

On the use of a new discrepancy measure to correct incoherent assessments and to aggregate conflicting opinions based on imprecise conditional probabilities

Andrea Capotorti, Giuliana Regoli, Francesca Vattari Dipartimento di Matematica e Informatica Universitá di Perugia {capot,regoli,francesca.vattari}@dipmat.unipg.it

1. BASIC NOTIONS

We formalize the domain of the evaluation through a finite family of conditional events of the type

$$\mathcal{E} = [E_1|H_1, \dots, E_n|H_n]$$

and the sample space spanned by the basic events $E_1, \ldots, E_n, H_1, \ldots, H_n$ is given by

 $\Omega = \{\omega_1, \ldots, \omega_k\},\$

where ω_i represents a generic atom, in some context named "possible world".

The numerical part of the assessment is elicited through interval values

 $\mathbf{lub} = ([lb_1, ub_1], \dots, [lb_n, ub_n])$

thought as honest ranges for the probabilities $p_i = P(E_i|H_i)$, i = 1, ..., n.

Denoting by \mathcal{M} the set of coherent precise conditional assessments compatible with $(\mathcal{E}, \mathbf{lub})$, i.e.

 $\mathcal{M} := \{ P \text{ coherent } | lb_i \leq P(E_i | H_i) \leq ub_i, i = 1, \dots, n \}$

we shall focus on the situations with an empty \mathcal{M} that characterize incoherent assessments (*with uniform loss*).

Every probability distribution $\alpha : \mathcal{P}(\Omega) \to \mathbb{R}$ corresponds to a non-negative vector $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_k]$, with $\alpha_j = \alpha(\omega_j)$; then for every event E it will be $\alpha(E) = \sum_{\omega_j \subseteq E} \alpha_j$.

We will refer to a nested hierarchy of probability distributions over Ω :

- $\mathcal{A} := \{ \boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_k] \mid \sum_{i=1}^k \alpha_i = 1, \alpha_j \ge 0, \quad j = 1, \dots, k \}$ is the whole set of probability distributions on Ω ;
- $\mathcal{A}_0 := \{ \boldsymbol{\alpha} \in \mathcal{A} | \boldsymbol{\alpha}(H^0) = \boldsymbol{\alpha}(\bigvee H_i) = 1 \}$ is the subset of probability distributions on Ω that concentrate all the probability mass on the contemplated scenarios;
- $A_1 := \{ \alpha \in A_0 | \alpha(H_i) > 0, i = 1, ..., n \}$ is the subset of p.d. on Ω that give positive probability to every scenario;
- A_2 is the subset of probability distributions that avoid boundary values $\{0, 1\}$ for the conditional probabilities.

Associated to any precise assessment $\mathbf{p} = [p_1, \dots, p_n] \in (0, 1)^n$ over \mathcal{E} we can introduce a scoring rule

$$S(\mathbf{p}) := \sum_{i=1}^{n} |E_i H_i| \ln p_i + \sum_{i=1}^{n} |\neg E_i H_i| \ln(1-p_i)$$

where $|\cdot|$ is the indicator function of unconditional events and the value of $S(\mathbf{p})$ when the atom ω_i occurs is

$$S_j(\mathbf{p}) = \sum_{i: E_i H_i \supset \omega_j} \ln p_i + \sum_{i: \neg E_i H_i \supset \omega_j} \ln(1 - p_i).$$

We can now introduce the "discrepancy" between a precise assessment p over ${\cal E}$ and a distribution $\pmb{\alpha}\in {\cal A}_2$,

with respect to its induced conditional coherent assessment q_{α} , as

$$\Delta(\mathbf{p}, \boldsymbol{\alpha}) := E_{\boldsymbol{\alpha}}(S(\mathbf{q}_{\boldsymbol{\alpha}}) - S(\mathbf{p})) = \sum_{j=1}^{k} \alpha_j [S_j(\mathbf{q}_{\boldsymbol{\alpha}}) - S_j(\mathbf{p})].$$

It is possible to extend by continuity the previous definition of $\Delta(\mathbf{p}, \boldsymbol{\alpha})$ to any distribution $\boldsymbol{\alpha}$ in \mathcal{A}_0

with

$$\Delta(\mathbf{p}, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \ln(\frac{q_i}{p_i}) \alpha(E_i H_i) + \ln(\frac{1-q_i}{1-p_i}) \alpha(\neg E_i H_i) = \sum_{i=1}^{n} \alpha(H_i) \left(q_i \ln(\frac{q_i}{p_i}) + (1-q_i) \ln(\frac{1-q_i}{1-p_i})\right)$$

For the *discrepancy measure* $\Delta(\mathbf{p}, \boldsymbol{\alpha})$ the following properties hold:

