6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

Tests of the Mean with Distributional Uncertainty:

An Info-Gap Approach

Yakov Ben-Haim
Yitzhak Moda’i Chair in Technology and Economics
Technion — Israel Institute of Technology
Haifa 32000 Israel

Abstract

Statistical tests of the mean are quite common.
Sometimes the analyst cannot validate the as-
sumptions underlying the test, such as normality,
symmetry, independence of measurements, etc. This
causes unknown deviation of the actual sampling
distribution from the distribution assumed by the
test, and thus unknown size and power of the test.
This distributional uncertainty makes it difficult to
reliably choose the decision threshold (critical value)
and sample size. We present a method for evaluating
the robustness of a test to an unknown degree of
distributional uncertainty, based on info-gap decision
theory. Analysis of robustness is useful in evaluating
effective size and power, and for selecting the de-
cision threshold and sample-size. We study binary
simple-hypothesis tests of the mean and consider
both type I and type II errors. We show quantita-
tively that robustness to distributional uncertainty
improves, at fixed nominal level of significance, as the
effective level of significance deteriorates. Likewise,
robustness improves as the effective power of the test
deteriorates. Furthermore, we show how to choose
the decision threshold and sample size in light of
distributional uncertainty. We illustrate our results
by application to the ¢ test and to a test of false nulls
in epidemiology.

Keywords: binary hypothesis tests, distributional
uncertainty, info-gaps, robustness, tests of the mean,
t test, chronic wasting disease, false nulls.

1 Introduction

Statistical tests of the mean value of a population
property are exceedingly common, and numerous
tests are available. These tests depend on various as-
sumptions about the data and the population. Some-
times normality is assumed, and almost invariably
random sampling is posited: the measurements are

made independently but with the same instrument
and from the same population which is unaffected by
the sample. However, in many situations the data
generating process is not normal, or the sample is not
random: the measurement instrument is not constant,
or the sample is biased, or the measurements influence
one another to some extent, or the statistical charac-
ter of the population which is sampled is not constant.
Determination of the level of significance and power
of the test, and selection of the sample size, depend on
the test which is used and its underlying assumptions.
In some situations the analyst is unable to character-
ize the violation of test assumptions and is thus unable
to adjust the test accordingly, and unable to reliably
evaluate the level of significance and power or choose
a sample size. We present a method for dealing with
such situations.

Violation of the test assumptions can result in devia-
tion of the actual sampling distribution from the dis-
tribution upon which the test is based. In situations
where the violations are poorly known, the distribu-
tional deviations are similarly uncertain. We will refer
to this as distributional uncertainty.

Considerable effort has been devoted to deriving
methods which are robust to distributional uncer-
tainty. Careful test design is a major antidote, though
not always adequate. In some cases the distribu-
tional uncertainty can be characterized as a mixture
of several (or many) distributions of known struc-
ture. Given adequate data, methods exist for esti-
mating the parameters of the distributions and their
weights in the mixture (Titterington et al. 1985).
In other situations Monte Carlo methods are used
to construct a sampling distribution based on prior
knowledge of the distributional complexity (Robert,
2004). In these situations one can evaluate the ro-
bustness of a test as the extent of difference between
simulated type I and type II error rates and the theo-
retical error rates in the absence of distributional un-
certainty. Non-parametric methods exist which avoid



or weaken some assumptions about the sampled dis-
tribution. These tests do posit random sampling, or
identity of two distinct distributions, or other assump-
tions (Johnson, 1995), and some are strictly valid only
asymptotically. Numerical methods are available for
evaluating the robustness of non-parametric statistics
to specific violations, such as small-sample applica-
tions. However, non-parametric statistics can be very
sensitive to a small number of outlying measurements.
This focusses attention on the problem of long tails
of the sampled distribution. The jacknife technique
(Mooney and Duval, 1993), or trimmed means (DeG-
root, 1986), attempt to rectify the effects of outliers.
More generally, robustness can be evaluated as in-
sensitivity to small deviations from the distributional
assumptions (Huber, 1981), leading to M estimates
and other techniques.

The distributional uncertainty on which we focus here
is more unstructured than that for which these meth-
ods are explicitly designed. We illustrate our con-
cept of distributional uncertainty, and its origin in
ecological assessment and epidemiology, in section 2.
Briefly, however, we consider situations in which the
sampling distribution is highly uncertain and may be
skewed, heavy tailed, multi-modal or non-random in
ways which are unknown to the analyst. Distribu-
tional uncertainty, in the sense which concerns us
here, arises for example in the use of historical data
from diverse and unknown sources, taken with a va-
riety of protocols (or lack of protocols in any profes-
sional sense), sampled from different and varying pop-
ulations whose identity is imperfectly known. In such
situations one must account for enormous and highly
unstructured variability of the sampling distribution.

