that

x ∈ C =⇒
(
x↓K1 ∈ C↓K1 & x↓K2 ∈ C↓K2

)
,

and therefore C = C↓K1 ⊗ C↓K2 is equivalent to

∀x ∈ XK1∪K2(
x↓K1 ∈ C↓K1 & x↓K2 ∈ C↓K2 =⇒ x ∈ C

)
.

(a) =⇒ (b).
Consider x ∈ XK1∪L, such that x↓K1 ∈ C↓K1 and
x↓L ∈ C↓L. Since x↓L ∈ C↓L there must exists (at
least one) y ∈ C↓K2 , for which y↓L = x↓L. Now
construct z ∈ XK1∪K2 for which z↓K1 = x↓K1 and
z↓K2 = y (it is possible because y↓L = x↓L). From
this construction we see that z↓K1∪L = x. Therefore
z↓K1 = x↓K1 ∈ C↓K1 and z↓K2 = y ∈ C↓K2 form
which, because we assume that (a) holds, we get that
z ∈ C, and therefore also x = z↓K1∪L ∈ C↓K1∪L.

(a) =⇒ (c).
Consider now x ∈ XK1∪K2 , for which its projections
x↓K1∪L ∈ C↓K1∪L and x↓K2 ∈ C↓K2 . From x↓K1∪L ∈
C↓K1∪L we immediately get that x↓K1 ∈ C↓K1 , which
in combination with x↓K2 ∈ C↓K2 (due to the assump-
tion (a)) yields that x ∈ C.

(b) & (c) =⇒ (a).
Consider x ∈ XK1∪K2 such that x↓K1 ∈ C↓K1 and
x↓K2 ∈ C↓K2 . From the last property one gets also
x↓L ∈ C↓L, which, in combination with x↓K1 ∈ C↓K1

gives, because (b) holds true, that x↓K1∪L ∈ C↓K1∪L.
And the last property in combination with x↓K2 ∈
C↓K2 yields the required x ∈ C. �

Assignment notation

The role of a probability distribution from a proba-
bility theory is in Dempster-Shafer theory played by
any of the set functions: belief function, plausibility
function or basic (probability or belief ) assignment.
Knowing one of them, one can deduce the two re-
maining. In this paper we shall use exclusively basic
assignments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑
∅6=A⊆XN

m(A) = 1.

For the sake of this paper it is reasonable to consider
only normalized basic assignments, for which m(∅)
equals always 0. If m(A) > 0, then A is said to be a
focal element of m.



Having a basic assignment m on XK one can consider
its marginal assignment on XL (for L ⊆ K), which is
defined (for each ∅ 6= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Basic assignment m is said to be Bayesian if all its
focal elements are singletons, i.e.

m(A) > 0 =⇒ |A| = 1.

In this case, namely, both the other two functions,
belief Bel and plausibility Pl which are defined by
the following formulas (for all A ⊆ XK)

Bel(A) =
∑
B⊆A

m(A),

P l(A) = 1−Bel(Ā),

are normalized additive functions, and therefore prob-
ability distributions.

Another special case is represented by simple basic
assignments. Basic assignments m on XK is called
simple if there exists A (∅ 6= A ⊂ XK) and a positive
number a such that m(A) = a and m(XK) = 1− a.

3 Operator of composition

Originally, the operator of composition was designed
in probability theory as a tool enabling creation of
multidimensional probability distributions - multidi-
mensional models - by successive composition of low-
dimensional distributions. The basic idea of this op-
erator was simple. It generalized the fact that one
can construct a 3-dimensional probability distribution
P (X, Y, Z) from two 2-dimensional ones Q(X, Y ) and
R(Y,Z) just by assigning

P (X, Y, Z) = Q(X, Y ) ·R(Z|Y ).

In this case P reflects all the information contained
in Q, because evidently P (X, Y ) = Q(X, Y ), and
some of the information contained in R (P (Z|Y ) =
R(Z|Y )). Moreover, P does not contain any addi-
tional information, because for this probability distri-
bution variables X and Z are conditionally indepen-
dent given variable Y .