- $\Delta(\mathbf{p}, \boldsymbol{\alpha}) \geq 0 \quad \forall \boldsymbol{\alpha} \in \mathcal{A};$
- $\Delta(\mathbf{p}, \boldsymbol{\alpha}) = 0$ iff $\mathbf{p} \equiv \mathbf{q}_{\boldsymbol{\alpha}}$;
- $\Delta(\mathbf{p}, \cdot)$ is convex on \mathcal{A}_2 ;
- $\Delta(\mathbf{p}, \cdot)$ always admits a minimum on \mathcal{A}_0 ;
- If $\Delta(\mathbf{p}, \cdot)$ attains its minimum on \mathcal{A}_1 there is a unique coherent assessment $\mathbf{q}_{\underline{\alpha}}$ on \mathcal{E} such that $\Delta(\mathbf{p}, \underline{\alpha})$ is minimum;
- If $\Delta(\mathbf{p}, \cdot)$ attains its minimum value on $\mathcal{A}_0 \setminus \mathcal{A}_1$, then any distribution $\boldsymbol{\alpha} \in \mathcal{A}_0$ that minimizes $\Delta(\mathbf{p}, \cdot)$ induces the same significant conditional probabilities $(\mathbf{q}_{\alpha})_j$ on the conditional events $E_j|H_j$ such that $\alpha(H_j) > 0$.

By fixing an index $f \in \{1, ..., n\}$, we can find two coherent assessments \underline{q}_f and \overline{q}_f on \mathcal{E} , induced by the solutions of the following two parametric optimization problems:

minimize
$$\Delta(\mathbf{v}, \boldsymbol{\alpha})$$
 (1)

under the constraints

$$v_{f} = lb_{f} \quad \text{or} \quad v_{f} = ub_{f}$$

$$\forall i \neq f \quad lb_{i} \leq v_{i} \leq ub_{i}, i \in \{1, \dots, n\}$$

$$\sum_{j: \omega_{j} \subset E_{k}H_{k}} \alpha_{j} = q_{k} \sum_{j: \omega_{j} \subset H_{k}} \alpha_{j}, k = 1, \dots, n$$

$$\boldsymbol{\alpha} \in \mathcal{A}_{0}.$$

By letting the index f vary over the full range $1, \ldots, n$ we obtain a set of 2n coherent assessments

$$\mathcal{Q} = \{\underline{\mathbf{q}}_f, \overline{\mathbf{q}}_f, f = 1, \dots, n\}$$

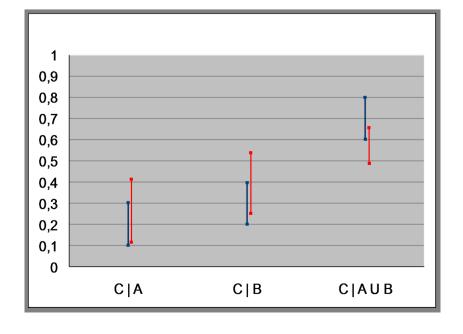
Hence the imprecise assessment on \mathcal{E}

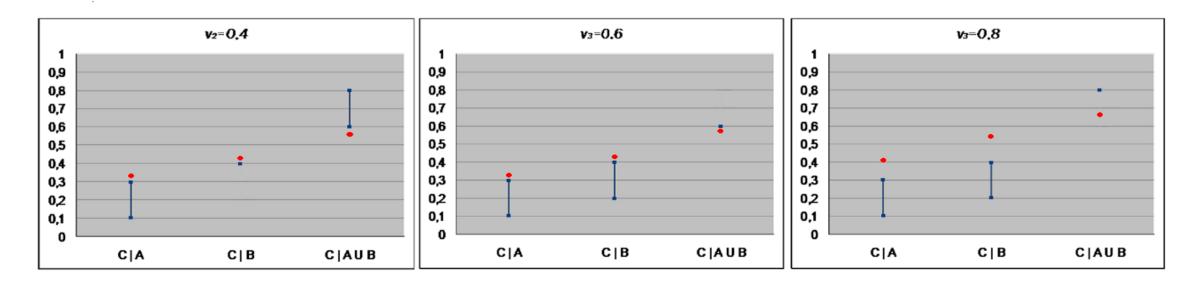
$$lc_i := \min_{\tilde{\mathbf{q}} \in \mathcal{Q}} \tilde{\mathbf{q}}(E_i | H_i) \qquad uc_i := \max_{\tilde{\mathbf{q}} \in \mathcal{Q}} \tilde{\mathbf{q}}(E_i | H_i),$$

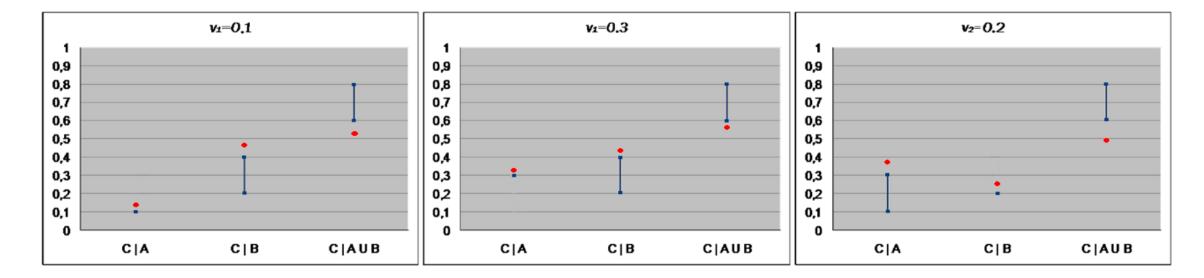
is coherent and can be adopted as correction of lub.