This sort of distributional uncertainty cannot be han-
dled by the analysis of compound hypotheses. Distri-
butional uncertainty presents us with an unbounded
infinity of possible distributions—hypotheses—so it
would seem impossible to formulate a compound hy-
pothesis, or to identify a mixture of distributions.

We study two sets of problems. First, in the face of
severe distributional uncertainty, what level of signif-
icance and power can one reliably ascribe to a binary
simple-hypothesis test of the mean? We develop a
method for quantitatively evaluating the reduction in
level of significance and power, as distributional un-
certainty increases. This analysis supports judgments
about the effective level of significance and power, as
expressed by their robustness to distributional uncer-
tainty. Second, we show how to choose the decision
threshold (critical value) and sample size when facing
distributional uncertainty.

Our analysis employs info-gap decision theory for

evaluating the robustness to large and highly unstruc-
tured uncertainty in the sampling distribution. We
illustrate our results with simple ¢ tests of the mean,
but the methodology is applicable to a broad range of
statistical tests.

We begin, in section 2, with an intuitive discussion
of the origin and nature of distributional uncertainty.
Section 3 formulates the binary hypothesis test which
we study. Section 4 presents an info-gap model for
distributional uncertainty. Section 5 formulates the
info-gap robustness functions for type I and type II
errors. A numerical example illustrating the decisions
and judgments which the analyst must make is pre-
sented in section 6. A concluding discussion appears
in section 8.

2  Origins of Distributional Uncer-
tainty in Ecology and Epidemiology

Recall that by ‘distributional uncertainty’ we mean
uncertainty in the form of the sampling distribution
which results from unknown violations of assumptions
underlying a statistical test. Distributional uncer-
tainty is not uncommon in ecological assessment, aris-
ing from violations of test assumptions which the an-
alyst is unable to characterize.

The main antidote to violation of test-assumptions is
of course careful test design. This typically requires
good basic understanding of the processes which are
studied. However, measurements are sometimes made
for the very purpose of augmenting our (sometimes
quite deficient) understanding of these processes. For
instance, Boone and Krohn (1999) show that the accu-
racy of model-based predictions of occurrence of avian
species is a function of the frequency of species occur-
rences; not surprisingly, rare species are more difficult
to model accurately than common species. Similarly,
Craft et al. (1999) study the rate of restoration of eco-
logical attributes in artificially constructed marshes
as compared to natural marshes, noting that there
are no long-term comparative studies. If the factors
which influence long-term restoration and growth are
incompletely understood, it may be difficult to charac-
terize the relevant statistical properties of the control
and test sites and to verify that they are equivalent.
Finally, it is sometimes necessary to use very small
samples, such as when data are based on large-scale
natural experiments (Carpenter, 1989). Tests based
on phenomena which are rare and poorly understood,
or newly identified and unstudied, are vulnerable to
distributional uncertainty.

There are also other potential causes of distributional
uncertainty. Franklin (1999) uses a range of obser-



vational data from many different sources over the
past 150 years—of varying accuracy and reliability—
to evaluate change in bird assemblages in northern
Australia. Some of these sources were trained bi-
ologists, though professional protocols changed over
the sampling period. Some observers were casual or
untrained observers who may exert less effort, and
thus miss the rare events, or who are enthusiastic in
the search for rare occurrences and may systemati-
cally over-report extreme observations. While histor-
ical observational data are an important and valuable
source, it is difficult to verify that test-assumptions
are not violated.

McCarthy (1998) uses museum collections to evalu-
ate trends in marsupials and monotremes, recognizing
that variable collection efforts introduce uncertainties.
Similarly, Burgman et al. (1995) recognize that “col-
lection frequencies will reflect changing trends in mu-
seum and herbarium collections”, which introduces
uncertainties in evaluating extinction threats based on
historical development of collections. Stewart-Oaten
et al. (1992) study tests of changes of a mean pop-
ulation property, before and after an impact, where
the impact cannot be replicated (e.g., construction of
a power plant). They note that data from such mea-
surements “do not necessarily satisfy” the assump-
tions of standard tests. They state that “there is no
panacea” for violation of test assumptions, and if the
assumptions “are seriously wrong, alternative analy-
ses are needed. This will often require a long time
series of data.” These authors discuss many sources
of violation of test assumptions, stressing the impor-
tance of unknown skewness of distributions or corre-
lations among measurements.

Evidence for violation of test assumptions is not
uncommon in epidemiological studies. Bausch et
al. (2003) report non-normal distributions of large
samples, and non-random selection of participants,
with disproportionate participation of particular sub-
populations, due perhaps to the fear of stigma.