Introduction of the probabilistic operator of compo-
sition opened a study of a new area called composi-
tional models, which was an alternative to Bayesian
networks, or to Graphical Markov models in general.
Though it appeared that Bayesian networks and com-
positional models described exactly the same class
of probability distributions, study of a new type of

models appeared useful. First of all it offered new
points of view to multidimensional probability distri-
bution representation. In addition to this, composi-
tional models were in some situations more advanta-
geous from the computational point of view (some of
the marginal distributions, computation of which may
be algorithmically rather expensive, were in a compo-
sitional model expressed explicitly).

Later, the operator of composition was designed and
studied in possibility theory by Vejnarová [10]. Be-
ing inspired by Didier Dubois, we introduced the op-
erator of composition also for basic assignments [5];
this definition is presented below. In that paper we
also showed that if the operator of composition is ap-
plied to Bayesian basic assignments it usually yields
the Bayesian basic assignment, which corresponds to
the probability distribution, which is constructed by
the probabilistic operator of composition from the re-
spective probability distributions. The only exception
from this situation occurs when composing basic as-
signments corresponding to probability distributions,
for which their probabilistic composition is not de-
fined. In such a case, result of composition of such
Bayesian basic assignments is not Bayesian. In the
next section we will reveal the main characteristics of
such basic assignments.

Definition 1. For two arbitrary basic assignments
m1 on XK and m2 on XL (K 6= ∅ 6= L) a composition
m1 . m2 is defined for each C ⊆ XK∪L by one of the
following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K

then
(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.

Before illustrating the operator of composition on
a simple example, let us remark that three expres-
sions in Definition 1 correspond to three situations,
which occur when one wants to define a basic as-
signments possessing those properties we highlighted
when speaking about the probability distribution
P (X, Y, Z) = Q(X, Y ) · R(Z|Y ). Point [a], in a way,
directly corresponds to this well-known probabilistic
formula. It disseminates the mass m1(C↓K) into the
respective subsets C ⊆ XK∪L. The information de-
scribing the way how this mass is disseminated is
taken over from m2. Point [b] is applicable when



Table 1: 1-dimensional basic assignments m1 and m2.
A ⊆ X1 m1(A) B ⊆ X2 m2(B)
{a} 0.5 {b} 0.5
{ā} 0.1 {b̄} 0.5
{a, ā} 0.4

m↓K∩L
2 (C↓K∩L) = 0 and therefore m2 does not de-

termine the way how to disseminate the respective
mass. Therefore the whole mass m1(C↓K) is assigned
to the least specific set: C = C↓K ×XL\K (express-
ing in this way maximal ignorance). Eventually, point
[c] guarantees that no additional information is added
to the resulting basic assignment m1 . m2. It assigns
zero mass to all those subsets of XK∪L, whose pos-
itive values would violate the notion of the required
conditional independence (see e.g. [1]).

Example 1. Consider two 1-dimensional basic as-
signments1 m1, m2 from Table 1, which are defined
on X1 = {a, ā} and X2 = {b, b̄}, respectively.

Their composition m1 . m2 is in Table 2. Notice,
that this composed basic assignment has only 6
focal elements, which means that for the remaining
(24−1)−6 = 9 subsets of X1×X2, values of m1 .m2

equal 0. It is the case of two groups of subsets. As
for three subsets

{ab, ab̄} = {a} ⊗X2,

{āb, āb̄} = {ā} ⊗X2,

{ab, ab̄, āb, āb̄} = X1 ⊗X2,

their values of m1 . m2 are assigned by point [a] of
Definition 1 and equal 0 because m2({b, b̄}) = 0. On
the other hand side, to the remaining six subsets

{ab, āb̄},
{ab̄, āb},
{ab, ab̄, āb},
{ab, ab̄, āb̄},
{ab, āb, āb̄},
{ab̄, āb, āb̄},

values of m1 . m2 are assigned by point [c] of Defi-
nition 1, because for these subsets it does not hold
that C = C↓{1} ⊗ C↓{2}. Assigning a positive value
to any of these subsets we would, in a way, introduce
a dependence of variables X1 and X2.

