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Abstract

In this paper we model the problem faced by a risk-
averse decision maker with a precise subjective proba-
bility distribution who bets against a risk-neutral op-
ponent or invests in a financial market where the be-
liefs of the opponent or the representative agent in
the market are described by a convex set of imprecise
probabilities. The problem of finding the portfolio
of bets or investments that maximizes the decision
maker’s expected utility is shown to be the dual of
the problem of finding the distribution within the set
that minimizes a measure of divergence, i.e., relative
entropy, with respect to the decision maker’s distri-
bution. In particular, when the decision maker’s util-
ity function is drawn from the commonly used expo-
nential/logarithmic/power family, the solutions of two
generic utility maximization problems are shown to
correspond exactly to the minimization of divergences
drawn from two commonly-used parametric families
that both generalize the Kullback-Leibler divergence.
We also introduce a new parameterization of the ex-
ponential/logarithmic/power utility functions that al-
lows the power parameter to vary continuously over
all real numbers and which is a natural and convenient
parameterization for modeling utility gains relative to
a non-zero status quo wealth position.

Keywords. decision theory, decision analysis, rel-
ative entropy, utility theory, imprecise probabilities,
portfolio optimization

1 Introduction

There are many situations in which it is of interest to
measure the distance between two probability distri-
butions – say, p and q – but the appropriate metric
may depend on the field of application. In statistics
the relevant metric might be the loss that results from
basing an inference or decision on q when the true dis-
tribution is p. In information processing the metric
might be the channel capacity that is wasted by using

an encoding scheme based on q when p is the true
distribution of a stream of independent signals to be
transmitted. In decision analysis the metric might be
the value of information that results in the updating
of a prior subjective probability distribution q to a
posterior distribution p prior to making a choice. In
probability forecasting the metric might be a scoring
rule that is used to provide an incentive for a fore-
caster to report p rather than q as her prediction if
she believes p is correct. In finance the metric might
be the gain in expected utility that can be achieved by
an investor in a market under uncertainty when her
personal distribution for future asset prices is p and
she has the opportunity to trade with a “representa-
tive agent” whose probability distribution is q. If one
of the distributions – say, q – is imprecise, then the
quantity of interest to be measured may be the dis-
tance from p to the nearest or farthest of the possible
values of q.

In this paper1 we consider the problem of measuring
the distance between probability distributions in the
case where one is imprecise, and we focus especially on
the case of expected-utility gains in a financial market,
although we also discuss how all of the applications
mentioned above are linked to each other by duality
relationships in which an information-theoretic mea-
sure of distance – known as a relative entropy or diver-

gence – can be identified with a loss function or a util-
ity function in a decision or inference problem. The
best-known relative entropy measure is the Kullback-

Leibler divergence, but it has a number of generaliza-
tions. We show that two well-known parametric fam-
ilies of generalized divergence, namely the power and
pseudospherical families, have a one-to-one correspon-
dence with the two most commonly used parametric
families of scoring rules, and they also have a one-to-
one correspondence with the solutions of two canoni-
cal investment problems involving the most commonly

1This paper is adapted from Jose et al. 2008 with some new
material. An earlier, incomplete version, Nau et al. 2007, was
presented at ISIPTA ’07.



used parametric family of utility functions, namely
the generalized power family that includes the ex-
ponential and logarithmic utility functions as special
cases. We also introduce a new parameterization of
this family of utility functions that allows the power
parameter to vary continuously over all real numbers
and which is the most natural and convenient parame-
terization for modeling utility gains relative to a non-
zero status quo wealth position. This parameteri-
zation turns out to have the property that it yields
an exact agreement between the utility scale and the
scales that are conventionally used for the generalized
divergences.

Imprecise probabilities naturally arise in the analysis
of financial markets under uncertainty wherever those
markets are incomplete, which is to say, virtually ev-
erywhere. A market is incomplete if some assets have
distinct bid and ask prices (or are not priced at all) be-
cause of caution or lack of information on the part of
buyers and sellers and/or because of transaction costs.
The simplest case of a market under uncertainty is one
in which assets are purchased at time 0 and sold at
time 1, and the uncertainty about asset prices at time
1 is modeled by a finite set of states. Any financial
asset in such a market can be constructed from a port-
folio of “Arrow securities,” where an Arrow security
is an asset whose payoff is $1 in a given state and zero
otherwise. The bid and ask prices for a state-i Arrow
security can viewed as lower and upper probabilities
assigned to state i by the representative agent. Bid
and ask prices for more complex assets (which may
yield arbitrary payoffs in different states) establish
other linear inequality constraints on the probabil-
ity distribution of the representative agent, so that
in general the imprecise beliefs of the representative
agent are described by a convex polytope of distri-
butions that is the intersection of all the constraints.
This set is non-empty if and only if there are no ar-
bitrage opportunities in the market, a result that is
known as the “fundamental theorem of asset pricing”
but which was introduced much earlier by de Finetti
as the “fundamental theorem of subjective probabil-
ity.” The problem we consider is that of an investor
whose (precise) subjective probability distribution is
p and who invests optimally in a market where the
imprecise probabilities of the representative agent are
described by a convex set Q that is disjoint from p.

