Sets of Desirable Gambles and Credal Sets

Inés Couso (Univ. Oviedo), Serafín Moral (Univ. Granada), SPAIN

ISIPTA 09 - Durham, U.K.

Gambles

- We have an uncertain taking values on a finite set Ω
- A gamble is a mapping $X : \Omega \to \mathbb{R}$
- $X(\omega)$ is the reward if $X = \omega$
- Some gambles are clearly desirable for us (for example if X(ω) > 0, ∀ω) and other are undesirable (for example if X(ω) < 0, ∀ω)</p>

Example

- Consider the result of football match with $\Omega = \{0 0, 1 0, 0 1, 1 1, 2 0, \dots, 15 15\}$
- A gamble $X_1(1-0) = 10, X_1(r) = -1$, otherwise
- Another example could be $X_2(i-j) = 1$, if i > j, $X_2(i-j) = -1$, if i < j and 0 otherwise.
- ► If we believe in 'draw' we could accept: $X_3(i-i) = 1$, $X_3(i-j) = -1$, $i \neq j$

Coherent Set of Desirable Gambles

D1. $0 \notin \mathcal{D}$, D2. if $X \in \mathcal{L}$ and X > 0 then $X \in \mathcal{D}$, D3. if $X \in \mathcal{D}$ and $c \in \mathbb{R}^+$ then $cX \in \mathcal{D}$, D4. if $X \in \mathcal{D}$ and $Y \in \mathcal{D}$ then $X + Y \in \mathcal{D}$.

Basic Consistency Condition

A set of desirable gambles $\mathcal D$ avoids partial loss if and only if $0\not\in \mathcal D$

We should not accept: f(i - j) = -1 if i > j and 0 otherwise.

Closed Set of Gambles

A set of desirable gambles \mathcal{D} is closed if D2, D3, and D4 are verified.

Almost Desirable Gambles

D1' $\forall X \in \mathcal{D}^*$, we have $\sup X \ge 0$ D2 If X > 0, then $X \in \mathcal{D}^*$ D3 If $X \in \mathcal{D}^*$ and $\lambda > 0$ then $\lambda.X \in \mathcal{D}^*$ D4 If $X_1, X_2 \in \mathcal{D}^*$ then $X_1 + X_2 \in \mathcal{D}^*$ D5 If $X + \epsilon \in \mathcal{D}^*$, $\forall \epsilon > 0$ then $X \in \mathcal{D}^*$

Basic Consistency Condition

A set of almost desirable gambles \mathcal{D}^* avoids sure loss if and only if $\forall X \in \mathcal{D}$ such that sup $X \ge 0$

Almost Desirable Gambles

Desirable Gambles are a more general model

Desirable vs. almost desirable gambles

Let us consider the gambles:

 $X_{\epsilon}(i-j) = \epsilon \text{ if } i-j \neq 15-15, \quad X_{\epsilon}(15-15) = -1$

- It is possible that all the gambles X_{ϵ} are desirable.
- If they are almost desirable, then the gamble:
 X₀(i − j) = 0 if i − j ≠ 15 − 15, X₀(15 − 15) = −1 is almost desirable.
- Almost desirable gambles avoids uniform loss, but not partial loss.

Strictly Desirable Gambles

D2 If X > 0, then \mathcal{D}

D3 If $X \in \mathcal{D}$ and $\lambda > 0$ then $\lambda . X \in \mathcal{D}$

D4 If $X_1, X_2 \in \mathcal{D}$ then $X_1 + X_2 \in \mathcal{D}$

D5' If $X \in \mathcal{D}$ then either X > 0 or $\exists \epsilon > 0, X - \epsilon \in \mathcal{D}$

Basic Consistency Condition: A set of desirable gambles \mathcal{D} avoids partial loss ($0 \notin \mathcal{D}$)

Upper and Lower Previsions and Desirable Gambles

- The lower prevision of gamble X is <u>P(X)</u> = sup{α : X − α ∈ D} The supremum of the buying prices.
- The upper prevision of gamble X is $\overline{P}(X) = \inf\{\alpha : -X + \alpha \in D\}$ The infimum of the selling prices.

