
Epistemic irrelevance in credal networks:
the case of imprecise Markov trees
Gert de Cooman, Filip Hermans, Alessandro Antonucci, Marco Zaffalon
SYSTeMS, Ghent University, Belgium & IDSIA, Switzerland
{Gert.deCooman,Filip.Hermans}@UGent.be & {alessandro,zaffalon}@idsia.ch

�

X1

X23

X40

X2

X5

x6

X8

X3

X4

X7

X9 X18

X10

x11

X13

t

X12

X15

x16 X17

X24

X25

X29

X26

X27

X30
x35

x39

X36

X37

X38

x47

X48

X49

Xh1 Xh2

x01

Xh3

x02

Xh4

x03

Xh5

x04 x05

π16

π15

π
µ

t

π11

π
µ

10

π
µ

9

πh1

π18

π
µ

8

π6

π
µ

1

π39

π47

π38

π37

π36

π35

π29

π23

πo1
πo2

πo3
πo4

πo5

πh2
πh3

πh4
πh5

π
µ

�

root

target node

terminal node

observed node

π
µ

9 := P9(φ
µ

9 |Xpa(9)) = Q9

(
ψ

µ

9 |X8
)

,

where

ψ
µ

9 (x) =


π

µ

10(x) ∏
s∈sib(10)

πs(x) if π
µ

10(x) ≥ 0,

π
µ

10(x) ∏
s∈sib(10)

πs(x) if π
µ

10(x) < 0.

Message from node before target node

π
µ

t := Pt(φ
µ

t |Xpa(t)) = Qt

(
ψ

µ

t |X10
)

,

where

ψ
µ

t (x) =


(g(x)−µ) ∏

c∈ch(t)
πc(x) if g(x) ≥ µ ,

(g(x)−µ) ∏
c∈ch(t)

πc(x) if g(x) < µ .

Message from the target node

π15 := P15(φ
µ

15|Xpa(15)) = Q15( ∏
c∈ch(15)

πc |Xt).

Message from an unobserved node not preceding t

π16 := P16(φ
µ

16|Xpa(16)) = Q16( I{x16}∏
c∈ch(16)

πc(x16) |X15),

= Q16({x16}|X15)∏
c∈ch(16)

πc(x15).

Message from an evidence node not preceding t

We consider a rooted and directed discrete tree with finite
width and depth. With each node s of the tree, there is
associated a variable Xs assuming values in a finite non-
empty set Xs.

We now add a local uncertainty model to each of the nodes:
• a separately coherent conditional lower prevision

Qs(·|Xpa(s)) on L (Xs): for each possible parent value
Xpa(s) = xpa(s), we have a lower prevision Qs(·|xpa(s)).

• a coherent unconditional lower prevision Q
�

on L (X�).

A joint lower prevision will be denoted by P instead of Q.
The set of all nodes following s with s included is denoted ↓s.
pa(s),ch(s),sib(s) are respectively the parent, the children
and the siblings of node s.

Basic notions and notations

Epistemic irrelevance Y is irrelevant to X whenever the
belief model (lower prevision P) about X does not change
when we learn something about Y :

(∀g ∈L (X))(∀y ∈ Y )P(g) = P(g|y).

Irrelevance is not symmetrical and does not imply d-
separation in trees.

Interpretation of the graphical structure Consider any
node s, its (single) parent pa(s) and the set s of the non-
parent non-descendants of s. Then conditional on the parent
variable Xpa(s), the non-parent non-descendant variables Xs

are assumed to be epistemically irrelevant to the variables
X↓s associated with s and its descendants.

This means that for all s ∈ T , for all S⊆ s and for all zS∪pa(s) ∈
XS∪pa(s):

Ps(·|zpa(s)) = Ps(·|zS∪pa(s)).

This makes the tree an imprecise Markov tree (IMT).

Recursive construction of the joint Using the interpreta-
tion of the graphical structure, and the local belief models
Qs(·|Xpa(s)), we can construct the most conservative joint
lower prevision P for all variables in the tree in a recursive
fashion, from leaves to root.

Interpretation of the graphical model

We are interested in making inferences about the
value of the variable Xt in some target node t, when
we know the values xE of the variables XE in a set
E of evidence nodes. Assuming that P({xE}) > 0,
we can do this by conditioning the joint P on the
available evidence ‘XE = xE ’:

Rt(g|xE) = max{µ ∈R : P(I{xE}[g−µ ])≥ 0}.

If we are able to calculate the joint P(I{xE}[g−µ ]),
then we can compute Rt(g|xE) using a bracketing
algorithm.

µ

f (µ)

min(I{xE}g) max(I{xE}g)Rt(g|xE)

It can be proven that f (µ) := P(I{xE}[g−µ ]) is con-
tinuous, concave and descending. This speeds up
the root-finding algorithm drastically.

For any given node s, define the local gamble gµ
s

gµ
s :=


Ixs if s ∈ E,

g−µ if s = t,

1 else.

which means that P(I{xE}[g−µ ]) = P(∏
s∈T

gµ
s ).

If we define φ
µ
s by φ

µ
s := ∏

c∈↓s
gµ

c then

g� =I{xE}[g−µ ],
φ

µ
s =gµ

s ∏
c∈ch(s)

φ
µ
c .

Now we are able to define the messages π
µ
s

π
µ
s = P(φ

µ
s |pa(s)) and π

µ
s = P(φ

µ
s |pa(s)).

Thus, treathing the imprecise Markov chain as an
expert system means looking for the µ that makes
π

µ

� = P(I{xE}[g−µ ]) equal to zero.

The imprecise Markov tree as an expert system

Consider the following imprecise Markov chain:

X1 x2 x3

X1 ={a,b}
q(a) :=Q(a)
q(b) :=Q(b)

X2 ={x2, . . .}
q(x2|a) :=Q({x2}|a)
q(x2|b) :=Q({x2}|b)

X3 ={x3, . . .}
q :=Q({x3}|x2)
q :=Q({x3}|x2)

π3 = Q(x3|·)π2 = q(x2|·)q

If the gamble of interest g is equal to I{a} we find after applying
the algorithm

π
µ

1 =q(a)ψ
µ

1 (a)+ q(b)ψ
µ

1 (b)
=q(a)(1−µ)q(x2|a)q−q(b)µq(x2|b)q

and therefore

r := R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q + q(b)q(x2|b)q

r := R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q + q(b)q(x2|b)q
.

When q = q, which happens for instance if the local model
for X3 is precise, then we see that, with obvious notations,

r = r =
q(a)q(x2|a)

q(a)q(x2|a)+ q(b)q(x2|b)
=: p(a|x2)

and therefore X2 indeed separates X3 from X1. But in general,
letting α := q(a)q(x2|a) and β := q(b)q(x2|b), we get

r− p(a|x2) =
αβ

α + β

q−q
αq + βq

p(a|x2)− r =
αβ

α + β

q−q
αq + βq

.

As soon as q > q, X2 no longer separates X3 from X1, and we
witness dilation because of the additional observation of X3!

A simple example involving dilation

The first two chants of Dante’s Divina Comme-
dia were fed to a HMM with length 2. Mimicking
an OCR-device, the output (observation nodes)
was artificially corrupted. The local models were
identified using the IDM, by counting the occur-
rences of single characters and the “transitions”
from one character to another in the original text.

Accuracy 93.96% (7275/7743)

Accuracy (if imprecise indeterminate) 64.97% (243/374)

Determinacy 95.17% (7369/7743)

Set-accuracy 93.58% (350/374)

Single accuracy 95.43% (7032/7369)

Indeterminate output size 2.97 over 21

Online character recognition by imprecise HMMs