1In all examples in this paper we record in tables only focal
elements. It means that for all subsets of space of discernment
which are not included in the respective tables their respective
basic assignment equals 0.

Table 2: Composed basic assignment m1 . m2.
C ⊆ X1 ×X2 (m1 . m2)(C)
{ab} 0.25
{ab̄} 0.25
{āb} 0.05
{āb̄} 0.05
{ab, āb} 0.20

{ab̄, āb̄} 0.20

Let us present the most important properties of the
operator of composition for basic assignments.

Lemma 2. Let K, L ⊆ N . For arbitrary basic as-
signments m1, m2 defined on XK , XL, respectively

(i) m1 . m2 is a basic assignment on XK∪L;

(ii) (m1 . m2)↓K = m1;

(iii) m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 ;

(iv) L ⊇M ⊇ (K ∩ L)
=⇒ m1 . m2 = (m1 . m↓M2 ) . m2;

Proof. The first three properties were proved in [5]:
properties (i)-(iii) are properties (i)-(iii) of Lemma 1.
Thus, what has remained to be proved is just prop-
erty (iv).

So, our goal is to show that for basic assignments
m1, m2 and for any M such that L ⊇M ⊇ K ∩ L

(m1 . m2) (C) = ((m1 . m↓M2 ) . m2)(C).

holds true for any C ⊆ XK∪L.

The proof will be performed in three steps correspond-
ing to cases [a], [b], [c] of Definition 1.

Ad [a]. Assume that C = C↓K ⊗ C↓L and
m↓K∩L

2 (C↓K∩L) > 0. From this we get from Lemma 1
that also C↓K∪M = C↓K ⊗C↓M , and therefore (since
K ∩ L = K ∩M)

(m1 . m↓M2 )(C↓K∪M ) =
m1(C↓K) ·m↓M2 (C↓M )

m↓K∩L
2 (C↓K∩L)

.

In the rest of this step we have to distinguish two
situations depending whether m↓M2 (C↓M ) equals 0 or
not.

If m↓M2 (C↓M ) > 0 (realize that in this case also



m↓K∩L
2 (C↓K∩L) > 0) then

((m1 . m↓M2 ) . m2)(C)

=
(m1 . m↓M2 )(C↓K∪M ) ·m2(C↓L)

m↓M2 (C↓M )

=

m1(C
↓K)·m↓M

2 (C↓M )

m↓K∩L
2 (C↓K∩L)

·m2(C↓L)

m↓M2 (C↓M )

=
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= (m1 . m2) (C).

If m↓M2 (C↓M ) = 0 then, according to Definition 1,
either

((m1 . m↓M2 ) . m2)(C) = (m1 . m↓M2 )(C↓K∪M ),

in case that C = C↓K∪M ⊗XL\M , or

((m1 . m↓M2 ) . m2)(C) = 0,

in opposite case. However, in this case also

(m1 . m↓M2 )(C↓K∪M ) =
m1(C↓K) ·m↓M2 (C↓M )

m↓K∩L
2 (C↓K∩L)

= 0,

and therefore ((m1 . m↓M2 ) . m2)(C) = 0 regard-
less of the form of C↓L\M (i.e. for both situations:
C↓L\M = XL\M and C↓L\M 6= XL\M ). Taking into
consideration the fact that in the considered situa-
tion (i.e. m↓M2 (C↓M ) = 0) also m2(C↓L) = 0, and
therefore also

(m1 . m2) (C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

= 0,

we have finished the first step of the proof.

Ad [b]. Now we assume that C = C↓K ⊗XL\K , and
that m↓K∩L

2 (C↓K∩L) = 0. In this case, naturally,
also m↓M2 (C↓M ) = 0 and C = C↓K ⊗XM\K ⊗XL\M .
Therefore, according to case [b] of Definition 1,

(m1 . m↓M2 )(C↓K∪M ) = m1(C↓K),

and because of the same reasons also

((m1 . m↓M2 ) . m2)(C) = (m1 . m↓M2 )(C↓K∪M )
= m1(C↓K).

In this case also (m1 . m2)(C) = m1(C↓K), and we
have finished the second step of the proof.

