Exchangeability for sets of desirable gambles

General context: experiments & gambles

A finite possibility space Ω of outcomes of some experiment.

A subject who is uncertain about the experiment's outcome.

Gambles $f \in \mathscr{G}(\Omega) := \mathbb{R}^{\Omega}$, interpreted as uncertain rewards: $f(\boldsymbol{\omega})$ when the experiment's outcome is $\boldsymbol{\omega}$. $\Omega \coloneqq \{\omega, \omega'\}$

A gamble *f* is *desirable* to the subject if he accepts the following transaction:

(i) the actual outcome ω is determined, and (ii) the subject's capital is changed by $f(\boldsymbol{\omega})$. The zero gamble 0 is not desirable.

Coherent sets of desirable gambles

A subject's set of desirable gambles $\mathscr{R} \subseteq \mathscr{G}(\Omega)$ models his beliefs about the experiment's outcome.

The set of desirable gambles \mathscr{R} is *coherent* if it satisfies the following rationality require- $\mathscr{G}^{-}(\Omega)$ ments: $(f, f_1, f_2 \in \mathscr{G}(\Omega), \lambda > 0)$ D1. if f = 0 then $f \notin \mathscr{R}$; D2. if f > 0 then $f \in \mathscr{R}$ [accepting partial gain]; D3. if $f \in \mathscr{R}$ then $\lambda f \in \mathscr{R}$ [scaling]; D4. if $f_1, f_2 \in \mathscr{R}$ then $f_1 + f_2 \in \mathscr{R}$ [combination]. Requirements D3 and D4 make \mathscr{R} a *cone*: $\operatorname{coni}(\mathscr{R}) = \mathscr{R}$.

Sets of weakly desirable gambles

The subject considers a gamble f in $\mathscr{G}(\Omega)$ weakly desirable if by adding any desirable gamble to it, another desirable gamble is obtained; so if $f' \in \mathscr{R}$ then $f + f' \in \mathscr{R}$.

The subject's set of weakly desirable gambles is

 $\mathscr{D}_{\mathscr{R}} \coloneqq \{ f \in \mathscr{G}(\Omega) \colon f + \mathscr{R} \subseteq \mathscr{R} \}.$

The set of weakly desirable gambles $\mathscr{D}_{\mathscr{R}}$ corresponding to a coherent set of desirable gambles \mathscr{R} satisfies the following properties: $(f, f_1, f_2 \in \mathscr{G}(\Omega), \lambda \geq 0)$ WD1. if f < 0 then $f \notin \mathscr{D}_{\mathscr{R}}$ [avoiding partial loss];

 $D_{\mathcal{R}}$

 $\mathcal{E}(\mathcal{A}$

WD2. if $f \ge 0$ then $f \in \mathscr{D}_{\mathscr{R}}$ [accepting partial gain]; WD3. if $f \in \mathscr{D}_{\mathscr{R}}$ then $\lambda f \in \mathscr{D}_{\mathscr{R}}$ [scaling]; WD4. if $f_1, f_2 \in \mathscr{D}_{\mathscr{R}}$ then $f_1 + f_2 \in \mathscr{D}_{\mathscr{R}}$ $D_{\mathcal{R}}$ [combination].

 $\mathcal{D}_{\mathscr{R}}$ is the closure of \mathscr{R} , excluding gambles in $\mathscr{G}_0^-(\Omega)$.

Assessments & their natural extension

Updating sets of desirable gambles

The subject observes, or considers the possibility of observing, an event *B* of Ω .

Contingent on observing *B*, the subject models his beliefs using an *updated* set of desirable gambles, the subset of $\mathscr{G}(B)$ given by

 $\mathscr{R} \rfloor B \coloneqq \{ f_B \colon I_B f \in \mathscr{R} \}.$

If \mathscr{R} is a coherent set of desirable gambles on Ω , then $\mathscr{R}|B$ is a coherent set of desirable gambles on *B*.

Coherent previsions & desirability

The *lower prevision* of a gamble f associated to a set of desirable gambles \mathscr{A} is

$$\mathcal{A}_{\mathscr{A}}(f) \coloneqq \sup\{\mu \in \mathbb{R} \colon f - \mu \in \mathscr{A}\}.$$

Its conjugate upper prevision $\overline{P}_{\mathscr{A}}(f)$ is equal to $-\underline{P}_{\mathscr{A}}(-f)$.

A lower prevision \underline{P} is coherent if there

 $f(\boldsymbol{\omega})$

 $\mathscr{G}^+_0({oldsymbol \Omega})$

0

 $f(\pmb{\omega}')$ +

An assessment can consist of a set $\mathscr{A} \subseteq \mathscr{G}(\Omega)$ considered desirable by the subject.

The assessment *A avoids non-positivity* if the intersection of $\operatorname{coni}(\mathscr{A})$ and $\mathscr{G}_0^-(\Omega)$ is empty.