2 Generalized measures of entropy

and divergence

The entropy of a probability distribution, as defined
by Shannon (1948), is a measure of the amount of
information conveyed by the observation of an event

drawn from that distribution. Shannon proved that
under the most efficient encoding scheme the av-
erage number of bits (binary digits) needed to re-
port the occurrence of an event whose relative fre-
quency is p is proportional to ln(1/p) = − ln(p),
so the expected number of bits per event to encode
events drawn from a distribution p is proportional
to H(p) ≡ −

∑

i pi ln(pi).
2 This quantity is known

as the entropy of the distribution p, because up to
a multiplicative constant (namely Boltzmann’s con-
stant) it coincides exactly with the definition of the
Gibbs entropy of a physical system whose distribution
of internal states is p, which in turn is the microscopic
interpretation of the macroscopic concept of entropy
from classical thermodynamics. If an engineer who
had optimized the encoding scheme on the assump-
tion that the distribution was q subsequently learns or
decides (via Bayesian updating or some other method
of discovery) that it is actually some other distribu-
tion p, then the encoding scheme based on q is re-
vealed to be suboptimal, and H(q) underestimates
the average number of bits per event that are actu-
ally being transmitted. A practical measure of the
amount of information gained in updating q to p is
the reduction in the expected number of bits needed
to encode an event by re-optimizing for the distribu-
tion now believed to be correct, which is known as the
Kullback-Leibler (KL) divergence of p with respect to
q:

DKL(p‖q) ≡
X

i

pi(ln(1/qi) − ln(1/pi)) = Ep[ln(p/q)]. (1)

The KL divergence has several very convenient and
appealing properties that are often cited as reasons
for adopting it as a universal measure of informa-
tion gain. First, it is naturally additive with respect
to independent experiments. Suppose that A and B
are statistically independent partitions of the state
space whose prior marginal probability distributions
are qA and qB , so that their prior joint distribution
is qA × qB. Now suppose that independent experi-
ments are performed, which result in the updating of
qA and qB to pA and pB, respectively, so that the
posterior joint distribution is pA×pB. Then the total
information gain of the two experiments is the sum of
their separate KL divergences:

DKL(pA × pB‖qA × qB) = DKL(pA‖qA)+DKL(pB‖qB).
(2)

Second, and even stronger, the KL divergence has the
property of recursivity with respect to the splitting
of events. Suppose that information is transmitted

2Throughout the paper, upper-case functions such as H(p),
DKL(p‖q), S(r,p), etc., are scalar-valued functions of vector
arguments, whereas lower-case functions such as f(x), ln(x),
u(x), etc., are vector-valued functions in which a univariate
function is applied elementwise to a vector argument, i.e.,
f(x) = (f(x1), ..., f(xn)).



in a 2-step process, in which two out of n possible
states - say, states 1 and 2 - are not distinguished on
the first step. If the realized state is neither 1 or 2,
the process stops there, but otherwise a second signal
is sent to report which of those two has occurred.
The probabilities of states 1 and 2 are aggregated in
the first step, so the information gain on that step is
DKL(p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn). On the sec-
ond step, which occurs with probability (p1 +p2), the

additional gain is DKL

(

p1

p1+p2
, p2

p1+p2
‖ q1

q1+q2
, q2

q1+q2

)

.

The recursivity property of the KL divergence
requires the expected total information gain of the
two-step process to be the same as that of a one-step
process:
DKL(p‖q) = DKL(p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn)

+(p1 + p2)DKL

„

p1

p1 + p2
,

p2

p1 + p2
‖ q1

q1 + q2
,

q2

q1 + q2

«

. (3)

The KL divergence is the only distance measure
that satisfies both additivity and recursivity, hence it
is the divergence that is naturally obtained if those
properties are embraced as axioms that an informa-
tion measure should satisfy. However, in situations
other than signal transmission, where the objective
may be something other than economizing on band-
width, these axioms may be unduly restrictive. In
applications involving imprecise probabilities, it may
be of interest to find the member of a convex set of
distributions that is nearest to or farthest from some
reference distribution, and desiderata of a distance
measure may depend on the inference or decision
problem to be solved.

One measure of distance between probability distribu-
tions that generalizes the Kullback-Leibler divergence
is known as a Brègman divergence (Brègman 1967).
Any strictly convex function F defines a Brègman di-
vergence BF (p‖r) as follows:

BF (p‖r) ≡ F (p) − F (r) −∇F (r) · (p − r). (4)

The decision-theoretic significance of a Brègman
divergence is that it uniquely determines a strictly

proper scoring rule, which is a reward function for
truthfully eliciting subjective probabilities. As noted
by McCarthy (1956) and further elaborated by Hen-
drickson and Buehler (1971) and Savage (1971), any
strictly convex function F can be used to generate a
strictly proper scoring rule S as follows:

S(r,p) ≡ F (r) + ∇F (r) · (p − r), (5)

where ∇F (r) denotes the gradient (or more gen-
erally a subgradient) of F evaluated at r, and
conversely F can be recovered from S according to
F (p) = S(p,p). The function S(r,p) is used to
“score” a probability forecast in the following way.
A forecaster who reports r to be her probability
distribution over the states is given a reward equal

to S(r, ei) if state i occurs, where ei denotes the
probability distribution that assigns probability 1 to
state i and zero to all other states, i.e., the indicator
vector for state i. Because S is linear in p, we have
S(r,p) =

∑

i piS(r, ei), so the function S(r,p) repre-
sents the forecaster’s expected score if her distribution
is p and she reports distribution r. If F (p) is strictly
convex, it follows from the subgradient inequality
that S(r,p) is uniquely maximized when r = p, i.e.,
when the forecaster honestly reports her probability
distribution, which is the defining property of a
strictly proper scoring rule.