Ad [c]. The last step is trivial. In this case, as
the reader can immediately see, both ((m1 . m↓M2 ) .
m2)(C) and (m1 . m2)(C) equal 0 and therefore they
equal to each other. �

Table 3: 2-dimensional basic assignments m3 and m4.
A ⊆ X{1,2} m3(A) B ⊆ X{2,3} m4(B)
{ab̄} 0.5 {bc} 0.5
{āb} 0.1 {b̄c̄} 0.2
{ab, āb} 0.4 {bc̄, b̄c} 0.3

Table 4: Basic assignments m3 . m4 and m4 . m3.
C ⊆ X1 ×X2 ×X3 m3 . m4 m4 . m3

{ab̄c̄} 0.5 0.2
{ābc} 0.1 0.1
{abc, ābc} 0.4 0.4

{abc̄, ab̄c, ābc̄, āb̄c} 0.3

Example 2. Property (iii) of the previous lemma
says that for consistent basic assignments the oper-
ator of composition is commutative. Since any cou-
ple of basic assignments defined on non-overlapping
frames of discernment are consistent (because m↓∅ =
1), for basic assignments m1 and m2 from Table 1
m1 . m2 = m2 . m1. Therefore, if we want to illus-
trate non-commutativity of this operator we have to
consider overlapping frames of discernment2.

Consider basic assignments m3, m4 from Table 3. The
reader can easily see that when computing m3 . m4,
all the focal elements are computed according to case
[a] of Definition 1. There are only three sets C ⊆
X{1,2,3}, for which C = C↓{1,2} ⊗ C↓{2,3}, and for
which both m3(C↓{1,2}) and m3(C↓{2,3}) are positive,
namely

{ab̄c̄} = {ab̄} ⊗ {b̄c̄},
{ābc} = {āb} ⊗ {bc},
{abc, ābc} = {ab, āb} ⊗ {bc}.

On the other hand, when computing m4.m3 there ap-
pears set C = {bc̄, b̄c}×X1, for which m3(C↓{1,2}) = 0
and therefore value (m4 .m3)(C) is assigned by point
[b] of Definition 1. The resulting basic assignment
m4 . m3 is also recorded in Table 4.

Remark: In previous papers [5, 4] we showed a num-
ber of other properties of the operator of composition

2The simplest example of non-commutativity of the oper-
ator of composition can be got by considering two different
assignments on the same frame of discernment. Then using
property (i) of Lemma 2 we see that their composition is de-
fined on the same frame of discernment as the considered orig-
inal assignments and the non-commutativity of the operator .
immediately follows from property (ii) of Lemma 2.



for basic assignments, especially those useful for con-
struction of multidimensional models. The four prop-
erties included in the previous lemma are those, which
are sufficient to prove that conditional independence,
if introduced with the help of the operator of compo-
sition (as done in Section 5), meets the semigraphoid
axioms. In a way it is surprising that such a small
group of elementary properties is sufficient. In con-
nection with this fact a question arises whether the
presented four properties are independent, whether
some of them cannot be deduced from the remaining
four.

Remark: Let us briefly answer a frequent question
what is the relation of the introduced operator of com-
position and the famous Dempster’s rule of combina-
tion3. Let us stress that the main difference emerges
from the different purposes the operators where de-
signed for. While Dempster’s rule of combination was
designed to have a tool enabling fusion of two basic
assignments (the goal is to get a better information
about the object than those contained in any of the
original basic assignments), the operator of composi-
tion combines different descriptions of the object to
comprehend all the information contained in original
sources. This process corresponds to knowledge inte-
gration rather than knowledge fusion.

From the formal point of view this difference is re-
flected in property (ii) of Lemma 2, which holds for
Dempster’s rule of combination only in very specific
(degenerated) situations. By the way, this difference
is also the main reason why we consider the attempts
to define a notion of conditional independence with
the help of Dempster’s rule of combination to be mis-
leading.