Credal Sets and Desirable Gambles

► A set of desirable gambles *D* defines a credal set:

$\mathcal{P}_{\mathcal{D}} = \{P : P[X] \ge 0, \forall X \in \mathcal{D}\}$ • A set of desirable gambles \mathcal{D} and the set of almost desirable gambles \mathcal{D}^* define the same credal set • A credal set \mathcal{P} defines a set of almost desirable gambles: $\mathcal{D}_{\mathcal{P}}^* = \{X : P[X] \ge 0, \forall P \in \mathcal{P}\}$ • But several sets of desirable gambles can be associated: $\mathcal{D}_{\mathcal{P}} = \{X : P[X] > 0, \forall P \in \mathcal{P}\} \cup \{X : X > 0\}$ $\mathcal{D}'' = \{X : P[X] \ge 0, \forall P \in \mathcal{P}, \exists P \in \mathcal{P}P[X] > 0\} \cup \{X : X > 0\}$

Graphical Representation: Credal Set

 $E_P[X] \ge 0, \forall P \in \mathcal{P}$

Conditioning

If we have a set of desirable gambles \mathcal{D} and we observe event *B*, the conditional set of desirable gambles given *B* is given by:

$$\mathcal{D}_{\mathcal{B}} = \{X : X.I_{\mathcal{B}} \in \mathcal{D}\} \cup \{X : X > 0\}$$

Example

I we accept a gamble X(Win) = 1, X(Loss) = -1, X(Draw) = 0, if we know that *Draw* has not happened, then we should accept any gamble: Y(Win) = 1, Y(Loss) = -1, $Y(Draw) = \alpha$

In fact, all the conditional information is in \mathcal{D} .

Conditioning

If $\underline{P}(B) > 0$, then the credal set associated to the conditional set \mathcal{D} is uniquely determined with independence of what happens with gambles in the frontier.

 $B = \{Win, Loss\}$ If $\underline{P}(B) = 0$, all the gambles with X(D) = 0.0 are in the frontier. The credal set does not contains information about the conditioning.

Conditioning: Lower Probability equal to 0

 $B = \{Win, Loss\}$

This situation is compatible with accepting as desirable the gambles:

X(D)=1,	X(W) = -1,	X(L) = -1
Y(D)=0,	Y(W) = 1.2,	Y(L) = -1
Z(D)=0,	Z(W) = -1,	Z(L) = 1.2

But it is also compatible with gambles $\{X, Y + \epsilon, Z + \epsilon\}$ In this case, the conditioning is very wide: natural extension.

The case $\overline{P}(B) = 0$

- lmagine that we have $\omega_1 =$ 'There are less than 30 goals'; $\omega_2 =$ 'Win or Draw with 30 goals or more in total'; $\omega_3 = 2$ Loss with 30 goals or more in total'.
- It is possible that we accept any gamble with

$$X(\omega_1) = \epsilon, \quad X(\underline{\omega_2}) = -1, \quad X(\omega_3) = -1$$

- If $B = \{\omega_2, \omega_3\}, \overline{P}(B) = \underline{P}(B) = 0.$
- The conditioning will depend of which gambles $g(\omega_1) = 0, \quad g(\omega_2) = \alpha_1, \quad g(\omega_3) = \alpha_2$

Regular Extension

- ▶ I have an urn with *Red*, *Blue*, *White* balls.
- I know that there is exactly the same number of Blue and White balls.
- This situation can be represented by the convex set of probability distributions:

	Red	Blue	White
P_1	1	0	0
P_2	0	0.5	0.5

If the set of desirable gambles is:

$$\mathcal{D}' = \{X : E_P[X] > 0, \forall P \in \mathcal{P}\}$$

then, if we know that a ball randomly selected from the urn is not red, then conditional to this information, the gamble X(Blue) = 2, X(White) = -1 is not accepted.

This does not seem reasonable. I should accept any gamble in which X(Blue) + X(White) > 0.

Natural Extension

Regular Extension

Natural Extension - Encoding sets of gambles

Natural Extension

If \mathcal{F} is a set of gambles, its natural extension $\overline{\mathcal{F}}$ is the set of gambles obtained from \mathcal{F} applying axioms A2, A3, and A4 (the minimum set of gambles containing \mathcal{F} and verifying these axioms.

Finitely Generated Sets of Gambles

A set of almost desirable gambles \mathcal{D} is finitely generated if $\mathcal{D} = \overline{\mathcal{D}}_0$ where \mathcal{D}_0 is finite.

This definition is not appropriate for desirable gambles. We could not represent P(B) = 0. Which is equivalent to the acceptance of gambles $\epsilon I_{B^c} - I_B$ for any ϵ .

Basic Reasoning Tasks

- 1. to determine whether the natural extension $\overline{\mathcal{F}}$ is coherent (i.e. $0 \notin \overline{\mathcal{F}}$),
- 2. given X, to determine whether $X \in \overline{\mathcal{F}}$,
- 3. given X and $B \subset \Omega$, to compute $\underline{P}(X|B)$ and $\overline{P}(X|B)$ under $\overline{\mathcal{F}}$ when this set is coherent.

Theorem

If \mathcal{F} is an arbitrary set of gambles such that $\overline{\mathcal{F}}$ is coherent, then $X \in \overline{\mathcal{F}}$ if and only if $\overline{\mathcal{F} \cup \{-X\}}$ is not coherent.

