Epistemic irrelevance in credal networks: the case of imprecise Markov trees

 $\overline{\pi}_{47}$

 $\overline{\pi}_{38}$

*X*₃₇

 $\overline{\pi}_{37}$

 X_{38}

Gert de Cooman, Filip Hermans, Alessandro Antonucci, Marco Zaffalon

SYSTeMS, Ghent University, Belgium & IDSIA, Switzerland

{Gert.deCooman,Filip.Hermans}@UGent.be & {alessandro,zaffalon}@idsia.ch

UNIVERSITEIT **GENT**

Basic notions and notations

We consider a rooted and directed discrete *tree* with finite width and depth. With each node *s* of the tree, there is associated a variable X_s assuming values in a finite nonempty set \mathscr{X}_s .

We now add a *local uncertainty model* to each of the nodes: • a separately coherent conditional lower prevision

- $\underline{Q}_{s}(\cdot|X_{\mathsf{pa}(s)})$ on $\mathscr{L}(\mathscr{X}_{s})$: for each possible parent value $\overline{X}_{pa(s)} = x_{pa(s)}$, we have a lower prevision $\underline{Q}_{s}(\cdot | x_{pa(s)})$.
- a coherent unconditional lower prevision Q_{\Box} on $\mathscr{L}(\mathscr{X}_{\Box})$.

The imprecise Markov tree as an expert system

We are interested in making inferences about the value of the variable X_t in some target node t, when we know the values x_E of the variables X_E in a set *E* of evidence nodes. Assuming that $\overline{P}(\{x_E\}) > 0$, we can do this by conditioning the joint \underline{P} on the available evidence ' $X_E = x_E$ ':

 $\underline{R}_t(g|x_E) = \max\{\mu \in \mathbb{R} : \underline{P}(I_{\{x_E\}}[g-\mu]) \ge 0\}.$

If we are able to calculate the joint $\underline{P}(I_{\{x_E\}}[g-\mu])$, then we can compute $\underline{R}_t(g|x_E)$ using a bracketing algorithm.

For any given node s, define the local gamble g_s^{μ}

$$g_s^{\mu} \coloneqq \begin{cases} I_{x_s} & \text{if } s \in E, \\ g - \mu & \text{if } s = t, \\ 1 & \text{else.} \end{cases}$$

which means that $\underline{P}(I_{\{x_E\}}[g-\mu]) = \underline{P}(\prod_{s \in T} g_s^{\mu}).$ If we define ϕ_s^{μ} by $\phi_s^{\mu} \coloneqq \prod g_c^{\mu}$ then

A joint lower prevision will be denoted by \underline{P} instead of Q. The set of all nodes following *s* with *s* included is denoted $\downarrow s$. pa(s), ch(s), sib(s) are respectively the parent, the children and the siblings of node *s*.

Interpretation of the graphical model

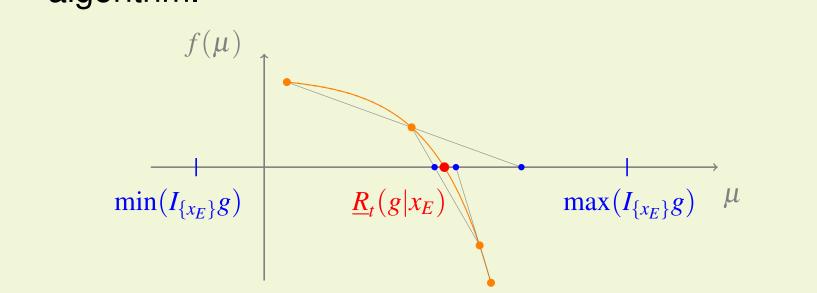
Epistemic irrelevance *Y* is irrelevant to *X* whenever the belief model (lower prevision \underline{P}) about X does not change when we learn something about *Y*:

 $(\forall g \in \mathscr{L}(\mathscr{X}))(\forall y \in \mathscr{Y})\underline{P}(g) = \underline{P}(g|y).$

