
Closure of independencies under graphoid properties:
some experimental results

M. Baioletti1, G. Busanello2, B. Vantaggi2

1 Dept. Matematica e Informatica, Università di Perugia, Italy
2 Dept. Metodi e Modelli Matematici, Università “La Sapienza” Roma, Italy

Abstract

In this paper we describe an algorithm for computing the closure
with respect to graphoid properties of a set of independencies.
The computation of the closure, with respect to graphoid prop-
erties (as well as with respect to semigraphoid ones) is infeasible
since its size is exponentially larger than the size of the given set
J of independence statements (see [2, 3]). Then, it is necessarily
to find suitable reduced set of independence statements (obvi-
ously included in the closure of J with respect to graphoids),
which is as smallest as possible and it represents the same inde-
pendence structure. From this reduced set, called “fast closure”,
all the relations in the closure should be easily deducible, then
it can be considered a basis for the closure. The algorithm,
to compute the reduced set by considering graphoids, is based
on a unique inference rule introduced in [1]. In the quoted pa-
per we have also compared this algorithm with another based
on two inferential rules, which are deduced from [3] and stud-
ied in our previous paper. This topic by considering essentially
semigraphoid structures has already been successfully solved by
Studený in [2, 3].
An empirical evaluation of the performance of the introduced
algorithm is provided by showing computation times and num-
ber of iterations, as well as a comparison between the needed
time to compute the fast closure and the time for computing
the complete closure (the size of both closures is compared).

Algorithm FC1

Let S̃ = {Y1, . . . , Yn} be a finite not empty set of variables
and S = {1, . . . , n} the set of indices associated to S̃. Given a
(coherent) probability P , a conditional independence statement
YA⊥⊥YB|YC (compatible with P ), where A, B, C are disjoint
subsets of S, is simply denoted by the ordered triple (A, B,C).
We denote with S(3) the set of all ordered triples (A,B, C) of
disjoint subsets of S, such that A and B are not empty. In this
case an independence model I, related to P , is a subset of S(3).
We recall that an independence model arising from the classical
independence notion is closed under semigraphoid properties,
that are the following ones:

G1 if (A, B,C) ∈ I, then (B, A,C) ∈ I (Symmetry);

G2 if (A,B, C) ∈ I, then (A,B′, C) ∈ I for any nonempty
subset B′ of B (Decomposition);

G3 if (A, B1 ∪ B2, C) ∈ I with B1 and B2 disjoint, then
(A, B1, C ∪ B2) ∈ I (Weak Union);

G4 if (A, B, C∪D) ∈ I and (A, C,D) ∈ I, then (A, B∪C, D) ∈
I (Contraction).

If the probability is strictly positive the model is also closed
under graphoid properties, it means that G1–G4 hold together
with the following rule

G5 if (A, B, C ∪ D) ∈ I and (A, C,B ∪ D) ∈ I, then
(A, B ∪ C, D) ∈ I (Intersection).

Given a set of triples J , in the following we denote the closure
of J with J̄ .
Let us focus our attention on the first three graphoid rules.
Given a triple θ2 ∈ S(3), it is possible to compute all the triples
θ1 which can be obtained from θ2 with a finite number of ap-
plications of G1, G2 and G3. We say (see [1]) that, for any
such pair of triples, θ1 is generalized–included in θ2 (briefly
g–included), in symbol θ1 ⊑ θ2, and it means that

(i) C2 ⊆ C1 ⊆ X2;

(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and B1 ⊆ A2.

Generalized inclusion is symmetrize version of dominance re-
lation introduced by Studený in [2].
The g–inclusion between triples is extended to the case of sets
of triples.

Definition 1Let H, J be subsets of S(3). J is a covering
of H (in symbol H ⊑ J) if and only if for any triple θ ∈ H

there exists a triple θ′ ∈ J such that θ ⊑ θ′.

In [1] we introduced the concept of “maximal”(with respect to
g–inclusion) triple: given a set J of triples, a triple τ is maximal

in J if there exists no τ̄ ∈ J with τ̄ 6= τ, τT such that τ ⊑ τ̄ .
In particular, we denote with J/

⊑
the subset of J composed

only by its maximal triples and we call FindMaximal the
function which computes J/

⊑
from J . Moreover, the set J∗ =

FindMaximal(J̄) is said fast closure.
We recall first of all that the fast closure {θ1, θ2}∗ of a couple
θ1, θ2 ∈ S(3) is composed by a maximum of nine extra triples,
no matter how many variables occur in θ1 and θ2.
In fact, any pair of triples (θ1, θ2) can be re–written, in a general
form, as

θ1 = ([AA, AB, AC, AN ], [BA, BB, BC, BN ], [CA, CB, CC, CN ])

θ2 = ([AA, BA, CA, A′N ], [AB, BB, CB, B′
N ], [AC, BC, CC, C ′

N ])

where some sets can be empty and with the notation that
[A, B,C] stands for A ∪B ∪ C.
Moreover, the related fast closure {θ1, θ2}∗ is g–included to the
set of possible triples
K(θ1, θ2) = {θ1, θ2, θa, θb, θc, θd, θe, θf , θg, θh, θad}, where

θa = (AA, [AB, BA, BB, BC, CB, BN ], [AC, CA, CC]);