By construction, the function F (p) − S(r,p), which
represents the forecaster’s expected loss for report-
ing r when her distribution is p, is the Brègman di-
vergence BF (p‖r). A Brègman divergence is there-
fore a decision-theoretic measure of the “information
deficit”that is faced by a decision maker who acts
on the basis of the distribution r when the distribu-
tion is p. In this capacity, Brègman divergences (and
their corresponding strictly proper scoring rules) pro-
vide a potentially rich class of loss functions that can
be used for robust Bayesian inference, as discussed
by Grünwald and Dawid (2004), Dawid (2006), and
Gneiting and Raftery (2007). A problem of this kind
can be framed as a game against nature in which na-
ture chooses a distribution p from some convex set
P , such as the set of distributions satisfying a mean
value constraint. The robust Bayes problem for the
decision maker is to determine the distribution r that
minimizes her maximum expected loss over all p ∈ P ,
where the expected loss (in our terms) is the negative
expected score −S(r,p). Grünwald and Dawid show
that the optimal-expected-loss function, −F (p), is in-
terpretable as a generalized entropy, and minimizing
the maximum expected loss is equivalent to maximiz-
ing this entropy on the set P . The distribution r that
solves this problem is the one that minimizes BF (p‖r)
with respect to an uninformative reference distribu-
tion p0 at which the entropy −F (p) is maximized.

3 The pseudospherical and power
divergences

In this paper, we will consider a different kind of game
and a correspondingly different decision-theoretic
measure of information, namely, we will suppose that
a risk-averse decision maker with personal probability
distribution p has the opportunity to bet against
a non-strategic less-well-informed opponent whose
distribution q is known to lie in some set Q that is
disjoint from p, which enables the decision maker to
place bets that are profitable in the sense of increas-
ing her expected utility relative to the status quo.



The “information surplus” enjoyed by this decision
maker will be shown to be measured by the minimum
of a generalized divergence between p and all q ∈ Q,
but it is generally not a Brègman divergence. The
solution of this problem gives rise to families of
“weighted” strictly proper scoring rules, in which q
plays the role of a baseline distribution with respect
to which the value of the forecaster’s information
is measured, and they generalize the well-known
quadratic, logarithmic, and pseudospherical scoring
rules – details are given in Jose et al. (2008).

There are various functional forms that could be used
to define a divergence of p with respect to q, and
the one we that we find most compelling, for both
practical and theoretical reasons, is that for a given
pi the divergence should depend on qi only through
the ratio pi/qi, which is the marginal value of a bet
on state i: a $1 bet yields a payoff of $1/qi when that
state occurs and zero otherwise, because this is a
fair payoff from the perspective of the opponent, and
its expected value for the decision maker is $pi/qi.
More generally, whenever low-probability states are
explicitly distinguished in the setup of a decision
model, it is usually because they have large conse-
quences, in which case relative rather than absolute
errors in probability estimation are what matter.
Another rationale is illustrated by the following
example: suppose that the state space consists of 4
states formed by the Cartesian product of two binary
events E and F , and suppose it happens that the
decision maker and her opponent both agree on the
probability of F and they also agree that E and F are
statistically independent. Then it seems reasonable
that the marginal value of a bet on any state should
depend only on the extent of disagreement about the
probability of E, and this requires it to depend only
on the ratio of the two agents’ probabilities for that
state, which divides out the common probability of F .

The measurement of distance between two probability
distributions in terms of ratios has a long history in
statistics and information theory, and it is the basis
of another kind of generalized divergence known as an
f -divergence (Csiszár 1967). If f is a strictly convex
function, the corresponding f -divergence is defined as

Df (p‖q) ≡ Ep[f(p/q)]. (6)

Divergences of this general form have been widely
used in statistics for many years as (seemingly)
utility-free measures of the value of the information
- e.g., Goel (1983) uses f -divergence to define a
“conditional amount of sample information” for
measuring prior-to-posterior information gains in
Bayesian hierarchical models. More recently it has

been recognized that f -divergences are interpretable
as measures of expected utility gains that are avail-
able to decision makers who have opportunities to
bet against less-well-informed opponents or to invest
in financial markets, as will be more fully discussed
in later sections of this paper.