In short, analysts not infrequently face considerable
uncertainty about the actual sampling distribution of
their data. There surely is a true sampling distribu-
tion from which the data were obtained, but this dis-
tribution is unknown, and unknowable on the basis of
available information. On the other hand, there is un-
doubtedly a population property—such as a mean—
which is reflected in some way in the data. It is the
aim of the statistical test to discriminate something
about this population property, and to assess the con-
fidence of this discrimination. A conventional sta-
tistical approach would be to transform the pdf, or
modify the test, for formulate a compound or mix-
distribution hypothesis, to accommodate violations

of specific assumptions. We cannot do that because
we don’t know what specific violations have occurred.
That’s precisely the distributional uncertainty which
we are studying.

3 Binary-Hypothesis Test

We have a set of measurements X = {z1, ..., &}
which do not necessarily constitute a random sample
of any known distribution, as discussed in sections 1
and 2. These data reflect a population mean, u, but
they suffer from an unknown degree of distributional
uncertainty. We wish to use this data to decide be-
tween two simple hypotheses:

Ho: p=T (1)
H1 . /.L:Tl (2)

where each T is a specified number, and 177 > Tj.

Let y be a statistic, for instance the t statistic, and
let F;(y) denote the cumulative distribution function
(cdf) of y under H;. For any distribution F(y), let
do(F) denote the (1 — a)th quantile of F(y):

Ga(F) =inf{y: F(y) =1-a} 3)
We reject Hy with significance « if:

Y > qa(Fo) (4)

The size, «, is the probability of falsely rejecting the
null hypothesis, Hy, and the power, 1 — 3, is the prob-
ability of correctly rejecting Hy. (3 is the probability
of falsely rejecting Hy. If the cdf’s are continuous at
do(F) then the size «, and power, 1 — 3, are:

Folga(Fo)] (5)
Fi[ga(Fo)] (6)

l-a =

8 =

4 Info-Gap Models for
Distributional Uncertainty

Suppose that the data X are not believed to be a
random sample, or other assumptions underlying the
test which is to be used are violated, but the nature
of the violation is not known. In other words, suppose
that the data are subject to distributional uncertainty.
Let y be the test statistic (perhaps the ¢ statistic,
but not necessarily), and let F;(y) denote the best
(or perhaps only) guess of the distribution of the test
statistic y, under hypothesis H;. For instance, our
best guess might be that Fo(y) is the ¢ distribution
with n—1 degrees of freedom for the regular ¢ statistic
y = (T —Tp)/(s/+/n) with sample mean and variance



7 and 2, while F(y) = Fo(y — 8) where 6 = (T} —
To)/(s/v/n).-

Fi(y) is our best guess of the pdf of y but we don’t
know how wrong this guess is, and we have no “worst
case” estimate. This distributional uncertainty in y,
under hypothesis H;, is represented by an info-gap
model, U;(h), which is an unbounded family of cdf’s
centered on F;(y). For example, the uniform-bound
info-gap model for uncertainty in the cdf of y is:

Ush) = { Fly): F(y) € P, [F(y) ~ Fily)l < h,

vy} h>0 (7)

where P is the set of all normalized non-negative cdf’s.
The info-gap model is an unbounded family of nested
sets, U;(h), of cdf’s. In the absence of uncertainty,
that is, when h = 0, the set is a singleton containing
only the estimated cdf:

U;(0) = {F;} (8)

The sets become more inclusive as the horizon of un-
certainty increases:

h <h' implies U;(h) CU;(h") (9)
The horizon of uncertainty, b, is unknown, so there is
no known worst case or largest set of cdf’s other than
the set of all mathematically allowed cdf’s (which oc-
curs for h > 1). Egs.(8) and (9) are the “contraction”
and “nesting” axioms, respectively.

The uniform-bound info-gap model of eq.(7) entails
enormous uncertainty in the cdf’s. For sufficiently
large h, the set U;(h) contains densities which are
highly asymmetric, multi-modal, with heavy or light
tails, and with bumps, dimples, or “atoms” (infinite
probability density at a single value of y) arbitrar-
ily far from the mean resulting in arbitrarily large
moments. Most importantly, the uncertainty in the
cdf’s which is represented by an info-gap model such
as eq.(7) is different from estimation error or deviation
from an asymptotic form. The info-gap model repre-
sents distributional uncertainty arising from unknown
and possibly serious violation of fundamental assump-
tions underlying the hypothesis test. We do not mo-
tivate the structure of the info-gap model from con-
sideration of estimation analytics or convergence (as
in the Berry-Esseen inequality, Feller, 1971). Rather,
the family of sets in eq.(7) reflects distributional un-
certainty.

Other forms of info-gap model can be used if further
information is available to constrain the relevant cdf’s
(Ben-Haim, 2006). For instance, one might have in-
formation indicating that the error of the estimated

cdf is localized, e.g. on the tails, so the inequality
in eq.(7) is modified in the envelope-bound info-gap
model:

Usth) ={ Fly): Fly) € P, |F(y) - Fily)] < hoo(y),

vy}, h>0 (10)

where ¥ (y) is a known function. A related class of
info-gap models is treated by Fox et al. (2007).