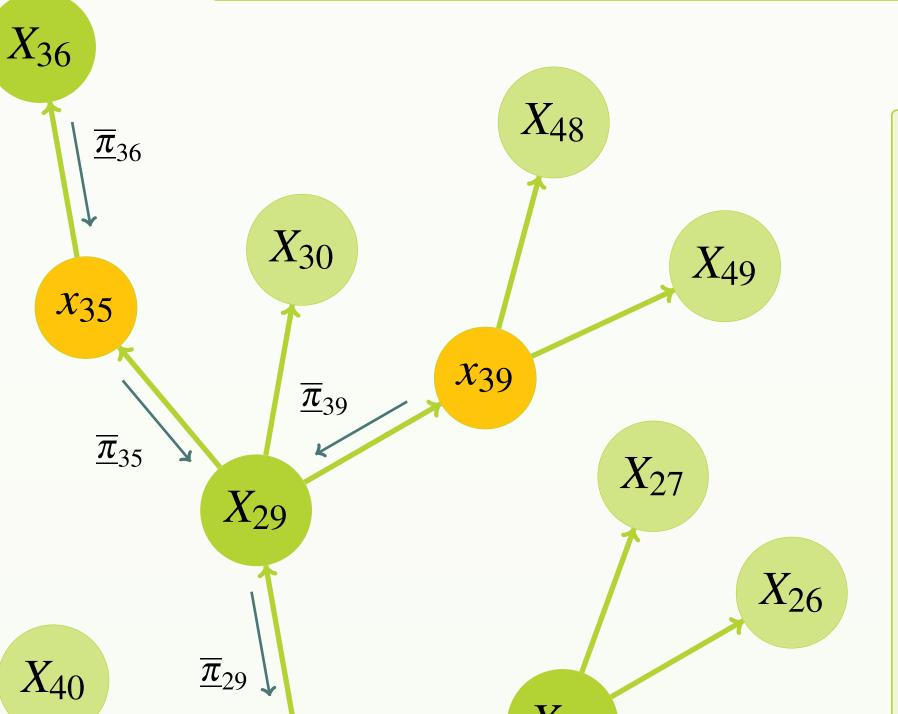
Irrelevance is not symmetrical and does not imply dseparation in trees.

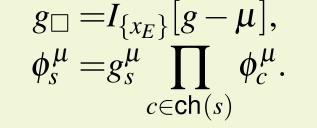
Interpretation of the graphical structure Consider any node s, its (single) parent pa(s) and the set \overline{s} of the nonparent non-descendants of *s*. Then *conditional on the parent* variable $X_{pa(s)}$, the non-parent non-descendant variables $X_{\overline{s}}$ are assumed to be epistemically irrelevant to the variables $X_{\downarrow s}$ associated with s and its descendants.

This means that for all $s \in T$, for all $S \subseteq \overline{s}$ and for all $z_{S \cup pa(s)} \in \overline{s}$ $\mathscr{X}_{S\cup \mathsf{pa}(s)}$:



It can be proven that $f(\mu) \coloneqq \underline{P}(I_{\{x_E\}}[g-\mu])$ is continuous, concave and descending. This speeds up the root-finding algorithm drastically.





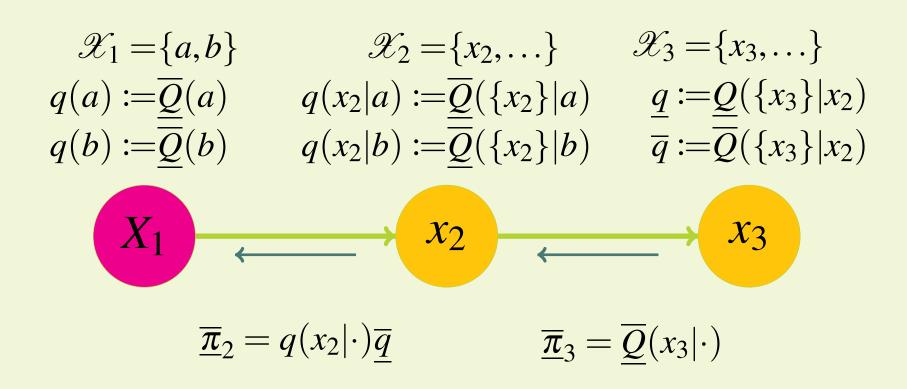
Now we are able to define the messages $\overline{\pi}^{\mu}_{s}$

 $\underline{\pi}_{s}^{\mu} = \underline{P}(\phi_{s}^{\mu}|\mathsf{pa}(s))$ and $\overline{\pi}_{s}^{\mu} = \overline{P}(\phi_{s}^{\mu}|\mathsf{pa}(s)).$

Thus, treathing the imprecise Markov chain as an expert system means looking for the μ that makes $\underline{\pi}^{\mu}_{\Box} = \underline{P}(I_{\{x_E\}}[g-\mu])$ equal to zero.