The *natural extension* of \mathscr{A} is

 $\mathscr{E}(\mathscr{A}) \coloneqq \operatorname{coni}(\mathscr{G}_0^+(\Omega) \cup \mathscr{A}).$

If \mathscr{A} avoids non-positivity, then $\mathscr{E}(\mathscr{A})$ is the smallest coherent set of desirable gambles including \mathscr{A} .

exists some coherent set of desirable gambles \mathscr{R} such that $\underline{P} = \underline{P}_{\mathscr{R}} = \underline{P}_{\mathscr{D}_{\mathscr{R}}}$.

 $\underline{P}_{\mathscr{R}}(f)$

 $\underline{P}_{\mathscr{R}}(f)$

Coherent lower previsions are less expressive uncertainty models than coherent sets of desirable gambles.

Specific context: finite sequences

The experiment consists of the observation of the value of a sequence X_1, \ldots, X_N of random variables for which \mathscr{X} is the finite set of possible values. So the possibility $\mathscr{X} \coloneqq \{ \bullet, \bullet \}, N \coloneqq 3$ space Ω is \mathscr{X}^N and $x = (x_1, \ldots, x_N)$ is one of its elements. $x \coloneqq (\bigcirc, \bigcirc, \bigcirc)$

0

σ

S

 \mathscr{P}_N is the set of all permutations π of the index set $\{1, \ldots, N\}$. The associated permutation of \mathscr{X}^N is defined by $(\pi x)_k = x_{\pi(k)}$. It is lifted to a permutation π^t of $\mathscr{G}(\mathscr{X}^N)$ by letting $\pi^t f = f \circ \pi$. With every sequence of observations corresponds a *count vector* in $\mathscr{N}^N = \{ m \in \mathbb{N}^{\mathscr{X}} \colon \sum_{z \in \mathscr{X}} m_z = N \}.$

The counting map $T^N: \mathscr{X}^N \to \mathscr{N}^N$ maps $T^3(\bullet, \bullet, \bullet) = (1, 2)$ a sequence x to a vector $m = T^N(x)$.

Exchangeability

If a subject assesses that X_1, \ldots, X_N are *exchangeable*, this means that for any gamble f and any permutation π , he finds exchanging $\pi^t f$ for f weakly desirable, because he is indifferent between them.

The negation invariant space of all such exchange gambles is

 $\mathscr{D}_{\mathscr{P}_N} := \{ f - \pi^t f \colon f \in \mathscr{G}(\mathscr{X}^N) \text{ and } \pi \in \mathscr{P}_N \}.$

If $\mathscr{D}_{\mathscr{P}_N}$ consists of weakly desirable gambles, then so does its conical hull $\mathscr{D}_{\mathscr{U}_N} = \operatorname{coni}(\mathscr{D}_{\mathscr{P}_N}) = \operatorname{span}(\mathscr{D}_{\mathscr{P}_N}).$

A coherent set \mathscr{R} of desirable gambles on \mathscr{X}^N is called *exchange*able if $\mathscr{D}_{\mathscr{U}_N} \subseteq \mathscr{D}_{\mathscr{R}}$, or equivalently, if

$$\mathscr{D}_{\mathscr{U}_N} + \mathscr{R} \subseteq \mathscr{R}$$

If \mathscr{R} is coherent and exchangeable then it is also *permutable*: for

Updating exchangeable models

The subject observes the values $\check{x} = (\check{x}_1, \check{x}_2, \dots, \check{x}_n)$ or the count vector \check{m} in $\mathcal{N}^{\check{n}}$ of the first \check{n} variables $X_1, \ldots, X_{\check{n}}$; this means observing the event $\{\check{x}\} \times \mathscr{X}^{\hat{n}}$ or $[\check{m}] \times \mathscr{X}^{\hat{n}}$. We are interested in inferences about the remaining $\hat{n} = N - \check{n}$ variables.

Contingent on observing \check{x} or \check{m} , the subject models his beliefs using updated sets of desirable gambles, the subsets of $\mathscr{G}(\mathscr{X}^{\hat{n}})$ that are

> $\mathscr{R} \rfloor \check{x} \coloneqq \{ f(\check{x}, \cdot) \colon I_{\{\check{x}\} \times \mathscr{X}^{\hat{n}}} f \in \mathscr{R} \},$ $\mathscr{R} \rfloor \check{m} := \{ f(\check{y}, \cdot) \colon I_{[\check{m}] \times \mathscr{X}^{\hat{n}}} f \in \mathscr{R} \text{ and } \check{y} \in [\check{m}] \}.$

If \mathscr{R} is a coherent and exchangeable set of desirable gambles on \mathscr{X}^N , then $\mathscr{R} | \check{x}$ and $\mathscr{R} | \check{m}$ are coherent and exchangeable sets of desirable gambles on $\mathscr{X}^{\hat{n}}$.

Under exchangeability, count vectors are *sufficient statistics*:

Excl

Permuted sequences have the same count vector; a *permutation* invariant atom is

 $[m] \coloneqq \{ y \in \mathscr{X}^N \colon T^N(y) = m \}.$

 $[1,2] = \{(\bullet,\bullet,\bullet), (\bullet,\bullet,\bullet), (\bullet,\bullet,\bullet)\}$

all f in \mathscr{R} and all π in \mathscr{P}_N , it holds that $\pi^t f \in \mathscr{R}$.

