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Abstract
In classic decision theory it is assumed that a
decision-maker can assign precise numerical val-
ues corresponding to the true value of each con-
sequence, as well as precise numerical probabil-
ities for their occurrences. In attempting to ad-
dress real-life problems, where uncertainty in the
input data prevails, some kind of representation of
imprecise information is important. Second-order
distributions, probability distributions over prob-
abilities, is one way to achieve such a representa-
tion. However, it is hard to intuitively understand
statements in a multi-dimensional space and user
statements must be provided more locally. But the
information-theoretic interplay between joint and
marginal distributions may give rise to unwanted
effects on the global level.
We consider this problem in a setting of second-
order probability distributions and find a family of
distributions that normalised over the probability
simplex equals its own product of marginals. For
such distributions, there is no flow of information
between the joint distributions and the marginal
distributions other than the trivial fact that the
variables belong to the probability simplex.

Second-Order Distributions
Uncertain probabilities are thought to be repre-
sented by probability distributions on random
variables that take values on [0, 1] and sum to 1.
The intuition of a second-order probability distri-
bution is that it is a distribution that assigns prob-
abilities to the probabilities of the possible out-
comes of an event. So such a distribution will
have to be defined on the hyper-surface defined
by

∑n
i=1 xi = 1, xi ≥ 0, i = 1, . . . , n or, equiv-

alently on the n − 1-dimensional simplex where∑n−1
i=1 xi ≤ 1, xi ≥ 0, i = 1, . . . , n − 1 and xn is

an abbreviation of 1−
∑n−1

i=1 xi.
The uniform distribution with support on the sim-
plex where

∑n−1
i=1 xi ≤ 1, xi ≥ 0, i = 1, . . . , n − 1

with constant value the inverse of the volume of
the simplex and the Dirichlet distribution are ex-
amples of second-order probability distributions.

Definition 1 A second-order probability distribu-
tion is a distribution µ with support on a set P =
{(x1, . . . , xk) : 0 ≤ ai ≤ xi ≤ bi, i =
1, . . . , k,

∑k
i=1 ≤ 1}.

Where is the Uncertainty?

Say that we do not know anything except lower
and upper bounds for the probabilities and want
to employ the principle of maximum entropy. Do
we let all the entropy reside in the multivariate
(global) second-order distribution or do we dis-
tribute our uncertainty on both the global and local
levels?

Factoring into Marginals
We want to find multivariate distributions f such
that

f(x1, . . . xn) =
1
K

n∏
i=1

fi(xi) ,

where fi(xi) is the marginal distribution of f(x)
with respect to xi and K =

∫
P

∏n
i=1 fi(xi) dx.

The idea is that the entropy is found both at the
global and local levels, or that the Kullback-Leibler
divergence DKL(f‖

∏n
i=1 fi), also known as the total

correlation of X1, . . . , Xn to be minimal. We could
even say that we wish the first-order probabilities
to be as close to independent as possible given that
the probabilities sum to one.

Dirichlet Rediscovered
The distributions we seek turns out be Dirichlet
distributions with parameters αi = 1

n−1 and the
marginal distributions Beta distributions with α =

1
n−1 and β = 1 when all lower bounds ai = 0.
When any ai > 0 the distributions are shifted and
re-scaled according to the new support.
The upper bound of xj is determined by the lower
bounds of the other variables, 1−

∑
i 6=j ai.

The Theorem
Theorem 1 A probability distribution f(x) factors into
marginals if and only if its marginal distributions are

fi(xi) =
1

(n− 1)
(
1−

∑n
j=1 aj

) 1
n−1

(xi − ai)
n−2
n−1

with support [ai, 1−
∑

j 6=i aj ], where
∑n

j=1 aj < 1.

Proof: An integral
∫
P

∏n
i=1 gi(xi) dx of a product of

univariate functions over the probability simplex P
is the repeated convolution g1 ∗ g2 ∗ · · · ∗ gn(1). E.g.
when n = 3 we have∫ 1

0

∫ 1−x1

0

g ∗1 (x1)g2(x2)g3(1− x1 − x2) dx2 dx1 =∫ 1

0

g1(x1)[g2 ∗ g3(1− x1)] dx1 = g1 ∗ g2 ∗ g3(1) .

If f(x) factors into marginals the marginal distribu-
tion with respect to xi is

1
K

fi(xi)∗
j 6=i

fj (1− xi) ,

where ∗i 6=jfj is the n − 1-fold repeated convolution
f1 ∗ f2 ∗ · · · ∗ fi−1 ∗ fi+1 ∗ · · · ∗ fn and K is the n-
fold convolution ∗n

i=1fi(1). Assume that {fi}n
i=1 are

the marginal distributions of a joint distribution that
factors into marginals. Then for all i, i = 1, . . . , n,

∗
j 6=i

fj(1−xi) = KH(ci−xi) = KH((1−xi)−(1−ci)) ,

where ci is such that fi(xi) = 0 when xi > ci.
Then the distributions fk must have Laplace trans-
forms Fk such that∏

k 6=i

Fk =
Ke−(1−ci)s

s

and if fk is on the form gk(xk−ak)H(xk−ak) where
fk(xk) = 0 when xk < ak, gk must have Laplace

transform
(

K
s

) 1
n−1 , that is gk(xk) = K

1
n−1

Γ( 1
n−1 )x

n−2
n−1
k

and

fk(xk) =
K

1
n−1 H(xk − ak)

Γ
(

1
n−1

)
(xk − ak)

n−2
n−1

since the Laplace transform of tα is Γ(1+α)
s1+α , where

Γ(1 + α) =
∫∞
0

e−xxα dx.
Further, since the Laplace transform of fk(xk) is
K

1
n−1 e−sak

s
1

n−1
,

∗
j 6=i

fj(1− xi) =
Ke−s(

P
j 6=i aj)

s
,

the upper limit of the support of xi is ci = 1 −∑
j 6=i aj and the n-fold convolution

n∗
i=1

fi(t) is the

inverse Laplace transform of K
n

n−1 e−s
Pn

i=1 ai

s
n

n−1
, i.e.

n∗
i=1

fi(t) = K
n

n−1 H(t−
Pn

i=1 ai)(t−
Pn

i=1 ai)
1

n−1

Γ( n
n−1 )

, so

K =
n∗

i=1
fi(1) =

K
n

n−1 (1−
∑n

i=1 ai)
1

n−1

Γ
(

n
n−1

)
and K =

Γn−1( n
n−1 )

1−
Pn

i=1 ai
.

But since Γ(z + 1) = zΓ(z), Γ
(

n
n−1

)
= 1

n−1Γ
(

1
n−1

)
and

K =
Γn−1

(
1

n−1

)
(n− 1)n−1 (1−

∑n
i=1 ai)

.

Example
With n = 3, let us take a1 = 1/3, a2 = 1/5 and a3 = 1/8. Then
1−

P3
i=1 ai = 120−40−24−15

120
= 41

120
.

f1(x1) =
1

2
p

41/120(x1 − 1/3)
,

f2(x2) =
1

2
p

41/120(x2 − 1/5)

and
f3(x3) =

1

2
p

41/120(x3 − 1/8)
,

with support [1/3, 27/40] , [1/5, 13/24] and [1/8, 7/15].
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