As noted above, the KL divergence is the only dis-
tance measure that satisfies the axioms of both addi-
tivity and recursivity. However, it has been discovered
that weakenings of these axioms lead to several inter-
esting parametric families of f -divergences (or trans-
formations thereof) which have their own merits and
their own applications. Havrda and Chavrát (1967)
defined a quantity that they called the directed di-

vergence of order β between p and q, and variants of
this divergence, which are equivalent up to a scale fac-
tor, were discussed by Rathie and Kannappan (1972),
Cressie and Read (1984), and Haussler and Opper
(1997). Cressie and Read referred to this quantity as
the power divergence, and that term will be adopted
here. The power divergence (as originally introduced
by Havrda and Chavrát) is defined for all β ∈ R by:

DP
β (p‖q) ≡ Ep[(p/q)β−1] − 1

β(β − 1)
, (7)

which is an f -divergence based on the normalized
power function fβ(x) = (xβ−1 − 1)/(β(β − 1)).3 The
cases of β = −1, 0, 1

2
, 1, and 2 are of special interest.

At β = 1, the power divergence between p and q is
equal to the KL divergence DKL(p‖q), and at β =
0 it is the reverse KL divergence DKL(q‖p). In fact,
DP

β (p‖q) is antisymmetric around β = 1

2
in the sense

that DP
β (p‖q) = DP

1−β(q‖p), i.e., the reverse diver-
gence is obtained by replacing β with 1 − β for any
value of β. The case β = 1

2
has perfect symmetry,

i.e., DP
1/2

(p‖q) = DP
1/2

(q‖p), and it reduces to

DP
1/2(p‖q) = 4

0

@1 −
n
X

j=1

√
pjqj

1

A , (8)

which is proportional to the squared Hellinger dis-

tance between p and q, as noted by Haussler and
Opper (1997). The Hellinger distance DH(p‖q) is
widely used in statistics and is defined by

DH(p‖q) ≡

0

@

n
X

j=1

`√
pj −√

qj

´2

1

A

1/2

, (9)

whence
DP

1/2(p‖q) = 2DH(p‖q)2. (10)

3fβ(x) converges to ln(x) as β → 1, but it goes to ±∞ as
β approaches zero from above or below. Nevertheless, (7) is a
continuous function of β at β = 0 by virtue of the special nature
of the argument of fβ and its behavior inside the expectation:
the individual terms go to ±∞, but their expectation converges.
Note also that fβ is antisymmetric around β = 1/2 in the

following way fβ(xβ) = f1−β(x1−β), which parallels a similar
property of the divergences and utility functions discussed here.



At β = 2 the power divergence reduces to (a multi-
ple of) another well-known divergence, the Chi-square

divergence (Pearson 1900):

DP
2 (p‖q) =

1

2
(Ep[p/q] − 1) =

1

2
χ2(p‖q), (11)

while at β = −1 it is the reverse Chi-square divergence
1

2
χ2(q‖p).

The power divergence is generally neither additive nor
recursive, but it satisfies two slightly weaker proper-
ties for all values of β. First, it satisfies the following
pseudoadditivity property with respect to independent
partitions A and B:

DP
β (pA × pB‖qA × qB) = DP

β (pA‖qA) + DP
β (pB‖qB)

+β(β − 1)DP
β (pA‖qA)DP

β (pB‖qB). (12)

Second, it satisfies the following pseudorecursivity

property with respect to the splitting of events
(Rathie and Kannappan 1972, Cressie and Read
1984):

DP
β (p‖q) = DP

β (p1 + p2, p3, ..., pn‖q1 + q2, q3, ..., qn)

+ (p1 + p2)

„

p1 + p2

q1 + q2

«β−1

(13)

× DP
β

„

p1

p1 + p2
,

p2

p1 + p2
‖ q1

q1 + q2
,

q2

q1 + q2

«

.

Pseudoadditivity reduces to additivity in both of
the special cases β = 0 and β = 1 (both the KL
divergence and the reverse KL divergence are addi-
tive), while pseudorecursivity reduces to recursivity
only in the special case β = 1. Also note that for
β ∈ (0, 1) the power divergence is subadditive, i.e.,
DP

β (pA×pB‖qA×qB) ≤ DP
β (pA‖qA)+DP

β (pB‖qB),
while for β < 0 or β > 1 it is superadditive, i.e.,
DP

β (pA×pB‖qA×qB) ≥ DP
β (pA‖qA)+DP

β (pB‖qB).

A different form of generalized entropy was introduced
by Arimoto (1971) and further elaborated by Sharma
and Mittal (1975), Boekee and Van der Lubbe (1980)
and Lavenda and Dunning-Davies (2003). Arimoto’s
generalized entropy of order β is defined for β > 0 as
follows:

β

β − 1

“

Ep[pβ−1]1/β − 1
”

. (14)

(Here β corresponds to the term 1/β in Arimoto’s
original presentation and to the term R in Boekee
and Van der Lubbe’s presentation.) The factor of β
in the numerator plays no essential role when β is re-
stricted to be positive, and without it the measure is
actually valid for all real β and closely related to the
pseudospherical scoring rule (Jose et al. 2008). The
corresponding relative entropy measure, which we will
henceforth call the pseudospherical divergence of or-

der β between p and q, is obtained by introducing a
reference distribution q and dividing out the unnec-
essary factor of β,