θb = (AB, [AA, BA, BB, BC, CA, BN ], [AC, CB, CC]);

θc = (BA, [AA, AB, AC, BB, CB, AN ], [BC, CA, CC]);

θd = (BB, [AA, AB, AC, BA, CA, AN ], [BC, CB, CC]);

θe = (AA, [AB, BA, BB, BC, CB, B′
N ], [AC, CA, CC]);

θf = (AB, [AA, BA, BB, BC, CA, A′N ], [AC, CB, CC]);

θg = (BA, [AA, AB, AC, BB, CB, B′
N ], [BC, CA, CC]);

θh = (BB, [AA, AB, AC, BA, CA, A′N ], [BC, CB, CC]);

θad = ([AB, BA], [AA, BB], [AC, BC, CA, CB, CC]).

By using {θ1, θ2}∗, we provided the Algorithm FC1(J).

function FC1(J)
begin

J0 := N0 := J

k :=0
repeat

k := k + 1
Nk := {τ : τ ∈ {θ1, θ2}∗ with θ1 ∈ Jk−1, θ2 ∈ Nk−1}
Jk := FindMaximal(Jk−1 ∪Nk)

until Jk = Jk−1

return Jk

end

For each J subset of S(3) then FC1(J) ⊑ J∗ and J∗ ⊑ FC1(J).

Experimental results

The experiments were performed on an AMD Dual Core
Opteron running at 1.8 GHz with 2 GByte main memory. We
applied a cut–off of 5,000,000 triples that can be stored (to avoid
problems with memory) and a time–out of 3600 seconds.
In the first set of experiments, we have generated 200 ran-
dom sets of triples having nv variables and nr triples, for
nr = 10, 15, 20, 25, 30 and nv = ⌊0.5 · nr⌋, nr, ⌊1.5 · nr⌋, 2nr.
and we have computed the fast closure by means of FC1, the
main results are shown in Table 1. In particular, the value perc

is the percentage of the sets for which FC1 has been able to
compute the fast closure, within the limits of time and mem-
ory, time is the average computation times in seconds, size is
the average size of the fast closure, iter is the average number
of iterations needed to find the closure, and gen is the average
number (rounded to the nearest integer) of the overall generated
triples.
In the second set of experiments we compare the computation
time needed for finding the complete closure and its size with
respect to the time and size of the fast closure. The complete
closure is obtained by using an algorithm similar to FC1, which
uses all the inference rules G1–G5, without calling FindMax-

imal. Furthermore, we did not apply for it any cut–off with
respect to number of triples. Since we expect that the complete
closure is much larger than its fast version, we have performed
these new experiments with smaller instances, instead of using
the previous one. In particular, we generate 20 sets of nr triples
and nv variables, for nr = 4, 7, 10 and nv = nr, ⌊1.5 ·nr⌋. The
comparison of the size between fast and complete closure is im-
pressive, as it is possible to see in the graph of the following
figures.

Table 1: Fast Closure FC1

nr nv perc time size iter. gen.

10 5 100% 0 10.83 3.99 202

10 10 100% 1.06 95.93 6.42 27524

10 15 99% 44.43 226.08 6.263 241219

10 20 98.5% 22.16 153.54 4.81 115006

15 7 100% 9.11E-02 46.84 5.50 5841

15 15 63% 500.42 982.68 10.03 1926990

15 22 80.5% 111.49 365.29 6.63 359213

15 30 98% 9.77 72.14 3.25 32615

20 10 100% 79.19 433.835 7.41 652608

20 20 27.5% 376.43 921.47 10.2 1105693

20 30 93.5% 84.64 305.21 5.58 240052

20 40 98.5% 3.64 54.95 2.20 16514

25 12 49.5% 1383.23 1354.33 8.3 5231558

25 25 35% 254.46 719.69 9.04 720993

25 37 97.5% 14.25 124.42 3.8 62761

25 50 100% 1.1E-03 29.685 1.445 84

30 15 0% – – – –

30 30 51.28% 118.59 514.58 7.65 3631898

30 45 100% 0.03 48.38 2.41 1063

30 60 100% 8.55E-05 31.06 1.12 7

Average Size of Closure

64

527

3282

28808

50760

3.95
5.85

18.65

32.05

86.9

1

10

100

1000

10000

100000

(4,4) (4,6) (7,7) (7,10) (10,10)

(nr,nv)

Complete

FC1

Figure 1: Size of closure.

Average Time of Closure

0

100

200

300

400

500

600

700

(4,4) (4,6) (7,7) (7,10) (10,10)

(nr,nv)

m
s
e
c

Complete

FC1

Figure 2: Computation times.

References

[1] Baioletti M., Busanello G., Vantaggi B. (2009), Conditional
independence structure and its closure: Inferential rules and
algorithms, International Journal of Approximate Rea-
soning, in press doi: 10.1016/j.ijar.2009.05.002.

[2] Studený M. (1997), Semigraphoids and structures of proba-
bilistic conditional independence, Ann. Math. Artif. Intell.,
21, pp. 71–98.

[3] Studený M. (1998), Complexity of structural models, Proc.
Prague Stochastics ’98, Prague, pp. 521–528.