Alternatively one might make the judgment that
probability atoms do not occur, but that the distribu-
tion may have bumps or dimples, or the tails may be
heavy or light in unknown ways. An info-gap model
which represents this is the fractional-error model ap-
plied to the probability density function (pdf) rather
than to the cdf:

Usth) ={ £w): 1) €D, If(y) - Flw) < hf7,
vy}, h>0 (11)

where D is the set of all normalized non-negative
pdf’s and f} is a normalization constant with units
of probability density. For instance, one might choose
f# = max, f;(y), which is the value of the pdf at its
mode.

A much more restrictive info-gap model than eq.(11)
is:

uih) = { fw): 1) €D, 1) = F.)| < b,
vyho b0 (12)

To understand the difference between the uncertainty
models in eqgs.(11) and (12), consider the case where y
varies from —oo to +0o and the estimated pdf, f,(y),
has tails which diminish asymptotically to zero. The
uncertainty set U;(h) in eq.(11) allows bumps as large
as hf} arbitrarily far out on the tail. This is not the
case for the set U;(h) in eq.(12) for which a bump
cannot be larger than hfl(y) which will become very
small for large y. The info-gap model of eq.(11) allows
much more deviant tails than the info-gap model of
eq.(12).

5 Robustnesses for Type I and Type
IT Errors: Formulation

Consider a test of size *, namely, a test which rejects
Hy when:

Y 2 qar (ﬁ‘O) (13)

a* is the “nominal” size of the test since it is based
on the best-estimate of the cdf under Hy, Fl.

*



We now define the robustness of this test with respect
to distributional uncertainty in F, for falsely reject-
ing Hy. The robustness is the maximum horizon of
uncertainty, h, up to which the test at nominal size
o falsely rejects Hy with probability no greater than
a:

fo(at,) =max {n L min, Flgee(F)]) 2 1~ o
(14)

We use the quantile qa*(ﬁo) because the test is im-
plemented with the quantile of the best-guess distri-
bution under Hy, Fo(y), and is of nominal size o*,
while the actual size (probability of falsely rejecting
Hj) is then determined by the unknown true distri-
bution under Hy, F(y), which is info-gap-uncertain.

?Lo(a*,a) is related to type I error (falsely rejecting
Hy). Specifically, ho (a*, @) is the greatest horizon of
uncertainty up to which the probability of type I error
is no greater than «. The following expression for
ho(a*, a), for the info-gap model in eq.(7), is derived
in appendix A:

ho(o*,0) = a — o* (15)

or zero if this is negative. We refer to ar as the effective
size, while a* is the nominal size. Section 6 explains
how the analyst evaluates and chooses the effective
size.

Note that, for any choice of a*, the robustness curve
for type-I error, ho(a*,«) vs. a, is entirely indepen-
dent of the form of the test statistic. The implemen-
tation of the test, eq.(13), does depend on the type of
test, through the value of the quantile g~ (f‘o).

We now define a different robustness, related to type
IT error (falsely accepting Hp). hy(a*, 3) is the great-
est horizon of uncertainty up to which the probability
of falsely accepting Hy, with a test of nominal size a*,
is no greater than (:

(e, =max{ns (e Flawe ()] < 5

Fel;(h)
(16)

Let 1 — 8* be the nominal power:
1—6* =1— F1[ga~(Fp)] (17)

The following expression for El(a*, B), for the info-
gap model in eq.(7), is derived in appendix B:

hi(a*, 8) =1 -8 = (1— ) (18)

or zero if this is negative. We refer to 1 — 3 as the ef-
fective power, while 1 — §* is the nominal power. Sec-
tion 6 explains how the analyst evaluates and chooses
the effective power.

Note that, for any choice of a*, the robustness curve
for type-II error, hy(a*, B) vs. (3, depends on the form
of the test, unlike for the type-I robustness. This is
because the value of $* depends on a* through the
cdf’s of the test statistic, F'o and F'q.

6 Decisions and Judgments

The analyst must make two decisions and two judg-
ments. The analyst must decide on the nominal test
size o* and the sample size n. Together these de-
cisions determine the decision threshold ¢,»(Fp) in
eq.(13). Also, the analyst must judge what are reli-
able and acceptable values of the effective size o and
effective power 1 — 3 by considering the robustness
functions ho(a*, @) and hq(a*,3). (Recall that « is
the probability of falsely rejecting Hy, while 1 — 3 is
the probability of correctly rejecting Hy.)