A simple example involving dilation

Consider the following imprecise Markov chain:



If the gamble of interest g is equal to $I_{\{a\}}$ we find after applying

 $\underline{P}_{s}(\cdot|z_{\mathsf{pa}(s)}) = \underline{P}_{s}(\cdot|z_{S\cup\mathsf{pa}(s)}).$ This makes the tree an *imprecise Markov tree* (IMT).

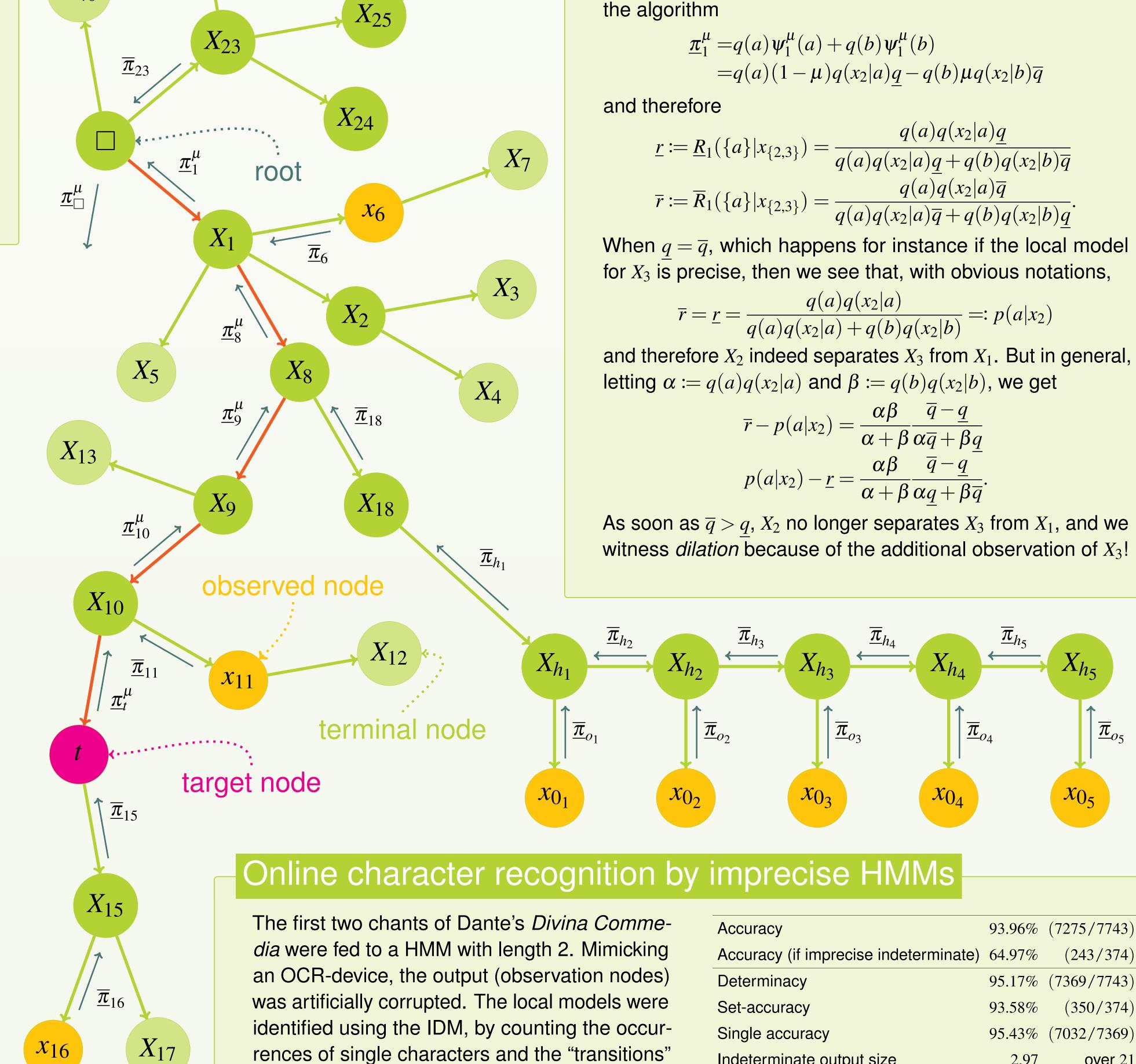
Recursive construction of the joint Using the interpretation of the graphical structure, and the local belief models $Q_{s}(\cdot|X_{pa(s)})$, we can construct the most conservative joint lower prevision \underline{P} for all variables in the tree in a recursive fashion, from leaves to root.