4 Almost Bayesian basic assignments

One of the reasons (and from our point of view per-
haps the most important) why D-S theory of evidence
was designed and why it is in the center of attention
of many researchers is the fact that probability theory
has difficulties with representing some types of uncer-
tainty; here we have in mind especially ignorance. For
example, probability theory can hardly distinguish
situation when an integer from {1, 2, . . . , 6} is deter-
mined by tossing a fair die, and when it is selected
by a totally unknown mechanism (well, the second
situation can be described by the set of all possible
distributions, however it is rather inconvenient). On
the other hand, D-S theory yields very complex mod-
els and the corresponding computational procedures
are of extremely high algorithmic complexity. Now,

3Detailed study of formal similarities of these two operators
will appear in [6].

we are about to specify a small family of basic assign-
ments extending the set of Bayesian assignments but
keeping the computational complexity on the level of
probabilistic models. However, we have to admit that
this new family, elements of which will be called al-
most Bayesian basic assignments, is very restrictive.

Definition 2. Basic assignment m on XK is called
cylindrical if all its focal elements are point-cylinders.

Theorem 1. Let K, L ⊆ N and m1, m2 be basic as-
signments defined on XK and XL, respectively. If
m1, m2 are cylindrical then m1 . m2 is also cylindri-
cal.

Proof. To prove this assertion we have to realize that
a projection A↓K of a point-cylinder A is a point-
cylinder. Moreover, join A⊗B of two point-cylinders
A and B is again a point-cylinder (recall that ∅ is a
point-cylinder).

Values of focal elements of basic assignment are com-
puted according to either point [a] or point [b] of
Definition 1. In case [a], a positive value can be as-
signed only if C = C↓K ⊗ C↓L and both C↓K and
C↓L are point-cylinders. Case [b] is applied only when
C = C↓K×XL\K . So in both cases positive value can
be assigned only to point-cylinders. �

Definition 3. Basic assignment m on XK is sparse
if all its focal elements are pairwise disjoint.

Theorem 2. Let K, L ⊆ N and m1, m2 be basic as-
signments defined on XK and XL, respectively. If
m1, m2 are sparse then m1 . m2 is also sparse.

Proof. Consider two non-disjoint focal elements
C1, C2 of m1 . m2: (m1 . m2)(C1) > 0 and (m1 .
m2)(C2) > 0. Since m1 is marginal of m1 . m2, it is
obvious that C↓K1 and C↓K2 are focal elements of m1.
Since we assume that C1 and C2 are non-disjoint the
same must hold also for their projections

C↓K1 ∩ C↓K2 6= ∅

and therefore, because of our assumption that m1 is
sparse, C↓K1 = C↓K2 .

What are the focal elements C of m1 . m2, for which
C↓K = C↓K1 ? The answer to this question is offered
by Definition 1 (realize that since we are considering
focal elements C, values (m1 . m2)(C) are defined by
expressions in points [a] or [b]).

If m↓K∩L
2 (C↓K∩L) > 0 then the considered focal ele-

ments can be expressed in the form

C = C↓K ⊗ C↓L = C↓K1 ⊗D,



Table 5: Sparse basic assignment m on X{1,2}.

A ⊆ X1 ×X2 m(A)
{ab} 0.2
{āb} 0.3
{ab̄, āb̄} 0.5

Table 6: Marginal basic assignments m↓{1}, m↓{2}.
A ⊆ X1 m↓{1}(A) B ⊆ X2 m↓{2}(B)
{a} 0.2 {b} 0.5
{ā} 0.3 {b̄} 0.5
{a, ā} 0.5

where D ⊆ XL is a focal element of m2 and D↓K∩L =
C↓K∩L

1 . From this one can immediately see that
C1 = C↓K1 ⊗ C↓L1 and C2 = C↓K1 ⊗ C↓L2 are disjoint
if and only if also focal elements C↓L1 and C↓L2 of m2

are disjoint. In our case, because m2 is sparse, and
because we assume that C1 ∩ C2 6= ∅, it means that
C↓L1 = C↓L2 , and therefore also C1 = C2.