We will illustrate these decisions and judgments with
an example employing the ¢ test. The test statistic,
y, is (T — Tp)(s/+/n) where T is the sample mean, s?
is the sample variance, and n is the sample size. The
estimated distribution under Hy, Fo(y), is the cdf of
the t statistic with n — 1 degrees of freedom. The
estimated distribution under H; is F'1(y) = Fo(y —90)
where 6 = (Th — Tp)/(s/+/n). The true distributions
under Hy and H; are unknown and the uncertainty
in each cdf is represented by the info-gap model in

eq.(7).

a* =0.01 a* =0.05

n 1-p| n 1-08*
5 01027 | 3 0.1784
7 0318 | 4 0.3736
9 05400 | 5 0.5390
12 0.7644 | 7  0.7457
31 0.9980 | 31 0.9997

Table 1: Size and power in the absence of distribu-
tional uncertainty.

The need for these judgments disappears in the ab-
sence of distributional uncertainty, since o* is the ac-
tual size and the actual power, 1—(3*, is entirely deter-
mined by a* and n. Values of a* and 1—* are shown
in table 1 for several sample sizes. Power, 1 — *,
improves (gets larger) as level of significance o* gets
worse (gets larger) at fixed sample size n. Likewise,
1 — 5* improves as n increases at fixed o*.

However, the presence of distributional uncertainty
makes it necessary to form judgments on effective size
«a and power 1 — 3. These judgments are based on the
robustness functions, plots of which appear in figs. 1
and 2: ho(a*, @) vs. a (positive slope) and hy(a*, 3)



vs. 1 — (3 (negative slope).

Consider first the robustness curve for type-I error,
ho(a*, ). The horizontal intercept of ho(a*, @) is the
nominal size, o, because hq (a*,a*) = 0. This means
that a test designed for size a* has no robustness to
distributional uncertainty if one requires that the ef-
fective size actually equal a*. The positive slope of
ho(a*, ) vs. « means that positive robustness is ob-
tained only for effective size, a, greater (worse) than
the nominal size a*. Stated differently, the positive
slope of ho(a*, «) expresses a trade-off: the robustness
against distributional uncertainty improves as the ef-
fective level of significance, «, get worse: robustness
is exchanged for significance.
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Figure 1: Robustness curves for the ¢

test, ho(a*,a) for falsely rejecting Hy, and
lAzl(a*,a) for falsely rejecting H;. Nominal
size is a* = 0.01. ﬁl(a*,a) calculated at 5
different sample sizes: n =5, 7, 9, 12 and 31.
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Figure 2: Robustness curves for the ¢

test, ﬁo(a*,a) for falsely rejecting Hy, and
hi(a*,a) for falsely rejecting H;. Nominal
size is o* = 0.05. hj(a*,a) calculated at 5

different sample sizes: n = 3, 4, 5, 7 and 31.
6=1.

We now can see how one makes judgments of reliable
effective size, a. A test designed for size a* = 0.01,
as in fig. 1, has no robustness for size 0.01. How-
ever, consider an effective size a = 0.05 and refer to
eq.(15). The test designed for a* = 0.01 will falsely
reject Hy with probability no greater than 0.05 if
the actual cdf, F(y), differs from the estimated cdf,
Fo(y), by no more than 0.04 in cumulative probabil-
ity. For instance, type I error will have probability
no larger than 0.05 if the tails of the true distribu-
tion are too heavy or too light by no more than 4%
of the total probability weight. The distributional
uncertainty may arise from the presence of an outly-
ing sub-population. The probability of type I error
will not exceed 0.05 provided the sub-population is
no larger than 4% of the total, regardless of how it is
distributed. Similarly, at effective size a« = 0.1, a test
designed for size a* = 0.01 is robust to distributional
uncertainty up to 0.09 in cumulative probability.

Now consider the robustness curves for type-II er-
ror, hi(a*, (), eq.(18). The horizontal intercept of
El(a*,ﬁ) is the nominal power, 1 — (*, because
ﬁl(a*,ﬁ*) = 0. This means that a test designed for
size a* has no robustness to distributional uncertainty
if one requires that the effective power actually equal
1 — B*. The negative slope of hi(a*,3) vs. 1 — 0
means that positive robustness is obtained only for
effective power, 1 — 3, lower (worse) than the nom-
inal power 1 — 3*. Stated differently, the negative
slope of hq(a*, ) expresses a trade-off: the robust-
ness against distributional uncertainty improves as
the effective power, 1 — 3, get worse: robustness is
exchanged for power.

We can now see how one makes judgments of reli-
able effective power, 1 — 3. A test designed for size
a* = 0.01 with sample size n = 9 (dot-dash in fig. 1),
has no robustness for power 0.54 (the horizontal in-
tercept and nominal power). However, consider an
effective power 1 — 8 = 0.44 and refer to eq.(18). This
test will falsely accept Hp with probability of 0.44 if
the actual cdf differs from the estimated cdf by no
more than 0.1. At effective size 1 — § = 0.44, this
test is robust to distributional uncertainty up to 0.1
in cumulative probability. For instance, if the tails
err by as much as 10% of the total probability, or
if a sub-population with unknown distribution has no
more than 10% weight, then the probability of type II
error will be no more than 0.44. Similarly, at effective
size 1 — 3 = 0.34, this test is robust to distributional
uncertainty up to 0.2 in cumulative probability.