Exchangeable natural extension

The assessment *A avoids non-positivity under exchangeability* if $\mathscr{A} + \mathscr{D}_{\mathscr{U}_{N}}$ avoids non-positivity.

The exchangeable natural extension of *A* is

 $\mathscr{E}^{N}_{\mathrm{ex}}(\mathscr{A}) \coloneqq \mathscr{D}_{\mathscr{U}_{N}} + \mathscr{E}(\mathscr{A}).$

If \mathscr{A} avoids non-positivity under exchangeability, then $\mathscr{E}^N_{ex}(\mathscr{A})$ is the smallest exchangeable coherent set of desirable gambles including \mathscr{A} .

if $T^{\check{n}}(\check{x}) = \check{m}$, then $\mathscr{R} | \check{x} = \mathscr{R} | \check{m}$.

Exchangeable previsions

A lower prevision <u>P</u> on $\mathscr{G}(\mathscr{X}^N)$ is *exchangeable* if there is some exchangeable coherent set of desirable gambles \mathscr{R} such that $\underline{P} = \underline{P}_{\mathscr{R}}$.

Moving between sequence gambles and count gambles

The set of permutation invariant sequence gambles is $\mathscr{G}_{\mathscr{P}_N}(\mathscr{X}^N) \coloneqq \{ f \in \mathscr{G}(\mathscr{X}^N) \colon (\forall \pi \in \mathscr{P}_N) \pi^t f = f \}.$

Representation

A set of desirable gambles \mathscr{R} on \mathscr{X}^N is coherent and exchangeable iff there is some coherent set \mathscr{S} of desirable gambles on \mathscr{N}^N – its *count representation* – such that

 $\mathscr{R} = (\mathrm{MuHy}^N)^{-1}(\mathscr{S}),$

and in that case this \mathscr{S} is uniquely determined by

 $\mathscr{S} = \{g \in \mathscr{G}(\mathscr{N}^N) \colon \mathrm{T}^N(g) \in \mathscr{R}\} = \mathrm{MuHy}^N(\mathscr{R}).$

Exchangeable natural extension &

Representing updated models

The subject observes the values $\check{x} = (\check{x}_1, \check{x}_2, \dots, \check{x}_n)$ or the count vector $\check{m} = T^{\check{n}}(\check{x})$ in $\mathscr{N}^{\check{n}}$ of the first \check{n} variables $X_1, \ldots, X_{\check{n}}$.

If \mathscr{R} is a coherent and exchangeable set of desirable gambles on \mathscr{X}^N , then the representation of the two – because of sufficiency – identical updated models he uses is

 $\mathscr{S}|\check{m} := \mathrm{MuHy}^{\hat{n}}(\mathscr{R}|\check{m}).$

This representation is *not* an updated model of the representation $\mathscr{S} = MuHy^{N}(\mathscr{R})$ of \mathscr{R} . They are however related by

where we use the likelihood function, defined for every count vector m in \mathcal{N}^n by

5 60 n

The projection of a sequence gamble f onto a permutation invariant sequence gamble is

 $\operatorname{ex}^{N}(f) \coloneqq \frac{1}{N!} \sum_{\pi \in \mathscr{P}_{N}} \pi^{t} f = \sum_{m \in \mathscr{N}^{N}} \operatorname{MuHy}^{N}(f|m) I_{[m]},$ where its value on an invariant atom [m] is given by MuHy^N(f|m) := $\frac{1}{|[m]|} \sum_{y \in [m]} f(y)$.

The count gamble corresponding to the sequence gamble f is

 $\operatorname{MuHy}^{N}(f) \coloneqq \operatorname{MuHy}^{N}(f|\cdot).$

The permutation invariant sequence gamble in a one-to-one correspondence with the count gamble g is

 $\mathbf{T}^{N}(g) \coloneqq g \circ T^{N}.$

representation

The assessment $\mathscr{A} \subseteq \mathscr{X}^N$ avoids non-positivity under exchange*ability* if MuHy^N(\mathscr{A}) avoids non-positivity.

A nice result: MuHy^N($\mathscr{E}_{ex}^{N}(\mathscr{A})$) = $\mathscr{E}(MuHy^{N}(\mathscr{A}))$.

Exchangeable previsions & representation

A lower prevision <u>P</u> on $\mathscr{G}(\mathscr{X}^N)$ is coherent and exchangeable iff there is some coherent lower prevision Q on $\mathscr{G}(\mathscr{N}^N)$ – its *count representation* – such that $\underline{P} = Q \circ MuHy^N$. In that case Q is uniquely determined by $Q = \underline{P} \circ \mathbf{T}^N$.

Gert de Cooman & Erik Quaeghebeur

SYSTeMS Research Group & FUM Research Unit, Ghent University {Gert.deCooman,Erik.Quaeghebeur}@UGent.be