DP
β (p‖q) DS

β (p‖q)

β = −1 1
2
χ2(q‖p) 1

2

`

1 − (χ2(q‖p) + 1)−1
´

β = 0 DKL(q‖p) 1 − exp(−DKL(q‖p))

β = 1
2

2DH(p‖q)2 2

„

1 −
“

1 − 1
2
DH(p‖q)2

”2
«

= 2DH(q‖p)2

β = 1 DKL(p‖q) DKL(p‖q)

β = 2 1
2
χ2(p‖q)

p

χ2(p‖q) + 1 − 1

Table 1: Special cases of power and pseudospherical
divergences

DS
β (p‖q) ≡

`

Ep[(p/q)β−1]
´1/β − 1

β − 1
. (15)

This is a nonlinear transformation of the power diver-
gence, hence it can also be expressed as a function of
other well-known divergences for special cases of β, as
summarized in Table 1, which highlights the antisym-
metry of the power divergence around β = 1

2
.

Like the power divergence, the pseudospherical diver-
gence satisfies a pseudoadditivity property:

DS
β (pA × pB‖qA × qB) = DS

β (pA‖qA) + DS
β (pB‖ qB)

+(β−1)DS
β (pA‖qA)DS

β (pB‖qB). (16)

The coefficient of the cross-term in this case is β − 1,
not β(β − 1), and hence DS

β (p‖q) is subadditive for
β < 1 and superadditive for β > 1. However, the
pseudospherical divergence is generally not pseudore-
cursive, and it is not an f -divergence, although it is
monotonically related to one.

4 The family of normalized
linear-risk-tolerance utility functions

In the optimization problems to be discussed in the
following section of the paper, the decision maker’s
utility function will be assumed to be drawn from
the most commonly used parametric family of utility
functions, namely the generalized power family that
includes the exponential and logarithmic utility func-
tions as limiting cases. The utility functions from
this family will be parameterized here as:

uβ(x) ≡ 1

β − 1
((1 + βx)(β−1)/β − 1) if βx > −1

uβ(x) ≡ −∞ otherwise,

for all β ∈ R. This parameterization, which was
introduced by Jose et al. (2008), has two key prop-
erties. First, uβ(0) = 0 and u′

β(0) = 1, so that for
every β the graph of uβ passes through the origin and
has a slope of unity there. Second, the corresponding
risk tolerance function τβ(x), which is the reciprocal
of the Pratt-Arrow risk aversion measure, is a linear
function of wealth with slope equal to β and intercept



β = −1 quadratic utility u−1(x) = − 1
2
((1 − x)2 − 1)

β = 0 exponential utility u0(x) = 1 − exp(−x)

β = 1
2

reciprocal utility u1/2(x) = 2
“

1 − 1
1+x/2

”

β = 1 logarithmic utility u1(x) = ln(1 + x)

β = 2 square-root utility u2(x) =
√

1 + 2x − 1

Table 2: Examples of normalized linear-risk-tolerance
utility functions

equal to 1: τβ(x) ≡ −u′
β(x)/u′′

β(x) = 1 + βx.4 Thus,
risk tolerance as well as marginal utility is normalized
to a value of 1 at x = 0. This amounts to choosing
the unit of money to be the status quo risk tolerance
(which is without loss of generality when there is
a single risk-averse agent) and then choosing the
unit of utility to be the status quo marginal utility
of money (which is also without loss of generality
and which yields money-utile parity at the status
quo). Henceforth we will refer to uβ as a normal-

ized linear-risk-tolerance (normalized LRT) utility
function. The advantages of this normalization are
that (a) it is a natural one for modeling utility gains
and losses relative to the status quo rather than
relative to some hypothetical zero-point of wealth
at which utility goes to minus-infinity, and (b) for
fixed x, uβ(x) is a continuous function of β on the
entire real line, so that it sweeps out the widest
possible spectrum of local risk attitudes. (Utility
functions with the property of linear risk tolerance
but without this useful normalization are known
as hyperbolic-absolute-risk-aversion (HARA) utility
functions in the literature of financial economics,
and they typically use different parameterizations
for different ranges of the power parameter.) Some
important special cases of uβ(x) are given in Table 2.

The utility functions {uβ} exhibit their own form of
anti-symmetry around β = 1

2
, namely that u1−β(x) =

−uβ(−x), or equivalently uβ(−u1−β(−x)) = x. In
other words, the graph of u1−β(x) is obtained from
the graph of uβ(x) by reflecting it around the line
y = −x. The power (exponent) in uβ is the term
(β−1)/β, which has the property that ((β−1)/β)−1 =
((1 − β) − 1)/(1 − β), so that swapping β for 1 − β

4The decision maker’s risk tolerance is the parameter that
determines the mean-variance tradeoffs she is willing to make
on the margin. To a second-order approximation, the amount
that she is willing to pay for a risky asset whose payoff dis-
tribution has mean µ and variance σ2 is equal to µ − σ2/2τ ,
where τ is her risk tolerance. In other words, her risk premium

for such an asset, which is the amount by which she devalues
it relative to its expected value, is σ2/2τ . In general a decision
maker’s risk tolerance may be expected to change as her wealth
changes, and with this utility function her risk tolerance is a
linear function of wealth with slope coefficient β.