Finally, let us consider the choice of the sample size.
Only the type-1II robustness is influenced by the sam-
ple size, as we see from eqgs.(15) and (18) and from
figs. 1 and 2. The nominal and effective power both



increase with increasing sample size, and are also sub-
stantially influenced by the nominal size a* as we see
by comparing the two figures. The analyst decides
on the sample size in light of the effective power and
robustness which are needed. We illustrate the deci-

sions and judgments with the aid of fig. 3, which is
expanded from fig. 1.

Robustness

_012. ] 04 06 08
Significance a, or Power 1-

Figure 3: Expanded from fig. 1.

In fig. 3 we are contemplating the choice of nom-
inal size o* = 0.01. Consider the judgment that
effective size o = 0.05 is adequate and reliable be-
cause the robustness is ho(0.01,0.05) = 0.04, eq.(15).
This judgment considers the robustness and the ef-
fective size together since they are linked through the
trade-off between them. For instance, the judgment
is that the tails are unlikely to err by more than 4%,
and the 5% risk of type I error is acceptable. Now
apply this robustness to type II error by requiring
hi(a*,8) = 0.04. From fig. 3 we find effective powers
of 0.50, 0.72 and 0.96 for sample sizes 9, 12 and 31.
Judging that power of 0.50 is too small, we require a
sample larger than n = 9. If power of 0.72 is adequate
then we adopt a sample of size 12. Choosing a sample
of size 31 would result in power of 0.96.

Let us continue our consideration of the judgment in
the previous paragraph that effective size o = 0.05 is
adequate and reliable. Judgment is subjective, and
this is a two-fold judgment since size and robustness
are linked through the trade-off between them. Size,
«, is subjectively judged in terms of the risk of type
I error. Robustness in this case can also be subjec-
tively judged in terms of probability. For instance one
might make the judgment that the distribution is dis-
torted by an outlying sub-population whose weight is
no more than a few percent of the main population.
This robustness judgment can be cast in terms of risk:
by accepting a robustness of 0.04 we are accepting the
risk that the parent population is contaminated by an
outlying population whose weight is no more than 4%.

It may be convenient and familiar for some analysts

to judge robustness in this example in terms of prob-
ability and risk as just described, However, this is not
necessary. Info-gap models of uncertainty are inher-
ently non-probabilistic, and value judgments about
robustness can be formed non-probabilistically. Judg-
ments of acceptable risk are based on experience and
context. In the same way, analysts can acquire subjec-
tive feel for fractional error, or other non-probabilistic
quantities, which leads to judgments of acceptable
robustness. The concept of analogical inference has
been employed to form non-probabilistic value judg-
ments of robustness (Ben-Haim, 2006, chap. 4).

Let us now return to our discussion of choosing the
sample size, three paragraphs before, and remove a
simplification which we made: applying the same ro-
bustness to both type I and type II errors. Hav-
ing accepted robustness of 0.04 for type I error,
ho(0.01,0.05) = 0.04, we then evaluated the sample
size in terms of the same robustness for type II er-
ror, hy(a*, 8) = 0.04. This is justified if one faces the
same severity of distributional uncertainty for both
hypotheses. However, one might well image situations
in which the distributional uncertainty is different for
the two hypotheses. For instance, one hypothesis may
represent a “healthy” state which is more thoroughly
studied than the “unhealthy” state represented by the
other hypothesis. In such a situation one makes sepa-

rate judgments of robustness and its trade-off partner

(either size or power) for each hypothesis. The judg-
ment of effective size, «, is linked to a judgment of
ho-robustness. Then one chooses the sample size to
yield what is judged to be acceptable type-II robust-
ness, hy, at acceptable power.

7 Example: Chronic Wasting Disease

Verbal description. Chronic wasting disease
(CWD) in deer can be detected by inoculating a par-
ticular strain of mice with an extract from the antler
velvet of the infected deer. The prion protein (PrP)
which is characteristic of this disease is expressed in
the mice after a time ¢ which is randomly distributed.
This distribution is highly uncertain, and it has been
observed that PrP expression with antler velvet from
diseased deer frequently does not occur even anoma-
lously long after the mean time (Angers et al. 2009).
The expression of PrP is much more reliable if the
injections are made from the brains of the deer. How-
ever, brains may not be available. For instance, antler
velvet is used in various traditional Asian medicines
which may be the only source for testing.

Suppose that we have inoculated n mice and after
incubation times t1, ..., t,, no expression of the PrP
is observed in any of the mice. How confident are we



that CWD is not present in the deer?