Example 1

\mathcal{E}	C A	C B	$C A \lor B$
lb_i	0.1	0.2	0.6
ub_i	0.3	0.4	0.8







4. AGGREGATING CONFLICTING OPINIONS

Evaluations are assessed on $\mathcal{E}^s = [E_{1,s}|H_{1,s}, \dots, E_{n,s}|H_{n,s}]$, with the index $s \in S$ expressing the different sources; $\mathcal{E} = \bigvee_{s \in S} \mathcal{E}^s$ is the joint domain.

If we have two different ranges $[lb'_i, ub'_i]$ and $[lb''_i, ub''_i]$ associated to the same $E_i|H_i \in \mathcal{E}$, we can associate the second interval to a new conditional event $E''_i|H''_i$ and increase the logical relationships with

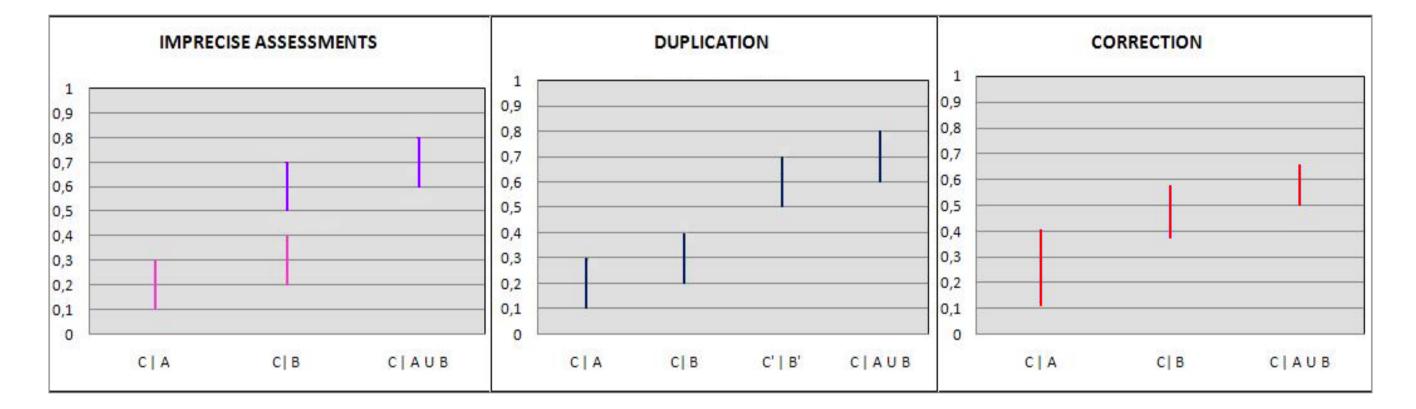
$$E_i H_i \equiv E_i'' H_i'' \quad , \quad H_i \equiv H_i''$$

In this way, we will have the different opinions joined in a single imprecise (incoherent) assessment $(\mathcal{E}, \mathbf{lub})$; and its correction $(\mathcal{E}, \mathbf{luc})$ will represent an aggregation result.

Since luc is a coherent imprecise assessment, equal intervals will be associated to coincident elements of \mathcal{E} .

Example 2

	C A	C B	$C A \lor B$
lub'	[.1, .3]	[.2, .4]	_
lub''	—	[.5, .7]	[.6, .8]



It is possible to associate different weights to the elements of the joined assessment $(\mathcal{E}, \mathbf{lub})$;

denoting by $\mathbf{w} = [w_1, \dots, w_n]$ such weights, the expression of $\Delta(\mathbf{v}, \boldsymbol{\alpha})$ in the optimization problems (1) becomes

$$\Delta^{\mathbf{w}}(\mathbf{v}, \boldsymbol{\alpha}) := \sum_{i=1}^{n} w_i \alpha(H_i) \left(q_i \ln(\frac{q_i}{v_i}) + (1 - q_i) \ln\frac{(1 - q_i)}{(1 - v_i)} \right)$$
(2)

Example 3

	C A	C B	$C A \vee B$	
lub'	[.1, .3]	[.2, .4]	[.6, .8]	\rightsquigarrow
lub''	[.1, .3]	[.5, .7]	[.6, .8]	

	${\cal E}$	C A	C B	C'' B''	$C A \lor B$
\rightsquigarrow	lub	[.1, .3]	[.2, .4]	[.5, .7]	[.6, .8]
	\mathbf{W}	2	1	1	2