-4
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-2

-1

0

1

2

-2 -1 0 1 2 3 4

Exponential (beta = 0)
Logarithmic (beta = 1)
y = -x

Figure 1: Reflection property of normalized LRT util-
ity functions around y = −x

results in another power utility function whose power
is the reciprocal of the original. Thus, under this pa-
rameterization, the reciprocal utility function (β = 1

2
)

is its own reflection around the line y = −x, the ex-
ponential and log utility functions (β = 0 and β = 1)
are reflections of each other, as illustrated in Figure 1,
and the power utility function with exponent δ is the
reflection of the power utility function with exponent
1/δ for any positive or negative δ other than 0 or 1.

5 Duality between maximization of
expected utility and minimization of
relative entropy in incomplete markets

We now consider two generic optimization problems
in which a risk averse decision maker with probability
distribution p invests in an incomplete financial
market where bid-ask spreads in asset prices are
determined by a convex set Q of imprecise prob-
abilities representing the beliefs of a risk-neutral
representative agent, as noted in the introduction.
The problem of expected-utility maximization in
incomplete markets has been widely studied in the
mathematical finance literature in recent years, and
it has been shown that there is a duality relation-
ship between maximization of expected utility and
minimization of an appropriate divergence (e.g.,
Frittelli 2000, Rouge and El Karoui 2000, Goll and
Rüschendorf 2001, Delbaen et al. 2002, Slomczyński
and Zastawniak 2004, Ilhan et al. 2004, Samperi
2005). Most of this literature has focused on
the case of exponential utility, for which the dual
problem is the minimization of the reverse KL
divergence DKL(q‖p), as well as on issues that arise
in multi-period or continuous-time markets. In



this section we will show that in a single-period
or two-period market, there is a duality relation
between the pseudospherical or power divergence
and the solution of an expected-utility-maximization
problem in which the utility function is drawn from
the normalized linear-risk-tolerance family.

Let x ∈ R
n denote the vector of mone-

tary payoffs to the decision maker, and let
uβ(x) ≡ (uβ(x1), ..., uβ(xn)) denote the vector
of utilities that the function uβ yields when applied
to x. An incomplete, single-period market can either
be parameterized in terms of an m × n matrix A
whose rows are the (net) payoff vectors of available
assets, i.e., A = {aij} where aij is the net payoff
to the decision maker of one unit of the ithasset
in state j, or else in terms of a k × n matrix Q
whose rows are risk neutral probability distribu-
tions that support the asset prices, i.e., Q = {qij}
where qij is the probability of state j under the
ith risk neutral distribution. The rows of Q are
the extremal risk-neutral probability distributions
assigning non-positive expectation to all the rows of
A, i.e., the rows of −Q are the dual cone of the rows
of A. The parameterization in terms of Q will be
adopted here. Let x denote an arbitrary n-vector of
monetary payoffs to the decision maker (an element
of R

n), and let z denote an arbitrary k-vector of
non-negative weights summing to one (an element
of △k, the unit simplex in R

k). As before, let p
denote the decision maker’s subjective probability
distribution, and henceforth let q denote one of many
possible probability distributions attributable to a
risk-neutral trading opponent: the representative
agent.

In the first generic decision problem (“S”), there is
a single time period in which consumption occurs,
the decision maker has a single-attribute LRT util-
ity function uβ(x), and her objective is to find the
payoff vector x that maximizes her subjective ex-
pected utility subject to the self-financing constraint
Eq[x] ≤ 0. The decision maker’s optimal expected
utility, denoted US(p‖q), is determined by solving:

Primal Problem S:

US
β (p‖Q) ≡ max

x∈Rn
Ep[uβ(x)] subject to Qx ≤ 0

Note that −Qx is the k-vector of the opponent’s
expected values for payoff vector x under all the ex-
tremal risk neutral distributions, hence the condition
Qx ≤ 0 means that x yields non-negative expected
value to the opponent under all those distributions.

In the second problem (“P”), there are two periods
in which consumption occurs and the decision maker
with probability distribution p has a quasilinear util-
ity function uβ(a, b) = a+uβ(b) where a is money con-
sumed at time 0 and b is money consumed at time 1.
Under the normalized LRT family of utility functions,
the marginal rate of substitution between time-0 con-
sumption and time-1 consumption is equal to unity at
x = 0 in this problem, as though in the status quo the
decision maker is indifferent between consuming the
next dollar at time 0 or time 1. The decision maker’s
objective is to choose a vector x of time-1 payoffs to
be purchased from time-0 funds at market prices so
as to maximize the total expected utility of consump-
tion in both periods. The time-0 cost of purchasing
x is Eq[x], so the optimal expected utility, denoted
UP(p‖q), is the solution of:

Primal Problem P:

UP
β (p‖Q) ≡ max

y∈R,x∈Rn
Ep[uβ(x)] − y subject to Qx ≤ y1

Henceforth, let xS
β(p‖q) and xP

β (p‖q) denote the

solutions of Problems S and P, with ith elements
xS

β,i(p‖q) and xP
β,i(p‖q), respectively. Let z ∈ △k

denote a vector of weights, so that zT Q is a mixture
of the rows of Q, which is an element of the convex
polytope Q of risk neutral distributions. Our main
result is that the utility gains to the decision maker
under problems S and P are, respectively, the minima
of the pseudospherical and power divergences between
p and all q ∈ Q for the same β.