In case that m↓K∩L
2 (C↓K∩L) = 0 then the situation

is even simpler because in this case there can be only
one focal element C = C↓K∩L

1 ×XL\K , which means
again that C1 = C2. �

Remark: It is not difficult to show that a marginal
basic assignment of a cylindrical assignment is again
cylindrical. However, it is important to realize that,
as we illustrate in the following simple example, an
analogous property for sparse basic assignments does
not hold. Nevertheless, the main advantage of sparse
basic assignments is the fact that the number of their
focal elements does not exceed the cardinality of the
respective frame of discernment, i.e. the number of
probabilities necessary to define a general probability
distribution.

Example 3. Consider 2-dimensional case with X1 =
{a, ā} and X2 = {b, b̄} and basic assignment m in
Table 5. From Table 6 one can immediately see that
while marginal basic assignment m↓{2} is sparse, the
other marginal assignment m↓{1} is not.

Remark: Now we are ready to answer the question
raised at the beginning of the previous section: what
are the basic assignments which are obtained from
Bayesian basic assignments by a multiple application
of the operator of composition? Since all Bayesian as-
signments are obviously sparse and cylindrical, The-
orems 1 and 2 guarantee that the basic assignments
corresponding to compositional models from Bayesian

basic assignments are also cylindrical and sparse. This
fact, somehow, justifies the following definition.

Definition 4. Basic assignment is called almost
Bayesian if it is sparse and cylindrical.

As said at the beginning of this section, an expressive
power of almost Bayesian basic assignments is not too
strong. For example, even non-degenerated simple
basic assignments are not almost Bayesian. Roughly
speaking: Having a Bayesian basic assignment one
knows a probability of each point of the frame of dis-
cernment. Having an almost Bayesian basic assign-
ment and a fixed point of the frame of discernment one
either knows its probability, or knows that it belongs
to a cylindrical subset of the frame of discernment
among whose elements one cannot make a difference;
she knows only the probability of the whole subset.
Nevertheless, let us stress once more that the impor-
tance of almost Bayesian assignments is in the fact
that they describe compositional models constructed
from an arbitrary system of low-dimensional probabil-
ity distributions, which means that even in situations
when probabilistic operator of composition is not de-
fined. In this way we are getting a slight extension of
probability theory.

5 Conditional independence

In this paper our attention is concentrated on proper-
ties of basic assignments which are, in a way, promis-
ing from the point of view of computational complex-
ity. Last section was devoted to almost Bayesian ba-
sic assignment whose number of focal elements is not
higher than the number of probabilities by which a
general probability distribution must be specified.

It is well known that efficiency of Bayesian models is
based on making the best of the dependence structure
of the model, i.e. taking advantage of the knowledge
of conditional independence relations [8, 9] holding for
the multidimensional distribution in question. This
is because the notion of conditional independence in
probability theory is equivalent to the notion of fac-
torization: for probability distribution P variables X
and Z are conditionally independent given variable Y
iff distribution P (X, Y, Z) is uniquely determined by
its marginals P (X, Y ) and P (Y,Z). Unfortunately,
as shown by Studený [8, 1], the notion of conditional
non-interactivity (Shenoy’s factorization [7], Studený
conditional independence [8]) presented in [1] is not
consistent with marginalization: there are situations
when for two consistent basic assignments there does
not exist their common extension with the respective
conditional non-interactivity (for more precise expla-
nation see footnote no. 6).



Therefore, in this paper we are going to eliminate this
drawback using the definition of conditional indepen-
dence for basic assignments introduced in [4], which
is in fact based on the notion of factorization. More-
over we will present new proofs showing that for this
concept all the semigraphoid axioms hold true. These
proofs will be based on the fundamental properties of
the operator of composition presented in Lemma 2.
It should be stressed that the novelty of these proofs
is mainly in application of property (iv) of Lemma 2,
which seems to be surprisingly weak (and which, in a
way, extends property (ii) of the same lemma).

Let us consider an arbitrary basic assignment. We
will say that two groups of variables are conditionally
independent given the third group of variables if the
respective marginal basic assignment can be decom-
posed (factorized) in the way that it can be expressed
as a composition of its respective smaller marginal as-
signments. Precisely this notion is introduced in the
following definition.

Definition 5. Consider a basic assignment m on XN

and three disjoint index sets K, L,M ⊂ N , K 6= ∅ 6=
L. We say that groups of variables XK and XL are
conditionally independent given variables XM if

m↓K∪L∪M = m↓K∪M . m↓L∪M .