System model. Let p(t) denote the probability den-
sity function (pdf) of the incubation time, with cu-
mulative distribution function (cdf) P(t). We assume
that the incubation times are statistically indepen-
dent, so the probability of a false null—true presence
with no observed expression of the PrP—is:

n

L) =[In-Pe) (19

i=1

P, (t1, -

Uncertainty model. Let p(t) and P(t) denote the
estimated pdf and cdf. Let t5 denote a point on the
upper tail beyond which the estimated pdf is quite
uncertain. For instance we might choose ts to be 2
standard deviations from the mean. We will define
an info-gap model in which there are functions whose
upper tail, beyond t,, decays as 1/t2, much slower
than the decay of exponential or normal distributions.

Let P denote the set of non-negative normalized pdf’s.
The info-gap model, for h > 0, is:

Uh) = {p :peP,plt) <plt)+ t;—ghw >t }(20)

The first condition assures that the functions are
mathematically legitimate pdf’s. The second condi-
tion allows the upper tail, beyond ts, to exceed the
exponential by as much as tsh/t?, conditional on the
rest of the distribution being able to adjust to assure
non-negativity and normalization.

Note that [, tsh/t*dt = h. Thus the horizon of un-
certainty, h, represents the fraction of the entire sta-
tistical weight which is uncertain. For instance, if the
uncertainty of the pdf is thought of as an uncertain
mixture of populations, then h is the fraction of the
non-p population.

Performance requirement. The probability of a
false null must be less than a critical value:

an(tl, ey tn) < anc (21)

Robustness function. The robustness is defined as:

B(?’L, Pr,c) = max {h : ( max an> < anc} (22)
peU(h)

We will evaluate the inverse of ﬁ(n, Prye).

Let us denote the inner maximum in eq.(22) by m(h),
which is the inverse of Tl(ﬂ, Prye). We will assume that
all the observed times, t1, ..., t,, exceed tg, so they
fall in the domain of the uncertain tail. In this case,
m(h) is evaluated with the upper envelope at horizon

of uncertainty h, provided that this distribution can
be normalized. For each individual observation:

min [1, [ OO (5(7:) + t;) dt}

— min {1, l—P(ti)—i—tzh] (23)

%

1— Pt
pgl%)[ (t:)]

Since the n observations are independent we find the
inner maximum in eq.(22) to be:

tsh
t;

m@)—IlmmPﬂlﬁ@ﬂ+ } (24)

Plotting m(h) vs h is equivalent to P vs ﬁ(n, Prye).

Eq.(24) can be simplified when the observations, t;,

are large, so that 1 — P(t;) is nearly zero. For h < 1:
tohn

T (25)

Hi:l L

Equating this to Pp, and solving for h yields an ap-

proximate expression for the robustness which is valid
when the observations are large:

m(h) =

n 1/n
~ 1
h(n, anc) ~ 7? <anc H tz) (26)
$ i=1

Denoting the geometric mean of the n observations
by tgm, this becomes:

~

fm n
h(n, Pre) ~ fpﬁ (27)

The geometric mean observation, fgm, will change as
the sample grows, but the dominant effect of sample
size is in the term Pfi/cn which grows rapidly as n
increases when n and Pg. are sm;ill. Furthermore,
when Py, is very small, the slope of h vs P, increases
as n increases. This means that, when Pp, is small,
the cost of robustness, in units of increased Pk, is
small when n is large.

Example. Fig. 4 shows robustness curves, based on
eq.(24), for 5 sample sizes with the following data ¢; =
500, 530, 510, 520, 505 days. The bottom curve (n =
1) uses only the first datum; the next curve uses the
first 2 data; etc. The estimated distribution is normal
with mean and standard deviation of 450 and 20 days.
ts = 490.

The positive slopes of the curves express the trade-
off between robustness, h, and critical probability of
false null, Pp,.. Large robustness is obtained only by
accepting large Pg,.. The robustness is zero at the
estimated value of Ppyc.
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Figure 4: ﬁ(n, Pinc) V8 Pine, n =1 to 5 (bottom to top).

The robustness increases substantially as the sample
size increases from n = 1 to 2. The marginal increase
in robustness decreases with increasing n. From
the insert in the figure we see that the slope of
the robustness curve increases dramatically as the
sample size increases. A high slope means that the
robustness can be increased without significantly
increasing the critical probability of false null, Pg,..

8 Methodological Conclusion

This paper concentrates on binary simple-hypothesis
statistical tests, subject to distributional uncertainty,
by which we mean uncertainty in the sampling distri-
bution resulting from unknown violations of the test
assumptions. We have focussed on two decisions and
two judgments which the analyst must make. How
can one decide upon the decision threshold and the
sample size, and how does one judge the effective size
and power of a test? We have developed a generic ap-
proach to these questions based on info-gap decision
theory, and illustrated the method with the ¢ test and
with a test for false nulls. The method can be applied
to other tests as well.