THEOREM (Jose et al. 2008):
(a) In an incomplete, single-period market, maximiza-
tion of expected linear-risk-tolerance utility with risk
tolerance coefficient β (Primal Problem S) is dual to
minimization of the pseudospherical divergence of or-
der β between the decision maker’s subjective distri-
bution p and a risk neutral distribution q consistent
with asset prices. That is, the corresponding dual
problem is:

Dual Problem S: DS
β (p‖Q) ≡ min

z∈△k

DS
β (p‖zT Q).

Their optimal objective values are the same and the
optimal values of the decision variables in one prob-
lem are equal to the normalized optimal values of the
Lagrange multipliers in the other.

(b) In an incomplete, two-period market, maximiza-
tion of expected quasilinear linear-risk-tolerance util-
ity with second-period risk tolerance coefficient β
(Primal Problem P) is equivalent to minimization of



the power divergence of order β between the decision
maker’s subjective distribution p and a risk neutral
distribution q consistent with asset prices (Dual Prob-
lem P). Their optimal objective values are the same
and the optimal values of the decision variables in one
problem are equal to the normalized optimal values of
the Lagrange multipliers in the other. That is, the
corresponding dual problem is:

Dual Problem P:DP
β (p‖Q) ≡ min

z∈△k

DP
β (p‖zT

Q).

Proof: For part (a), Lagrangian relaxation is ap-
plicable because the primal problem has a strictly
concave, continuously differentiable objective func-
tion and linear constraints. Let λ denote the vector of
Lagrange multipliers associated with the constraints
Qx ≤ 0. The Lagrangian relaxation of Primal Prob-
lem S is then minλ∈Rk+ L(λ) where

L(λ) = max
x∈Rn

Ep[uβ(x)] − λT Qx. (17)

The Lagrangian L(λ) is an unconstrained maximum
of a continuously differentiable concave function, so
it can be solved for x in terms of λ by setting
∇(Ep[uβ(x)] − λ

T Qx) = 0, which yields

x =
1

β
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, (18)

whence

L(λ) = Ep
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.(21)

In the optimal solution λ
∗, where the constraints are

satisfied, the second term will be zero, which implies

1T (λ∗T Q) = Ep

"

„

p

λ∗T Q

«β−1
#

(22)

and consequently

L(λ∗) =
1

β − 1

 

Ep

"

„

p

λ∗T Q

«β−1
#

− 1

!

. (23)

Now let z∗ = λ
∗/1T

λ
∗ be the probability distribu-

tion that is obtained by normalization of the optimal
Lagrange multipliers λ

∗. Then it follows from (21)
that:

z∗T Q =
λ∗T Q

Ep[(p/λ∗T Q)β−1]
. (24)

The pseudospherical divergence between p and z∗TQ
can therefore be expressed in terms of λ

∗ as:

DS
β (p‖z∗T

Q)

=
(Ep[(p/z∗T Q)β−1])1/β − 1

β − 1

=
(Ep[(Ep[(p/λ∗T Q)β−1](p/λ∗T Q))β−1])1/β − 1

β − 1

=
(Ep[(p/λ∗T Q)β−1])1−1/β(Ep[(p/λ∗T Q)β−1])1/β − 1

β − 1

=
1

β − 1

 

Ep

"

„

p

λ∗T Q

«β−1
#

− 1

!

= L(λ∗), (25)

which is the optimal objective value of the primal
problem. Furthermore z∗ = λ

∗/1T
λ
∗ must also min-

imize DS
β (p‖z

T
Q) over all z ∈ △k, because if there

were some other z∗∗ ∈ △k such that DS
β (p‖z

∗∗T
Q) <

DS
β(p‖z

∗T
Q), then it would be possible to find some

λ
∗∗ ∈ R

k+ proportional to z∗∗ such that z∗∗TQ =
λ
∗∗T Q/(Ep[(p/(λ∗∗TQ))β−1]). By construction this

λ
∗∗ would satisfy Ep[(p/λ

∗∗T Q)β−1]−1T (λ
∗∗T

Q) =

0, implying L(λ∗∗) = DS
β(p‖z∗∗TQ), and it would fol-

low that L(λ∗∗) < L(λ∗), contradicting the assump-
tion that λ

∗ was optimal.