In symbol this fact will be recorded K ⊥⊥m L |M .

Example 4. Consider a basic assignment m on the
same 3-dimensional binary frame of discernment as
in previous examples: X1 × X2 × X3. If variables
X1 and X2 are independent, i.e. 1 ⊥⊥m 2, from Def-
inition 1 one can immediately see that for all focal
elements C ⊆ X1×X2 of the 2-dimensional marginal
m↓{1,2} it holds that C = C↓{1} ⊗ C↓{2}. It means
that from all 15 non-empty subsets of X1 ×X2 only
9 of them are potential focal elements (six subsets
of X1 × X2 that cannot be focal elements are listed
in Example 1). Naturally, this condition on focal
elements is only a necessary condition for the inde-
pendence. This condition is not sufficient. For ex-
ample, the reader can easily check that the two ba-
sic assignments m1 . m2 from Table 2 and m3 from
Table 3 (both defined on X1 × X2) have the same
marginal assignments: ((m1 . m2)↓{1} = m

↓{1}
3 = m1

and (m1 . m2)↓{2} = m
↓{2}
3 = m2). Moreover,

for all of their focal elements the required property
C = C↓{1} ⊗ C↓{2} holds true and simultaneously

1 ⊥⊥m1.m2 2 and 1 6⊥⊥m3 2.

Analogously to what has just been said about (uncon-
ditional) independence, there is a necessary condition

also on focal elements of basic assignments with con-
ditional independence. Conditional independence

1 ⊥⊥m 3 | 2

means that all focal elements C ⊆ X{1,2,3} of m must
be of the form

C = C↓{1,2} ⊗ C↓{2,3}.

It is not difficult to show that this property holds true
only for 99 out of all possible 255 nonempty subsets
of X{1,2,3}.

In the rest of this section we will show that the ternary
relation K ⊥⊥m L |M is a semigraphoid, i.e. it meets
the four semigraphoid axioms listed below. For this,
we will exclusively use the properties of the operator
of composition presented in Lemma 2. In what fol-
lows, each axiom is reformulated into the language of
composition and the corresponding theorem is proved.

Symmetry

I ⊥⊥m J |L =⇒ J ⊥⊥m I |L

Theorem 3. If m↓I∪J∪L = m↓I∪L .m↓J∪L then also
m↓I∪J∪L = m↓J∪L . m↓I∪L.

Proof. The assertion follows immediately from the
fact that marginals m↓I∪L and m↓J∪L are consistent,
and therefore property (iii) may be applied

m↓I∪L . m↓J∪L = m↓J∪L . m↓I∪L.

�

Decomposition

I ⊥⊥m J ∪K |L =⇒ I ⊥⊥m K |L

Theorem 4. If m↓I∪J∪K∪L = m↓I∪L.m↓J∪K∪L then
also m↓I∪K∪L = m↓I∪L . m↓K∪L.

Proof. The assertion will be obtained just by applica-
tion of properties (iv) and (ii)

m↓I∪K∪L =
(
m↓I∪J∪K∪L

)↓I∪K∪L

=
(
m↓I∪L . m↓J∪K∪L

)↓I∪K∪L

=
(
(m↓I∪L . m↓K∪L) . m↓J∪K∪L

)↓I∪K∪L

= m↓I∪L . m↓K∪L.

�



Weak Union

I ⊥⊥m J ∪K |L =⇒ I ⊥⊥m J |K ∪ L

Theorem 5. If m↓I∪J∪K∪L = m↓I∪L.m↓J∪K∪L then
also m↓I∪J∪K∪L = m↓I∪K∪L . m↓J∪K∪L.

Proof. To prove this assertion we have to realize that,
due to property (iv),

m↓I∪L . m↓J∪K∪L =
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L,

and that, because the assumptions of Theorem 4 are
fulfilled, also

m↓I∪K∪L = m↓I∪L . m↓K∪L.

Using these two equalities we finish the proof in a
simple way

m↓I∪J∪K∪L = m↓I∪L . m↓J∪K∪L

=
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L

= m↓I∪K∪L . m↓J∪K∪L.