ϵ -set representation

A basic set of gambles is a set of gambles $\mathcal{F}_{X,B} = \{X + \epsilon B : \epsilon > 0\}$, where X is an arbitrary gamble and $B \subseteq \Omega$, denoted as (X, B). ϵ -set representation: \mathcal{F} the union of: $(X_1, B_1), \dots, (X_k, B_k)$

Representation of Conditional Probabilities

 $\underline{\underline{P}}(X|B) = c \text{ is represented by means of } ((X - c)B, B)$ $\overline{\underline{P}}(X|B) = c \text{ is represented by means of } ((c - X)B, B)$

Checking Consistency

 \mathcal{F} generated by $(X_1, B_1), \ldots, (X_k, B_k)$: system in λ_i and ϵ has no solution:

$$\frac{\sum_{i=1}^{k} \lambda_i (X_i + \epsilon B_i) \leq 0}{\lambda_i \geq 0, \quad \epsilon > 0}$$

Algorithms in P. Walley, R. Pelessoni, P. Vicig (2004).

1. Set
$$I = \{1, \dots, k\}$$

2. Solve
sup $\sum_{i} \tau_{i}$
s.t. $\sum_{i} (\lambda_{i} X_{i} + \tau_{i} . B_{i}) \leq 0$

 $\lambda_i \ge 0, \quad 0 \le \tau_i \le 1$ 3. Let $l' = \{i \mid \tau_i = 1\} >$ in the optimal solution 4. If $l' = \emptyset$, then Return(Consistency) 4. If $l' = l \ne \emptyset$ then Return(Nonconsistency) 5. else l = l' and goto 2

To compute $\underline{P}(X|B)$

$$\sup \alpha \\ s.t. \\ \sum_{i=1}^{k} \lambda_i (X_i + \epsilon B_i) \le (X - \alpha) B \\ \epsilon > 0, \lambda_i \ge 0$$

Maximal Sets of Gambles

Definition

We will say that a set of gambles \mathcal{D} is *maximal* if it is coherent and there does not exist any $X \notin \mathcal{D}$ such that $\overline{\mathcal{D} \cup \{X\}}$ is coherent.

Lemma

If \mathcal{D} is coherent and $-X \notin \mathcal{D}$, $X \neq 0$, then $\overline{\mathcal{D} \cup \{X\}}$ is coherent.

Theorem

A coherent set of gambles \mathcal{D} is maximal if and only if $X \in \mathcal{D}$ xor $-X \in \mathcal{D}$, for all $X \in \mathcal{L}$, $X \neq 0$.

Lemma

Let \mathcal{D} be a maximal set of gambles and let \underline{P} and \overline{P} be respectively the lower and the upper previsions associated to it. Then $\underline{P}(B) = \overline{P}(B), \forall B \subseteq \Omega$.

Definition

If we have a sequence of nested sets $\Omega = C_0 \supset C_1 \supset \cdots \supset C_n = \emptyset$, and $B \subseteq \Omega$, then the layer of *B* with respect to this sequence, will be the minimum value of *i* such that $B \cap (C_i \setminus C_{i+1}) \neq \emptyset$. It will be denoted by layer(*B*).

Theorem

If \mathcal{D} is maximal then there is a sequence of nested sets

 $\Omega = C_0 \supset C_1 \supset \cdots \supset C_n = \emptyset$ and a sequence of probability measures P_0, \ldots, P_{n-1} satisfying the following conditions:

- 1. for each probability P_i , $P_i(C_i \setminus C_{i+1}) = 1$, $P_i(\omega) > 0$ for any $\omega \in C_i \setminus C_{i+1}$,
- 2. for each $A \subseteq B \subseteq \Omega$, if i = layer(B), then $\underline{P}(A|B) = \overline{P}(A|B) = P_i(A|B)$, where $\underline{P}(A|B)$ and $\overline{P}(A|B)$ are the lower and upper probabilities computed from \mathcal{D}_B .

Coletti and Scozzafava (2002)

Maximal Gambles

Theorem

There exists at least one maximal set of gambles containing a coherent set.

Theorem

If \mathcal{D} is coherent, then $\mathcal{D} = \bigcap_{i \in I} \mathcal{D}_i$, where \mathcal{D}_i are maximal coherent gambles containing \mathcal{D} .

Correspondence (Sequences of probabilities <---> Maximal coherent sets) non one-to-one

 $\Omega = \{\omega_1, \omega_2\}$ and $P_0(\omega_1) = P_0(\omega_2) = 0.5$. Any gamble with $X(\omega_1) + X(\omega_2) > 0$ is desirable. Given $Y(\omega_1) = 1$, $Y(\omega_2) = -1$. We can have Y desirable xor -Y desirable.

Alternative model one-to-one:

D1". If $X \in \mathcal{D}$, then there is $\epsilon > 0$, such that $-X + \epsilon \operatorname{supp}(X) \notin \mathcal{D}$.

More Work

- More general representation schemes?
- Algorithms for them?
- Local computation
- Independence and local computation