For part (b), the problem of finding the feasible risk
neutral distribution that minimizes the power diver-
gence of order β:

min
z∈△k

DP
β (p‖z

T
Q), (26)

is equivalent to the Lagrangian problem
minλ∈△k L(λ), where L(λ) = maxx∈Rn Ep[uβ(x)] −

λ
T Qx is the same Lagrangian that was used in the

proof of part (a) to minimize the pseudospherical
divergence, except that here λ is constrained to be
in the simplex, not just the non-negative orthant
(λ ∈△k rather than λ ∈R

k+), which requires a
Lagrange multiplier for the constraint 1Tq = 1
in addition to the m Lagrange multipliers for the
constraints Aq ≥ 0. The latter divided by the
former are equal to the optimal values of the de-
cision variables in Primal Problem P multiplied
by −β. The power divergence is minimized by
the same risk neutral distribution q∗ = z∗T Q that
minimizes the pseudospherical divergence (for the
same p, β and Q), because they are both monotonic

functions of Ep[(p/q)
β−1

]. The optimal value of
λ is a unit vector selecting the largest element of
Qx. Let z denote this largest element. Then
minλ∈△k maxx∈Rn Ep[uβ(x)] − λ

TQx is equivalent
to maxx∈Rn Ep[uβ(x)] − z subject to Qx ≤ z1.�

The special case β = 1 corresponds to log utility in the
primal problem and KL divergence in the dual prob-
lem, while β = 0 corresponds to exponential utility in
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Figures 2a-e: Minimum-divergence solution for the
power divergence with p = (0.35, 0.5, 0.15) for

β = −1, 0, 0.5, 1, and 2.

the primal problem and reverse KL divergence in the
dual problem, and the cases β = 1/2 and β = 2 are
related to the squared Hellinger distance and the Chi-
square divergence as shown in the right-hand column
of Table 1. Because the pseudospherical divergence is
a monotonic transformation of the power divergence,
the distribution q (= zT Q) that solves Dual Prob-
lem S is the same one that solves Dual Problem P,
although the objective values and the primal payoff
vectors are generally different. The power divergence
is always strictly greater than the pseudospherical di-
vergence (DP

β (p‖q) > DS
β (p‖q)) except at β = 1,

as pointed out earlier, but this inequality is further
illuminated by a comparison of the corresponding La-
grangian relaxation problems: the minimization of
L(λ) over λ ∈ △k must yield a result greater than or
equal to its minimization over the larger set λ ∈ R

k+,
whether or not the market is complete.

Versions of the same duality theorem have been dis-
cussed in the mathematical finance literature, as
noted above, although the full spectrum of LRT utility
and its closed-form solution have not previously been
characterized. The details of the correspondence be-
tween our results and those of Goll and Rüschendorf
(2001) are given in Jose et al. (2008).

6 Illustration of the geometry of the
divergence-minimization problem

To visualize the preceding results, consider a simple
example in which there are three states and (only)
lower and upper bounds of 0.3 and 0.5 are given for
the probability of state 1 and lower and upper bounds
of 0.6 and 0.8 are given for the conditional probability
of state 3 given not-state-1. The set Q of probabil-
ity distributions that satisfies these constraints is the
unshaded quadrilateral in the lower center of the sim-
plex in Figures 2a-e. Let the reference distribution
be p = (0.35, 0.5, 0.15), which is the square dot in the
upper left. Figures 2a-e show the solution of the dual
problem of finding the element of Q that minimizes
the pseudospherical or power divergence between it-
self and p for β = −1, 0, 0.5, 1, and 2. The triangu-
lar dot is the minimum-divergence solution, and the
contour (level curve) that passes through it is also
shown. In this case, the solution moves from the
left to the right of the upper edge of the quadrilat-
eral as β increases from −1 to 2. Also, the contours
become more triangular in shape as β increases, flat-
tening more near the edges of the simplex, because as
q approaches an edge of the simplex, qi goes to zero
for some i, and the term (pi/qi)

β−1 in the divergence
calculation blows up faster for larger values of β as
that edge is approached.



7 Discussion

A financial market under uncertainty provides one of
the purest and most economically important examples
of a situation in which subjective beliefs – in this case
those of a risk neutral representative agent with whom
individual investors may trade – are represented by
imprecise probabilities that are subject to direct mea-
surement. The measurement process, which consists
of setting bid and ask prices for portfolios of Arrow se-
curities, is essentially the same operational method of
eliciting subjective probabilities that was introduced
by de Finetti, and it naturally leads to a represen-
tation of beliefs in the form of a convex polytope of
probability distributions. In this paper we have con-
sidered the decision problem faced by a risk-averse
investor in such a market when her risk preferences
are represented by a utility function drawn from the
generalized power family, which is the family most
commonly used in finance theory and applied deci-
sion analysis. Under a natural (but novel) param-
eterization of the generalized power utility function,
the investor’s optimal expected utility is equal to the
minimum of a generalized divergence between her own
distribution and the nearest element of the polytope
that characterizes the imprecise beliefs of the repre-
sentative agent, where the generalized divergence is
drawn from a parametric family that generalizes the
Kullback-Lielber divergence. We have also pointed
out connections with recent developments in the use of
generalized divergences in robust Bayesian statistics.
These results highlight the interconnections among in-
formation theory, Bayesian statistics, decision analy-
sis, and finance theory with respect to the program of
modeling imprecise probabilities.
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[29] Slomczyński, W., T Zastawniak. 2004. Utility maximiz-
ing entropy and the second law of thermodynamics. Ann.

Prob. 32:2261-2285.