Message from node before target node $\underline{\pi}_{9}^{\mu} \coloneqq \underline{P}_{9}(\phi_{9}^{\mu}|X_{\mathsf{pa}(9)}) = \underline{Q}_{9}(\psi_{9}^{\mu}|X_{8}),$ where $\psi_{9}^{\mu}(x) = \begin{cases} \underline{\pi}_{10}^{\mu}(x) \prod_{s \in \mathsf{sib}(10)} \underline{\pi}_{s}(x) & \text{if } \underline{\pi}_{10}^{\mu}(x) \ge 0, \\ \underline{\pi}_{10}^{\mu}(x) \prod_{s \in \mathsf{sib}(10)} \overline{\pi}_{s}(x) & \text{if } \underline{\pi}_{10}^{\mu}(x) < 0. \end{cases}$ $s \in sib(10)$

Message from the target node

$$\underline{\pi}_{t}^{\mu} := \underline{P}_{t}(\phi_{t}^{\mu}|X_{\mathsf{pa}(t)}) = \underline{Q}_{t}(\psi_{t}^{\mu}|X_{10}),$$

where
$$\int (g(x) - \mu) \prod_{c \in \mathsf{Ch}(t)} \underline{\pi}_{c}(x) \quad \text{if } g(x) \ge \mu,$$



the algorithm

 $\underline{r} \coloneqq \underline{R}_1(\{a\}|x_{\{2,3\}}) = \frac{q(a)q(x_2|a)\underline{q}}{q(a)q(x_2|a)\underline{q} + q(b)q(x_2|b)\overline{q}}$ $\overline{r} := \overline{R}_1(\{a\}|x_{\{2,3\}}) = \frac{q(a)q(x_2|a)\overline{q}}{q(a)q(x_2|a)\overline{q} + q(b)q(x_2|b)q}.$

When $q = \overline{q}$, which happens for instance if the local model for X_3 is precise, then we see that, with obvious notations,

 $\overline{r} = \underline{r} = \frac{q(a)q(x_2|a)}{q(a)q(x_2|a) + q(b)q(x_2|b)} \Longrightarrow p(a|x_2)$

and therefore X_2 indeed separates X_3 from X_1 . But in general, letting $\alpha := q(a)q(x_2|a)$ and $\beta := q(b)q(x_2|b)$, we get

$$\overline{r} - p(a|x_2) = \frac{\alpha\beta}{\alpha + \beta} \frac{\overline{q} - \underline{q}}{\alpha \overline{q} + \beta \underline{q}}$$
$$p(a|x_2) - \underline{r} = \frac{\alpha\beta}{\alpha + \beta} \frac{\overline{q} - \underline{q}}{\alpha q + \beta \overline{q}}.$$

As soon as $\overline{q} > q$, X_2 no longer separates X_3 from X_1 , and we witness *dilation* because of the additional observation of *X*₃!

$$\psi_t^*(x) = \left\{ (g(x) - \mu) \prod_{c \in \mathsf{ch}(t)} \overline{\pi}_c(x) \quad \text{if } g(x) < \mu. \right.$$

Message from an unobserved node not preceding t = $\underline{\pi}_{15} \coloneqq \underline{P}_{15}(\phi_{15}^{\mu}|X_{\mathsf{pa}(15)}) = \underline{Q}_{15}(\prod \underline{\pi}_c | X_t).$ $c \in ch(15)$ Message from an evidence node not preceding t

 $\underline{\pi}_{16} \coloneqq \underline{P}_{16}(\phi_{16}^{\mu} | X_{\mathsf{pa}(16)}) = \underline{Q}_{16}(I_{\{x_{16}\}} \prod_{c \in \mathsf{ch}(16)} \underline{\pi}_{c}(x_{16}) | X_{15}),$ $= \underline{Q}_{16}(\{x_{16}\} | X_{15}) \prod \underline{\pi}_{c}(x_{15}).$ $c \in ch(16)$

from one character to another in the original text.

Accuracy	93.90%	(1213/1143)
Accuracy (if imprecise indeterminate)	64.97%	(243/374)
Determinacy	95.17%	(7369/7743)
Set-accuracy	93.58%	(350/374)
Single accuracy	95.43%	(7032/7369)
Indeterminate output size	2.97	over 21

 $\overline{\pi}_{o_5}$

 x_{0_5}