�

Contraction

I ⊥⊥m K |L & I ⊥⊥m J |K ∪ L =⇒ I ⊥⊥m J ∪K |L

Theorem 6. If m↓I∪K∪L = m↓I∪L . m↓K∪L, and
m↓I∪J∪K∪L = m↓I∪K∪L . m↓J∪K∪L, then also
m↓I∪J∪K∪L = m↓I∪L . m↓J∪K∪L.

Proof. We will follow the same idea as in the pre-
ceding proof but in the reverse order. First, we will
use property (iv) and then both assumptions of this
assertion.

m↓I∪L . m↓J∪K∪L =
(
m↓I∪L . m↓K∪L

)
. m↓J∪K∪L

= m↓I∪K∪L . m↓J∪K∪L

= m↓I∪J∪K∪L.

�

6 Conclusions

In the paper we dealt with the two problems con-
nected with computational complexity of Dempster-
Shafer theory of evidence. Since full generality of the
models leads to exponential grows of space and com-
putational complexity we showed that focusing our
attention only to models, which are constructed from
Bayesian basic assignments by application of the op-
erator of composition, one does not get beyond the
boundaries of a rather limited class of models, which
are called in the paper almost Bayesian. The most ad-
vantageous characteristics of these models is the fact
that though they are able to describe a special type

of an ignorance, they do not have a higher space re-
quirements than classical probabilistic models.

The other goal of this paper was to show that when ac-
cepting the notion of conditional independence based
on factorization corresponding to the operator of com-
position, one can easily prove validity of semigraphoid
axioms just with the help of the four very elementary
properties from Lemma 2. Since the same idea was
employed by Prakash P. Shenoy in [7], a very natural
question arises: what is the relation of composition
introduced in this paper and the Shenoy’s notion of
combination?

Looking at Shenoy axioms4 C1, C2 and C3 we see
that Shenoy’s axiom C1 (Domain) is equivalent to
property (i) of Lemma 2 and therefore it holds also
for our composition. However Shenoy’s axioms C2
(Associative) and C3 (Commutative) hold for com-
position only under special conditions. The operator
of composition is commutative only for consistent ba-
sic assignments; point (iii) of Lemma 2. In definition
of conditional independence (Definition 5 of this pa-
per) we consider only composition of consistent as-
signments (marginals of the considered basic assign-
ment) and therefore we were able to prove axiom of
Symmetry. Nevertheless, associativity holds for the
operator of composition only under very specific con-
ditions5 and therefore the Shenoy’s proofs cannot be
used. Moreover, property (ii) of Lemma 2 does not
hold for Shenoy’s combination. So, one cannot be
surprised that both of the definitions of conditional
independence (i.e. the one proposed in this paper
and Shenoy’s conditional independence following from
the definitions in Section 5 of [7]) are different from
each other. They coincide only for unconditional inde-
pendence and for conditional independence in case of
Bayesian basic assignments. Moreover, as we showed
in [4], our concept of conditional independence does
not suffer from the drawback described in detail in
[1], where the authors show that the notion of condi-
tional independence used by Shenoy is not consistent
with marginalization6. Therefore, we can conclude
that our concept of conditional independence seems to
meet better some of the intuitive requirements. Nev-
ertheless, a question what is the relation of this notion
and concepts of conditional basic assignments remains
still open.

4We do not comment axiom C4 (Zero) because we consider
only normalized basic assignments.

5For example, for basic assignments m1, m2, m3 defined on
XK1 ,XK2 ,XK3 , respectively

K1 ⊇ (K2 ∩K3) =⇒ (m1 . m2) . m3 = m1 . (m2 . m3).
6Roughly speaking: one can find two consistent basic as-

signments m1, m2, on X1 ×X2 and X2 ×X3, respectively, for
which there does not exist a 3-dimensional basic assignment m
on X1 ×X2 ×X3 having m1 and m2 as its marginals, and for
which 1 ⊥⊥m 3 | 2.
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els and Conditional Independence in Evidence
Theory,” submitted to Int. J. of Approximate
Reasoning.
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