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Bayesian combination: aggregating sources of precise
probabilistic knowledge

Different sources reporting information about a same variable (X )

An auxiliary variable for each source (A1 and A2)

Each source returns a conditional mass function (P1(X |a1) P2(X |a2))

Each source has a prior (P1(A1) and P2(A2))

This defines a joint for each source (P1(A1,X) and P2(A2,X))

Conditionals (P1(A1|x) and P2(A2|x)) by Bayes’ rule

Fusion center revises its conditionals from those of the sources

P0(a1|X) ∝ P1(a1)P1(X |a1) P0(a2|X) ∝ P2(a2)P2(X |a2)

Fusion center has its own prior (P0(X))

Sources are independent given the variable (A1 ⊥ A2|X ),

thus P0(A1,A2|x) = P0(A1|x)P0(A2|x)

By chain rule, the global joint of the fusion center is therefore

P0(X ,A1,A2) = P0(X)P0(A1|X)P0(A2|X)

Bayes’ rule P0(X |a1, a2) ∝ P0(X)P0(X |a1)P0(X |a2)

Flat P0(X)⇒ Bayesian combination P0(X |a1, a2) ∝ P1(X |a1)P2(X |a2)

Graphical outline: from sources to fusion
center through model revision
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Extension to coherent lower previsions (CLPs): aggregating
sources of imprecise probabilistic knowledge

Each source returns a conditional CLP (PX |A1
1 and PX |A2

2 )

CLPs modeling also priors for the sources (PA1
1 and PA2

2 )

Two joints by marginal extension PX ,Aj
j (fj) := PAj

j

(
PX |Aj

j (fj|Aj)
)

Then, conditionals PA1|X
1 and PA1|X

1 by GBR/regular extension

Model revision of the corresponding CLPs of the information center

PA1|X
0 ≡ PA1|X

1 and PA2|X
0 ≡ PA2|X

2

Fusion center has its own prior CLP PX
0

Epistemic irrelevance of the sources given X . Conditional PA1,A2|X
0 by

independent natural extension PA1,A2|X
0 (g|x) is

sup
g1,g2

inf
a1,a2

{
g(a1, a2)−

[
g1(a1, a2)− PA1|X

0 (g1(·, a2)|x)
]
−
[
g2(a1, a2)− PA2|X

0 (g2(a1, ·)|x)
]}
.

A joint CLP by marginal extension PX ,A1,A2
0 (g) := PX

0

(
PA1,A2|X

0 (g|X)
)

A separately coherent conditional lower prevision PX |A1,A2
0 by GBR.

Assuming PA1,A2
0 (ã1, ã2) > 0 (ãj observed internal states of the j-th

source), just find µ such that: PX ,A1,A2
0

(
I{ã1,ã2} · [g − µ]

)
= 0

Checking coherence

Sources and fusion center are different subjects
They (asymmetrically) share information by a model revision process
Coherence required only separately for each subject
Fusion center: the separately coherent conditional lower previsions PAj|X

0 and PX
0 are jointly

coherent (see proof in the paper)
Sources: trivial because of marginal extension

A closed formula for linear-vacuous mixtures

Explicit computation for a special class of CLPs
PX |Aj

j (fj|aj) := ε
aj
j
∑

x∈X
pj(x|aj)fj(x, aj) + (1− εaj

j ) min
x∈X

fj(x, aj)

If the fusion center has a prior vacuous, it will never learn from the sources
(PX

0 is vacuous⇒ PX |A1,A2
0 vacuous)

If the sources are vacuous, the fusion center keep its prior as a posterior
(PX |A1

1 and PX |A2
2 vacuous⇒ PX |A1,A2

0 = PX
0 )

In general P(g|a1, a2) is the (easily computable) solution µ of the following equation:
0 = ε0

∑
x∈X

{[
PA1|X

0 (I{ã1}|x) · · ·PAn|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}+P

A1|X
0 (I{ã1}|x) · · ·PAn|X

0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]
(g(x, ã1, . . . , ãn)−µ)p0(x)

}
+(1−ε0) min

x∈X

{[
PA1|X

0 (I{ã1}|x) · · ·PAn|X
0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ≥0}+P

A1|X
0 (I{ã1}|x) · · ·PAn|X

0 (I{ãn}|x)I{g(x,ã1,...,ãn)−µ<0}

]
(g(x, ã1, . . . , ãn)−µ)

}

Application to Zadeh’ paradox

A patient disease X . Possible diseases are meningitis (x1), concussion (x2) and brain tumor (x3)

Two sources of information (doctors)⇒ (two Boolean A1,A2 s.t., Aj = aj means doctor j is reliable)

Doctor A1 says 99% meningitis, 1% brain tumor, tumor cannot be

Doctor A2 says 99% concussion, 1% brain tumor, meningitis cannot be

After aggregation, either Dempster’ rule and Bayesian combination say brain tumor 100%

In our framework, the joint diagnosis is PX |A1,A2
0

We have the same result if both the doctors are reliable, i.e., P0(X |a1, a2)

But, the conflict says that (at least) one of them should not be reliable

We can compute P0(X |{¬a1, a2} ∪ {a1,¬a2} ∪ {¬a1,¬a2})!
The fusion center conclude that the patient should soffer from either concussion or meningitis
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