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Generalised coefficients of ergodicity
The idea of the generalisation to imprecise case is to use distances between imprecise probabilities;
more precisely, between the rows of imprecise transition matrices.

Hartfiel (1998) defines the so called uniform coefficient of ergodicity which measures the maximal
distance between rows of transition matrices:

τ (P) = sup
p∈P

τ (p) = max
i,j

max
A⊂Ω

T i(1A)− T j(1A),

where T i and T j are the upper and the lower expectation operators corresponding to the rows Pi and
Pj respectively.

Instead of measuring the maximal distance between rows, we can only measure the distance between
corresponding expectation operators, which turns out to coincide with the Hausdorff metric. Thus we
define the weak coefficient of ergodicity as:

ρ(T ) = max
0≤f≤1

max
i,j
|T i(f )− T j(f )| = dH(Pi,Pj),

where T i and T j are ith and jth row lower expectation operators respectively, f a real valued map on
the set of states, and dH is the Hausdorff metric between the rows Pi and Pj.

It is easy to see that ρ(T ) ≤ τ (P) if T is the lower expectation operator corresponding to the set of
matrices P .

Convergence
A stochastic matrix pwhose coefficient of ergodicity τ (p) is strictly smaller than 1 is called scrambling.
Further if P is a set of probabilities such that τ (p1 · p2 · · · pr) < 1 for any matrices pi ∈ P then such
a set is called product scrambling, and r is then called its scrambling integer. Thus we have that
τ (Pr) < 1.

Hartfiel proves the following theorem:

Let P be be product scrambling with scrambling integer r and letM0 be a non-empty compact set of
probabilities. Then, for any positive integer h,

dH(M0Ph,M∞) ≤ Kβh

where K = τ (Pr)−1dH(M0,M∞) and β = τ (Pr)
1
r < 1 and M∞ is the unique compact set of

probabilities such that
M∞P =M∞.

Thus,
lim
h→∞

M0Ph =M∞.

A similar result is obtained using the weak coefficient of ergodicity. We will say a lower expectation
matrix T is weakly scrambling if ρ(T ) < 1 and if ρ(T ) = 1 but ρ(T r) < 1 for some positive integer r
that it is weakly product scrambling with scrambling integer r.

The following theorem holds:

Let T be weakly product scrambling with scrambling integer r and let P 0 be a lower expectation
operator. Then, for any positive integer h,

d(P 0T
h, P∞) ≤ Kβh

where K = ρ(T r)−1d(P 0, P∞) and β = ρ(T r)
1
r . Thus,

lim
k→∞

P 0T
k = P∞.

In the case where an imprecise Markov chain is represented using convex sets of probabilities, conver-
gence is assured by the lower transition operator being weakly product scrambling. However, when
the sets of probabilities are not convex, the stronger condition of product scrambling is needed.

Coefficients of ergodicity
Coefficients of ergodicity or contraction coefficients measure the rate of convergence of Markov
chains. Let p be a stochastic matrix with no zero columns. Then a coefficient of ergodicity is de-
fined as

τ (p) = sup
x,y

d(xp, yp)

d(x, y)
.

If we take the metric

d(p, p′) = max
A⊆Ω
|p(A)− p′(A)| = 1

2

∑
ω∈Ω

|p(ω)− p′(ω)| (1)

then it can be directly evaluated as

τ (p) =
1

2
max
i,j

m∑
s=1

|pis − pjs|.

In terms of distances this expression can be written as

τ (p) = max
i,j

d(pi, pj),

where pi and pj are the i-th and j-th row of p respectively.

In general, a coefficient of ergodicity τ (p) satisfies:

• 0 ≤ τ (p) ≤ 1;

• τ (p1p2) ≤ τ (p1)τ (p2);

• τ (p) = 0 iff p has rank 1: p = 1v for some vector v.

This clearly implies: If τ (p) < 1 then the powers pn converge to a matrix with rank 1, which is
equivalent to unique convergence of the corresponding Markov chain.

Imprecise Markov chains
Markov chains

A Markov chain is a random process with the Markov property, which means that future states de-
pend on the present state and not on the past states. This dependence is expressed through transition
probabilities:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) = pnij

for every n ∈ N. The knowledge about first state is given by an initial probability P (X0 = j) = qj.

An imprecise Markov chain is a Markov chain where imprecise knowledge of parameters is built into
the model and is reflected in results.

Representation of imprecise Markov chains

The uncertainty of parameters can be expressed through sets of probabilities, which means that instead
of single precisely known initial and transition probabilities we take sets of possible candidates. We
do not assume the transition probability to be constant but only that at every step it belongs to the same
set.

The same is assumed for probability distributions on states at different time steps. LetMn be the set
of possible distributions at step n and P the set of possible transition matrices. The above assumptions
implyMn+1 =Mn · P .

Since the sets Mn are usually convex, there is another equivalent way of expressing them using
expectation operators (de Cooman et. al (2009)): The lower expectation operator corresponding to a
set of probabilitiesM is given by Pn[f ] = min

p∈Mn

Ep[f ], where f is a real valued map on the set of

states.

Similarly, sets of transition matrices can be represented by (lower) transition operators:

T [f ] =

 T 1[f ]
...

Tm[f ]

 .

The lower expectation operator Pn is then evaluated as

Pn[f ] = P 0T
n[f ].

Abstract
Coefficients of ergodicity are an important tool in measuring convergence of Markov chains. We ex-
plore possibilities to generalise the concept to imprecise Markov chains. We find that this can be done
in at least two different ways, which both have interesting implications in the study of convergence
of imprecise Markov chains. Thus we extend the existing definition of the uniform coefficient of
ergodicity and define a new so-called weak coefficient of ergodicity. The definition is based on the
endowment of a structure of a metric space to the class of imprecise probabilities. We show that this
is possible to do in some different ways, which turn out to coincide.
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