Consider a test which is designed to have nominal
level of significance a*. The robustness of this test
with respect to distributional uncertainty, for falsely
rejecting Hy in eq.(1), is denoted ho(a*, ) and de-
fined in eq.(14). ho(a*, ) is the greatest horizon of
distributional uncertainty up to which the test, with
nominal size o, falsely rejects Hop with probability
no greater than «. That is, ho(a*, «) is the greatest
horizon of uncertainty up to which the probability of
type I error (false rejection of Hy) is no greater than
«, when using a test with nominal size a*.

ho(o*, @) is necessarily zero when o = o*, implying
that the test has no robustness to distributional un-
certainty at its nominal size, a*. The robustness is
positive for @ > a*, and the robustness increases as
« gets larger. This expresses the trade-off between
robustness to distributional uncertainty on the one

hand, and effective level of significance on the other
hand, as illustrated by eq.(15) and the lines of positive
slope in figs. 1-3.

The robustness function ho(o*, @) is the basic tool for
choosing the decision threshold, gq+(Fo) in eq.(13),
and for evaluating the effective size, a, of the test.
If ho(a*, ) is large then one has confidence that the
probability of falsely rejecting Hy is no greater than
«. What constitutes a ‘large’ robustness, and ‘how
large is large enough’ are delicate value judgments,
somewhat like the choice of level of significance. We
discussed this in section 6, though there is no absolute
answer.

We have also considered the robustness to distribu-
tional uncertainty in evaluating the effective power.
For any test designed for size a*, the robustness to dis-
tributional uncertainty, for falsely accepting Hy (type
IT error), is denoted ha (a*, B), defined in eq.(16). The
power, 1 — 3, is the probability of correctly rejecting
Hy. hi(a*,B) is the greatest horizon of distributional
uncertainty up to which the test, with nominal size
a*, will falsely accept Hy with probability no greater
than 8. The robustness is zero when ( is the value
obtained, at size o*, in the absence of distributional
uncertainty. That is, there is no robustness for the
nominal power. The robustness increases as the power
decreases, as illustrated by eq.(18) and the lines of
negative slope in figs. 1-3.

The robustness functions ﬁl(a*, B) and ﬁg(a*, a) are
the basic tools for choosing the sample size and for
evaluating the effective power of a test. If hq(a*, )
is large then one has confidence that the probability
of correctly rejecting Hy is no less than 1 — 3 with
the chosen sample size. Once again, judgments of
adequate power and large robustness are subjective.

We have concentrated on tests of the mean with
binary simple hypotheses, both because such tests
are exceedingly common in practice, and because
the main aim was to demonstrate the methodology
of info-gap theory for evaluating effective size and
power and for selecting the decision threshold and
sample-size. The methodology developed in this
paper can be extended to other test structures, and
to tests of quantities other than the mean. Further-
more, the close relation between hypothesis tests and
confidence intervals enables the application of the
methodology to evaluating and selecting confidence
intervals.
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A Evaluating the Robustness hq(a*, a)
for Falsely Rejecting H,

In this appendix we derive hg (a*, @) based on the info-
gap model in eq.(7).

First V(z) = 0if 2 < 0, V(z) =2z if 0 <z <1,
V()=1ifz>1.

Let mg(h) denote the inner minimum in the defini-
tion of the robustness in eq.(14). The robustness,
Eo(a*, ), is the greatest horizon of uncertainty, h, at
which mg(h) > 1 — a. mg(h) decreases with increas-
ing h because the sets Uy(h) of the info-gap model
become more inclusive as h increases (the nesting
axiom). Hence the robustness is the greatest non-
negative value of h for which mg(h) =1 — «. If there
is no such value of h, then the robustness is zero.

The inner minimum in eq.(14) is obtained when F(y)
is as small as possible at g« (Fo), subject to member-
ship in Ug(h). From the info-gap model in eq.(7) we
find:

mo() =V (Folaas (Fo)] = 1) = V(1 —a”~h) (28)

where we recall that Folgas(Fo)] = 1 — o*. The
greatest value of h at which mg(h) = 1 — « is the
robustness, eq.(15).

B Evaluating the Robustness h;(a*, )
for Correctly Rejecting H,

In this appendix we derive hy (a*, 3) based on the info-

gap model in eq.(7).

Let mq(h) denote the inner maximum in the defini-

tion of the robustness in eq.(16). The nesting ax-
iom implies that mq(h) increases monotonically as

h increases. Consequently the robustness, El(a*, B),
is the greatest horizon of uncertainty, h, at which

ml(h) = ﬁ

From the info-gap model in eq.(7), and using the step
function V(z) defined earlier, we find:

mi(h) =V (Filga (Fo)l +h)  (29)

Equating this to 8 and solving for h we find the ro-
bustness in eq.(18) with the aid of the expression for
the nominal power in eq.(17).



